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We study numerically the elementary excitation spectrum of the most general isotropic spin-1
chain with bilinear-biquadratic nearest-neighbor coupling. Using finite-size scaling, a massless phase
with a period tripling in the ground state is found to exist in an extended region around the Lai-
Sutherland point. The location of the transition from the known valence-bond-like phase to the
trimerized phase cannot, however, be given precisely. We also present results on the ground-state
two-point correlation function.

I. INTRODUCTION

Antiferromagnetic spin chains can show a variety of
different behaviors depending on the ratio of the cou-
plings (e.g. , anisotropy, first and second neighbor ex-
changes, terms higher order in the spins, etc.) and on
the length of the spin. In the isotropic case half-integer
spin chains are generically critical. The excitation spec-
trum contains soft modes and the correlation functions
have power-law decay. As has been shown rigorously by
Aleck and Lieb, a nonzero gap is possible only if the
ground state is not unique. This is, e.g. , the case when
easy-axis (Ising-like) anisotropy is present.

For integer spins, however, as suggested first by
Haldane and later shown by AfHeck and Haldane and
AfHeck, 4 the one-dimensional spin models should gener-
ically have no soft modes. Critical behavior should be
an exception rather than a rule. We consider here the
spin-1 case only, where the most general isotropic model
with nearest-neighbor couplings can be described by the
H amiltonian

N

H = ) [cos 0(S; S,+i) + sin 0(S; S;+i) j .

Although, the model is not integrable in general, Bethe-
ansatz solutions exist at the special points 0 = vr/4 an—d
0 = vr/4. For 0 = —z/4 the spectrum was calculated by
Takhtajan and Babujian and the same kind of behavior
is obtained as for the isotropic spin-& antiferromagnet.
The soft modes appear at k=0 and k = x. At 0 = x/4
the model is equivalent to the Lai-Sutherland model.
Uimin mas the first to show that this model is soluble by
the Bethe ansatz and calculated the ground-state energy.
Sutherland calculated the spectrum as well, and found
soft modes at k = 0 and k = +2vr /3. Everywhere else
in the antiferromagnetic region (—3z/4 & 0 & z/2) the
model is expected to be noncritical.

There are two more values of 0 where exact state-
ments about the spectrum exist. It was found that at
0vB = arctan(s) the magnetic structure of the ground
state becomes so rigid that a dimerization of the lattice is
never energetically favorable. Later on this ground state

was constructed as an exact nearest-neighbor valence-
bond state and was shown to be unique. Breaking of a
nearest-neighbor valence bond costs a finite energy, so
the excitation spectrum has a finite gap.

At 0 = —x/2 a partial mapping to a spin-2 Heisen-
berg model with easy axis anisotropy exists. Although,
for finite chains the lowest energy state is not included
in the mapping, extrapolation to N —+ oo seems to indi-
cate a dimerized ground state with a massive excitation
spectrum. The ground-state degeneracy and the value
of the gap can also be obtained from the equivalence
of the purely biquadratic model and the 9-state Potts
model

On the other hand, the approximate mappings 4 of the
bilinear-biquadratic model to the Wess-Zumino-Witten
field-theory model suggested a phase transition from a
massive phase with unique ground state to another mas-
sive phase with a doubly degenerate, symmetry breaking
ground state. According to this picture the gap van-
ishes at the transition point only. In view of the above-
mentioned exact results the massive phase with unique
ground state is identified with the valence-bond state and
the symmetry breaking massive phase with the dimerized
phase near 0 = —~/2. The valence-bond state should ex-
ist for 0 ) —x/4 and the dimerized phase for 0 & —z/4.
Both phases are massive, the gap vanishes at the inte-
grable point 0 = —vr /4 only. The numerical evidence for
the opening of the gap on both sides of this point is,
however, not very convincing yet. '

The applicability of the Wess-Zumino-Witten field-
theory analogy near the other integrable point 0 = z/4 is
less clear. Therefore, in this paper we study numerically
the model in the neighborhood of this point. Imposing
periodic boundary conditions we calculate the lowest en-
ergy states of the spin chain for the possible different
quantum numbers. We consider here the 0 & 0 & 7r/2 in-
terval only and chain lengths up to N = 15. The finite-
size-scaling technique is used to extrapolate to infinitely
long chains.

The setup of the paper is as follows. In Sec. II the
modified Lanczos algorithm (MLA) used in the numer-
ical calculations is presented. The numerical results for
the energy spectrum and for the ground-state two-point
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correlation function are given in Sec. III. A discussion of
our results can be found in Sec. IV. Finally some details
on an appropriate choice of the basis vectors, that makes
maximal use of the symmetries during the numerical di-
agonalization procedure, are given in the Appendix.

II. THE MODIFIED LANCZOS ALCORITHM
(MLA)

In order to study the excit, ation spectrum of the Hamil-
tonian (I) with finite-size scaling we need to calculate
some of the lowest-lying energy levels of finite chains with
difFerent chain lengths ¹ To see the asymptotic behavior
for large N as long chains as possible must be considered.
In a numerical calculation the attainable chain length is
limited by the storage capacity of the computer or the
available CPU time. It is, therefore, imperative to use
all the possible symmetries of the problem to reduce the
memory requirement and the computing time.

Spin space isotropy of our Hamiltonian involves that
not only S& ——P,. S; but the total spin, ST itself, is
conserved and the eigenstates can be characterized by the
quantum number Sz . For each eigenvalue of H belonging
to ST the state is (2ST + I) times degenerate and there
is an eigenvector with S& ——0, thus we can restrict our
attention, further on, to this subspace. Using periodic
boundary conditions a classification of levels according
to the momentum quantum number k is possible. This
reduces the subspace dimension by a factor of about ¹

Two kinds of parities can be defined that commute with
the Hamiltonian. Let P denote the reflection of the chain
about its midpoint and P, denote the global spin Aip
which changes the spin state at all sites from S,. = 1
to S; = —I and vice versa, leaving S~ = 0 unchanged.
The eigenvalues of P and P, are denoted by p and p, ,

respectively. They can take the values +I. In the ST
0 subspace p~ is a good quantum number for arbitrary
k, but p is not. This comes from the fact that .P does
not commute with the translation operator. If T is the
operator of the elementary translation with eigenvaluese" then

(2)

and therefore p is a good quantum number for k = 0 or
z (W = even) only. This means that for k = 0, z parities
reduce again the subspace dimension by a factor of about
4, but for general k only by a factor of 2.

The above symmetries enable us to split the original
Hilbert space into several smaller, invariant subspaces
and the problem of finding the ground state and low-lying
excited states of II reduces to finding the lowest energy
state in all of these difFerent subspaces. Each one of the
subspaces is characterized by a difFerent set of quantum
numbers and the best way to assure this automatic block
diagonalization of II is to adopt an appropriate basis. As
we think this question is a crucial point in any numerical
realization we give some details for the case of our model
in the Appendix.

Provided we have set up the appropriate basis (p;);
the lowest energy state can be calculated in difFerent

ways. In direct methods one computes first, all the matrix
elements (p;, Hpz) of H and then uses a standard diag-
onalizing subroutine. If we are interested in the lowest-
lying state the power method can be used. In this type
of algorithm most of the time is spent on the diagonal-
ization part (multiplying matrices in the power method)
while the time for setting up the matrix is significantly
shorter. As for the memory requirement one has to store
at least all the nonzero matrix elements (of the order of
ND, where D is the subspace dimension) and the 2D
coeKcients of two D-dimensional vectors.

An alternative algorithm was first suggested by
Lanczos. The main idea is to change to a new basis
(g;}, i, in which the matrix of the Hamiltonian has a
tridiagonal form that can be diagonalized much easier
and faster with special routines. Starting from an arbi-
trary vector

D

ci'pi ~

which is not orthogonal to the ground state, the algo-
rithm builds up the new basis vectors and matrix ele-
ments at the same time in an iterative way. (In our cal-
culations @i was chosen with random coeflicients. ) The
nth Lanczos step is defined by the following recursion:

H0~ = f~ i0~ i+-g~0~-+ f~4~+i,
with $0 ——0 and (@;,gz) = 6;z. The recursion continues
until f„= 0. Apart from some pathological cases and
finite numerical precision problems this should happen
after D steps. Now on the new basis (g;) we have a
D x D real, symmetric, tridiagonal matrix. (g„ is always
real and f„can be chosen real even when H contains com-
plex coeKcients. ) Such a matrix can be diagonalized in
a relatively short time. Unfortunately, in this algorithm
setting up the new basis would take about the same time
as the diagonalization of the D x D matrix in the basis
(p;). This fact is not surprising if we know that most
of the available subroutines for the diagonalization of a
general matrix begin with transforming the matrix to a
tridiagonal form first. Another limitation of the method
is that we should store all the coeKcients of the com-
puted gi, g2, . . . , @„,. . . vectors on the (p;} basis if we
are interested not only in eigenvalues but in eigenvectors,
too.

If we are satisfied with a finite precision and need the
lowest-lying state only we can use the Lanczos algorithm
with two major modifications. Let us suppose we
stop the recursion after the nth step (n ( D) and con-
sider the n x n, tridiagonal matrix

(g, f, 0 0 . . . 0 0~
fi g2 f2 0 . . . 0 0

4 4

0 0 0 0 . . . f„ i g )
and its smallest eigenvalue E„.It is found that E„—+ ED
very fast (quasiexponentially apart from some possible
crossoverlike fiuctuations) as n —+ D, where ED is the
exact ground-state energy in t,he subspace. On the other
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hand the eigenvector y„, corresponding to E„,is a better
and better approximant to the exact ground-state wave
function. Thus, computing the difference b = E„—E„
after each step of the algorithm, the whole method can be
finished if b becomes less than a certain preset value and
accept E„and y„as the ground-state energy and eigen-
vector. In our calculations we chose b = 10 and found
that it resulted in a precision in the ground-state energy
better than 10 . Another independent check on the pre-
cision can be the calculation of the total spin of the state.
Using the approximate wave function y„, (y„~S&~g„) is
found to be S(S+ 1) with integer S to a precision better
than 10 or, in special cases, it can directly indicate the
appearance of spin multiplet degeneracy. Even for large
matrices (D 104) it is typically enough to perform
about 100 Lanczos steps.

The other modification allows us to reduce further
the required computer memory. After the dth step we
finish a cycle of the algorithm, calculate gg, and restart
the whole procedure from the beginning, starting now
with gi ——gg. By repeating the cycle several times we
obtain a convergent series of approximants for the ground
state. The iteration is finished according to the condition
in the former paragraph. As the time and memory re-
quirement of the new algorithm (MLA) is significantly
smaller than that of the original one we can study much
larger systems.

In Refs. 16 and 17 MLA was used with d = 2. Testing
the algorithm with diA'erent d's up to 40 we find that the
convergence rate strongly depends on d. For greater d's
the convergence can speed up with even an order of mag-
nitude. (In Fig. 1 the number of the required Lanczos
steps, which is proportional to the CPU time needed to
achieve our precision 6, is shown as a function of d at a
subspace dimension D 3000.) Consequently, we con-
clude that it is worth using the possibly largest d value.
The attainable value of d depends on how many @, vec-
tors can be stored at one time in the computer, thus it

decreases as the dimension increases. For our calculations
we used d=40 up to ¹=14but d=20 only, considering
the finite capacity of our computer, for ¹ 15.

III. RESULTS

To see the low-energy behavior of chains with N &14
sites, we calculated the lowest energy eigenstates for all
allowed momenta k = 2zl/N (I integer). Data were ob-
tained generally at intervals 40 = 0.05m in the range
0 & 8 & z /2. For the longest chain N = 15 we restricted
the calculations to some special points but computed the
ground state in the whole 8 region. Since the MLA yields
not only the lowest eigenvalue but the eigenvector, too,
we could determine the total spin Sz of this state and
the two-point correlation function.

Around the Lai-Sutherland point the finite chains show
drastically different behavior in almost every computed
quantities depending on whether N =—0 (mod 3) or N =
1, 2(mod 3). We discuss our results for these cases sepa-
rately. Considering first chains with N—:0(mod3), we
find that the ground state for any 8 p [0, z /2) is in the
k = 0 subspace with p = p, = (—1)~ and it is a singlet.
As for the first excited state the situation is more compli-
cated. %e have a series of crossovers as we proceed from
0 = 0 to g = 7r/4 so that the momentum of this state
varies from k z [k = x if N is even, k = 7r(N —1)/N if
N is odd] to k = 2z/3 while its other quantum numbers,
p, = —(—1)~ and Sz = 1, do not change. There is an ex-
act degeneracy for every finite N = 0 (mod 3) at 0 = z/4
between k = 2z./3, p, = —(—1),Sz = 1 and k = 2~/3,
p, = (—1)~, S~ = 2 states. This latter state remains the
first excited state in the whole x/4 & 8 & z/2 interval.
(Figure 2 shows the lowest energy levels for all k values
for N = 12.)
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FIG. 1. The number of the Lanczos steps, required to
achieve a precision b = 10 for 1V = 12 sites, 8 = 0.45+ in
the subspace Q„'~ &», vs the pa.rameter d of the modified

Lanczos algorithm (described in the text).

FIG. 2. Low-energy spectrum of the spin chain with E =
12 sites as a function of 8. For each momentum k, only the
lowest energy eigenvalue Eo(k) relative to Eo(k = 0) is plot-
ted. The labels next to the solid curves (k = 0, 2ir/3, n)
indicate the total spin Sz of the states.
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Plotting the dispersion relation for any fixed 8 values
in the [z./4, z/2) region the spectrum looks very similar
to that at the Lai-Sutherland point (see Fig. 3). The
total spin of the lowest energy eigenstates is found to
be a monotonic function of k [from Sz (k = 0) = 0 to
S7 (k z') = 3] for all such 0's. Our results up to N = 15
seems to indicate that the crossover for the levels with
different ST's, and thus the discrete jumps in the total
spin of the lowest state are at k = 0, z'/3, and 2z/3.

To see whether the mode at k = 27r/3 goes soft in an
extended range of 8 around 0 = z'/4, we plot in Fig. 4
the scaled gap NAEO q g3 between the lowest k = 0 and
k = 2z /3 states for chains with N = 3, 6, 9, 12, 15. It is
seen that above 0 = z/4 the gap scales rather precisely
as 1/N, indicating the existence of gapless excitations in
the thermodynamic limit. This fact is further confirmed
by observing the monotonic decrease of the curves in the
interval. (We know that the gap is exactly zero at the
Lai-Sutherland point 0 = z/4 and at the already ferro-
magnetic point 8 = z/2, where gapless excitations exist
for all possible momenta. ) We cannot see any sign of a
drastic change in this behavior for longer chains.

For 0 = z/4 there is a soft mode in the spectrum
of the infinite chain at k = 0, too. This implies that
AEp+p = Ep(k ~ 0) —Ep(k = 0) tends to zero as
N ~ oo. Here and in the following Ep(k) denotes
the lowest energy eigenvalue in the sector of momen-
tum k. Note that for finite chains the smallest pos-
sible nonzero momentum is ki —2x/N, therefore if
the excitation spectrum starts linearly with velocity v,
then NLEO I„——2mv. In Fig. 5 we plot the scaled
gap NAEO y, to see whether this soft mode is stable for
0 ) 7r/4. Since we have two limits, N ~ oo and ki ~ 0,
at the same time, we cannot expect an exact scaling by
1/N. Indeed, the scaled gap curves seem to increase as a
function of N in the whole 0 & 0 & z /2 interval, but they
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FIG. 4. Scaled gap between the lowest eigenvalues with
momenta k = 0 and k = 2s'/3 for different chain lengths N.
Discrete points for N = 15 are denoted by squares. The inset
shows the locations of the local minima vs 1/N. The N ~ oo
limit is obtained by fitting a straight line with an intercept
8 0.221x.

seem to converge to a finite value at and above 8 = 7r/4,
while they diverge below it. Considering the monotonic
decrease in 0 and taking into account the exact result for
8 = z/4, we conclude that there is a soft mode at k = 0
in the whole [z/4, z/2) interval.

The foregoing consideration allows us to calculate the
finite N estimates:

N[Ep(ki) —Ep(k = 0)]
vp N )

27r
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FIG. 3. The elementary excitation spectrum for N = 15
sites as a function of the momentum k at the Lai-Sutherland
point 8 = s/4 and at 8 = 0.4ir. The labels indicate the
total spin ST of the states. The solid curve shows the exact
spectrum of Sutherland at 8 = s'/4 for N ~ oo.
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FIG. 5. Scaled gap between the lowest eigenvalues with
momenta k = 0 and k = 2n/N for different chain lengths N.
Discrete points for N = 15 are denoted by squares.
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of the spin wave velocity around the soft mode at k = 0.
Similar estimation of the spin wave velocities around the
other soft modes k = +2+/3 is also possible. Let us
denote the estimates of the velocities below and above
k = 2~/3 by

The Lai-Sutherland model is not only critical but con-
formally invariant, too, with a central charge c = 2 of
the Virasoro algebra. ~ In a conformally invariant sys-
tem the ground-state energy of the asymptotically long
chains should converge as

N [Ep (2+/3 —2n. /N) —Ep(2+/3)]
v,.&, (u) =- (7)

Ep/N = s — c+ o(N ),

N[Ep(2'/3+ 2'/N) —Ep(2ir/3)]
v2 /s~(N) =

27r
) (8)

i.e. , all the velocities are equal. Our numerical values for
finite N [shown in Fig. 6(a)] seem to extrapolate quite
precisely to this value. We also calculated the spin wave
velocity estimates at difFerent points in the range vr/4 (
8 ( x/2. Figure 6(b) shows the results at, e.g. , 0 = 0.4n.
Comparing the tendencies of the graphs to that of Fig.
6(a) we suggest that in the whole 0 interval the spin wave
velocities around k = 0 and k = 2x/3 are identical.

respectively. According to Sutherland, at the integrable
point 0 = ~/4:

v(~/4) = hm vp(N) = lim v~ /s (N)
1V~oo K~ oo

1 2~
lim v2 /s+(N) =

W~ oo 23

where z is the ground-state energy density of the in-
finite system and c is the central charge (conformal
anomaly number) specifying the universality class of the
model. Supposing now that our generalized model (1) is
critical in a wider range around 0 = x/4 with the same
spin wave velocity v(g) at each soft mode, we can eval-
uate the central charge for difFerent 0 values. For the
estimation of v(0) we use the value obtained from vp(N),
since it converges the most rapidly.

Plotting the ground-state energy density Ep/N as a
function of I/N for a fixed 0 value the points lie quite
closely on a straight line [see Figs. 7(a) and?(b)]. Thus
the simplest way to obtain an approximant of g is
to extrapolate by fitting a line through the last two
points (for N = 12, 15) only. Considering, however,
the slight convexity of the curve this method actually
yields an upper bound. We also fitted the points by sev-
eral more complicated functions including higher poly-
nomials in I/X and expressions with various possible
logarithmic next-to-leading-order Gnite-size corrections,
and compared our results to the exact value
~2[2 —x/3~3 —21n(2)] = 0.209861 of Sutherland for
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FIG. 6. Spin wave velocity estimates defined by Eqs. (6)—
(8) vs 1/N for (a) the Lai-Sutherland point [the dashed curves
which are only guides for the eye go for N —+ oo to the exact
result of Sutherland v(s/4) = 2s'/3~2] and (b) II = 0.47r.
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FIG. 7. Ground-state energy density Ep/N vs I/N for

(a) 8 = ~/4, (b) II = 0.4~.
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8 = ir/4. For this 8 value all the difFerent extrapolation
methods gave e~ = 0.2098 + 0.0001, while the simplest
linear extrapolation yielded c~ = 0.20996. Because of
this nonsignificant difference and for not knowing reliably
the type of higher order finite-size corrections a priori, we
use in the following the simplest approximation.

Having calculated z~ for different 0's we can express
c(%,8) from Eq. (10):

Figure 8 shows our results for c(N, 8) with 8 = 0.27r,

0.25+, 0.3ir, and 0.4ir. The dashed line refers to c(X, s /4)
using the exact value s of Sutherland. It can be seen
that a slight overestimation of e leads to a little shift of
the curves, thus increases the extrapolated values of the
central charge. Considering this effect the graphs seem
to show that c is more or less constant with c = 2 in the
whole ir/4 & 8 & ir/2 range but begins to drop clearly
somewhere below the Lai-Sutherland point. We think
that this rapid change of c comes from the fact that in
this region the model generates a mass gap; consequently,
the central charge cannot be defined.

All the above arguments seem to indicate that the
tripled-period massless phase is stable at least for 8 )
s/4. Our results, however, do not contradict the pos-
sibility that this phase exists below the Lai-Sutherland
point already. The %LEO g /3 scaled gap shows a local
maximum for 8 = s/4. This behavior either indicates a
vanishing gap for some 8 smaller than ir/4 or it is only a

finite-size effect. Trying to decide this question we calcu-
lated with a precision of four decimal digits the 8 values
where the curves for different N reach their local minima
below the 8 = ir/4 point. Plotting these values (see the
inset in Fig. 4) as a function of 1/N the points seem to
fit very accurately to a straight line. Extrapolation to
N ~ oo would give 0 0.221m above which the gap
would vanish and the period tripled phase would exist.

Jet us consider now chains with chain length N
1, 2 (mod 3). In the ground state we have a crossover at
8, below the Lai-Sutherland point, so that for 0 & 8 & 8,
the ground state has k = 0, p = p, = (—1), ST = 0,
while for 8 & 8 & ir/2 it has a momentum close to
2ir/3, namely, k = 2+%/3N [where N = N + 1 such

that N = 0 (mod 3)], and p, = (—l)~, ST = 1. In the
first excited state there is a similar series of crossovers
as for N = 0 (mod 3). Proceeding from 8 = 0 to 8
the momentum changes from k ir to k 2ir/3. On
the other side of the point 0 the first excited state is
now the k = 0 state. For such N's we have an exact
degeneracy between different total spin multiplets in the
k = 0 subspace at 8 = ir/4, so that below this point the
lowest state has S2 —0, while for 8 ) ir/4 it has ST ——2.
(See the example in Fig. 9.)

It is evident that the large-N limit of 0, gives an up-
per bound for the transition point. In Fig. 10 we plot
8 as a function of I/¹ Not surprisingly the points
for X = 1(mod3) and N—:2(mod3) lie on differ-
ent curves. The points for N = 5, 8, 11,14 can be fit-
ted by a straight line very well. The calculated devia-
tion of the last three points from an exact line is less
than our precision 0.0001ir. This line extrapolates to
0 0.228m for N —+ oo fairly close to the value 0 ob-

Z, O
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k=1X27i/11
k=3.z~jr r
k=3x37r/rf
k-4x37r/11
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f.7— 0.0:
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0.0 f O.OZ 0.03
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FIG. 8. The central charge c(N, 8) defined by Eq. (11) vs

1/N for different 8 values. The dashed curve shows c(N, n /4)
using the exact value e of Sutherland with the expected
intercept at c = 2.

FIG. 9. Low-energy spectrum of the spin chain with N =
11 sites as a function of 8. For each momentum k only the
lowest energy eigenvalue Eo(k) relative to Eo(k = 0) is plot-
ted. The labels next to the solid curves (k = 0, 4x2ir/11, 5x
2n/11) indicate the total spin S~ of the states.
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FIG. 10. The location of level crossing in the ground state
of chains with N = 1, 2 (mod 3) as a function of 1/N. Extrap-
olation to N ~ oo from data points for N = 5, 8, 11, and 14
is done by fitting a straight line and gives 8 0.2287t.
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tained above. Although, the extrapolation from the val-
ues for N = 7, 10, 13 is impossible, the curve may have
the same intercept for N ~ oo.

In the hope of getting further details on the phase tran-
sition, we calculated the ground-state two-point function:

FIG. 11. The two-point function u~ as a function of / for
N = 15 sites and for different 8 values. The data points are
connected to guide the eye.

IV. CONCLUSIONS

for different chain lengths (N = 6, 9, 12, 15) and for a few
values of 0. For N = 15 the results are shown in Fig.
ll. At fixed t, cut(N) shows a strong dependence on N
for 0 below the valence-bond (VB) point, while this de-
pendence is clearly much smaller for 0 above this point.
From this respect the behavior of the (0vB, x/4) interval
is closer to that of the [a/4, x/2) interval. Despite the
above dependence on the chain length, ~t(N) as a func-
tion of / and 0 behaves similarly for all ¹s.At 0 = 0, co~

oscillates with a period of twice the lattice constant, i.e.,

for I even the correlation is positive, for / odd it is nega-
tive. The amplitude of u~ decays exponentially for large
l. Our numerical data and thus the estimate of the corre-
lation length (( = 5) are in complete agreement with that
of Moreo. For greater 0 up to OvB = 0.10m the behav-
ior remains alike, while the correlation length decreases
to the exact value (vn = 1/ ln 3. Above the VB point the
two-point function changes drastically in such a way that
at about 0 = 0.2+ (N & 15) the oscillation period is three
times the lattice constant. It is positive for I = 0 (mod 3)
only, otherwise it is negative. This behavior does not
modify up to 0 0.415m (with slight dependence on N),
where u3 gets also negative. The general, tripled periodic
nature of the two-point function, however, remains un-
changed. We have a similar change of sign in cu6 at about
0 0.448~. We believe that for long enough chains this
oscillation with three times the lattice constant would be
present up to 0 = x/2.

In this work we calculated the low-energy spectrum
and the ground-state correlation function of the Hamil-
tonian in Eq. (1) in the range 0 & 0 & x/2 for chains
up to N = 15 sites. Our finite-size-scaling results con-
firm the existence of a massive, valence-bond-like phase
around the exactly nearest-neighbor valence-bond state
at 0vB = arctan(s). We report an extended massless
phase in n./4 & 0 & z/2. The soft mode structure of this
phase is the same as that at the Lai-Sutherland point
0 = vr/4, i.e. , it has soft modes at k = 0, +2+/3. The
ground-state two-point function also shows a certain pe-
riod tripling. We have found that the model is critical
and seems to remain conformally invariant in the above
range with a central charge c = 2 of the Virasoro algebra.

We cannot locate the transition point between the two
phases precisely, since higher-order corrections to 1/N
scaling do not allow us to determine exactly where the
gap opens. We performed two calculations, one based on
the location of the minimum of the energy gap, the other
using the 0 values where the ground state has momentum
k = 2'/3 for chain lengths N = 1, 2(mod 3). Both give
0, 0.22+—0.23vr for the appearance of the massless,
trimerized phase. Nevertheless, due to the limitations of
finite-chain calculations, it is possible that the massless
phase begins at the integrable point 0 = vr/4 only.

The assumption of a trimerized phase in the range
z/4 & 0 & x/2 is not, quite new, it has been indepen-
dently suggested by Nomura and Takada. 2 Using difI'er-
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ent variational wave functions they found that the lowest
energy is obtained by a trimerized state. They assumed,
without calculating the spectrum, that this trimerized
phase is massive in the whole x/4 ( 8 ( m/2 range.
Our calculation, on the other hand, indicates an extended
massless phase. The existence of such an extended criti-
cal region in an isotropic, spin-1 model is astonishing in
the light of the previous general expectation that integer
spin models are generically noncritical.

(Some of them might even be zero vectors depending on
the symmetry properties of the representative II&).) Note
that these vectors are eigenvectors of the global spin Rip
operator P„ too, but they are not eigenvectors of P. This
comes from the commutation relation (2). Considering
only a definite k subspace the above vectors form a com-
plete orthogonal set in the space of the class of K. Thus
for all the representatives I& the set,

APPENDIX

Now we turn to the question how to choose the ba-
sis vectors properly. Our first idea is to work directly
in the subspace 'R of ST —0 and momentum k. We
can achieve this by using translation invariant basis vec-
tors with ST ——0. In such a case, however, a slight

difhculty arises. As always, we intend to build up
the basis vectors from the linear combination of vec-
tors (ISr'S2. .Siv))s. i. For k g 0, x the coeKcients
should be complex numbers. It is evident that it would
be much easier to work in a real basis with real coef6-
cients. To avoid this inconvenience we can choose the
following, more subtle basis.

Let us denote the spin configuration ISr'S2 . S~) by
IL), where L is an integer number,

is complete and orthogonal in 'HI, .
As we can see, these basis vectors are complex vec-

tors for general k. Nevertheless, we can make use of the
fact that if k g O, m then in the 'Rt, 'H

& subspace
all eigenvalues are doubly degenerate because if gr. is an
eigenstate of the Hamiltonian then gr'. ——g ~ is an eigen-
state, too. Therefore, we can make the following unitary
transformation:

(A4)

(A1)

We call IL;) and IL&) equivalent if the corresponding spin
configurations are related by translation and/or the two
reAection operations, P and P, . Thus, we divide the
S& ——0 subspace into disjoint classes. Each class can be
represented, e.g. , by the largest IL;) of the class, Writing out the new basis vectors explicitly and consid-

ering Eq. (2) we get
I& = max(L;), &,i (A2)

For a given class we can define four orthogonal basis vec-
tors that are translationally invariant with momentum
k:

(A5)

l=O

t=o

N —1

1=0

T'P,
I
I&) —T'PP, —IÃ)),

(A3)

II&„"~') = ) sin kl(T'II~) + ppT'II~) + p, p, T'lI&)
1=0

+pp, PP, T'II~))

(p, p, = jl). These vectors are not eigenstates of T but
eigenstates of P and P, with eigenvalues p and p, . The k
index is only an indication that they are combinations of
translation eigenvectors with momenta k and —k. If we

denote the Hilbert space of (II&&"'), lI&&"')j i~ Ii- by 'Rr."*
the result of the above transformation can be illustrated
by the formal equation

N —1

II.-4) ) kl (Ti II&-) TIP
I
I

It can be easily shown that as a result of the original
double degeneracy of Q& Q H I„ the energy spectra of
Q+z"' and &&"' are the same for k g 0, ~. Therefore, we
can restrict our attention to the p = +1 subspaces only.



G. FATH AND J. SOLYOM

This is not true for the k = 0 or m subspaces where no
degeneracy occurs. In this case, it is necessary to do the
calculation for each W~&" subspace. It is important to
emphasize that our choice of the basis does not decrease
further the dimension of the subspaces, but with its help
we can work on a real basis with real coefficients.

As we have seen above, for each representative lI&) we

define two basis vectors lI&) and lI&). (Here we drop
the indices k, p, p, .) We call this linear operation sym-
metrization. It is useful to notice that the two kinds
of symmetrization commute with the Hamiltonian H.

This fact has useful consequences in the prograrrmning.
It is enough to calculate H~I&) only, and to do the sym-
metrization afterward:

HlI&) = HlI&), HlK) = H(I&) . (A7)

When applying H on lI&) we get several configurations

lL) that are not representatives. To calculate lL) or lL)
a lemma can be used. Let lI&) denote the representative
of the class where lI ) belongs to. The following cases are
possible:
Lemma

If II&) = T II) then lI) = coslklI&) sinlklI&), lL) = sinlklK)+coslklIt) .

If II~) = P T II) then IL) = p cos~klI&) —p»n~kl~&) IL) = p»n~klI&)+p coslklIt) .
If lI~) = PT lL) then lI) = pcoslklIt) + psinlklE&), lI) = psin/klI&) —pcoslk(I&) .

If lI~) = P, PT lL) then lL) = p, pcoslklI&) +p, psinlklIC), lL) = p, psinlklI&) —p, pcoslklI&) .

As the proof of this lemma is quite straightforward but a bit lengthy, we leave it to the reader.
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