PHYSICAL REVIEW B

VOLUME 44, NUMBER 21

1 DECEMBER 1991-1

Thermodynamics of thin ferromagnetic films in the presence of anisotropy and dipolar coupling

R. P. Erickson and D. L. Mills
Department of Physics, University of California, Irvine, California 92717
(Received 6 May 1991)

We discuss aspects of the thermodynamics of ultrathin ferromagnetic films, with dipolar couplings
and anisotropy present. We present a formalism that allows one to form proper normal-mode spin-wave
annihilation and creation operators, from the left and right eigenvectors generated by the non-Hermitian
matrix encountered in the spin-wave equations of motion. We present numerical calculations that ex-
plore the dependence on magnetic field (parallel to the surface) of the magnetization of an ultrathin film
with easy axis normal to the surface. The magnetization has a singularity at the critical field where the
magnetization of the film just aligns parallel to the surface. We discuss the nature of the spin correla-

tions near the critical field.

INTRODUCTION

Currently, there is great interest in the properties of ul-
trathin (few atomic layer) ferromagnetic films. These ma-
terials have very interesting physical properties. For ex-
ample, their Curie temperature can be substantially
depressed below that of the bulk material. When these
films are modeled as two-dimensional Heisenberg fer-
romagnets, their transition temperature should in fact be
strictly zero. It has been argued that the strong uniaxial
anisotropy found often in these films is responsible for in-
ducing long-range order.!

Well below the ordering temperature, spin-wave theory
may be applied to the ultrathin films. This paper is con-
cerned with aspects of their thermodynamics that we
view as striking and unique. Consider a film with an easy
axis that orients the magnetization normal to the film
surface. Application of a magnetic field of magnitude
H,, parallel to the film surfaces cants the spins; at a cer-
tain critical field H¢,, the magnetization just aligns paral-
lel to the surface and remains parallel thereafter for
stronger fields. When H,, =H¢, we have a second-order
phase transition. Within spin-wave theory, the magneti-
zation M (T)/M(0) of an N-layer film may be written
M(T)/M(0)=1—(1/S)AN(T), where S is the length of a
spin. At the critical field H,, we show that Ay(T)
diverges logarithmically as H, —H, from above or
below. This is a consequence of the presence of a ‘“‘soft
mode” at H¢,, which in fact has been studied experimen-
tally by the light-scattering method.?

While above remarks are directed to the case where the
easy axis orients the magnetization normal to the surface
in zero external field, we note that ultrathin Fe films
grown on W(110) have an easy axis in the plane of the
film.> In this latter case, a similar singular behavior for
Ap(T) is predicted if the magnetization is reoriented per-
pendicular to the easy axis by a field applied parallel to
the film surfaces and normal to the easy axis. Thus a
singular behavior for A (T) is predicted if the magnetiza-
tion is reoriented perpendicular to the easy axis, whether
the easy axis is normal or parallel to the film surfaces. It

44

should be noted that, in our discussion below, we also re-
mark on the physical origin of the anisotropy, as inferred
from the behavior of A (T) for the Fe films on W(110).

Some years ago rare-earth films of macroscopic thick-
ness were fabricated, ultimately for use in magnetic-
bubble technology.* These have an easy axis normal to
the surface and will experience a spin-reorientation tran-
sition, similar to the one considered above, when a mag-
netic field is applied parallel to the film plane. There will
be a soft mode in such systems, which has properties very
similar to that discussed in Ref. 2. However, we argue
below that the singularity in A, (T) is in fact very modest
in such macroscopic films. In a sense described below,
the singular contribution vanishes in the thermodynamic
limit. Thus the singular behavior of Ay (T) explored here
is a feature of ultrathin films only, whose thermodynamic
properties are quasi-two-dimensional.

This paper may be viewed as an extension of our earlier
work,® which examined features of spin waves in very
thin films, in the presence of spin canting, within a fully
microscopic theory. Here we show how to use the infor-
mation generated in Ref. 5 to study the thermodynamic
properties of the film. The extension is in fact nontrivial
and has led us to examine and solve an issue present for
many years in the literature on spin waves. The resolu-
tion we describe will prove useful in other areas of
condensed-matter theory, where a quantum theoretic
description leads one to a Hamiltonian that is a Hermi-
tian structure with certain ‘“‘anomalous terms,” as dis-
cussed many years ago by Bogoliubov,® who treated them
by means of a transformation that bears his name.

The basic approach to the theory of spin waves in mag-
netically ordered materials was put forward many years
ago by Holstein and Primakoff.” When this approach is
applied to an infinitely extended lattice of ferromagneti-
cally aligned, exchange-coupled spins, the Hamiltonian is
diagonalized quite trivially in the spin-wave limit, as dis-
cussed in many textbooks. If dipolar interactions are
present or if the magnetic ground-state spin arrangement
consists of sublattices of noncollinear spins, the problem
is a bit more complex. The Hamiltonian of the infinitely
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extended lattice is a quadratic form in the spin-wave an-
nihilation and creation operators a; and al, but contains
terms involving the combination aya _, and its Hermi-
tian adjoint, in addition to the diagonal terms alak. The
terms in aga_, and ala T_k are the anomalous terms en-
countered by Bogoliubov. The spin-wave Hamiltonian is
then diagonalized by the transformation mentioned ear-
lier. By now there are a large number of examples in the
literature where this is done;®”° the original Holstein-
Primakoff paper incorporated dipolar couplings that gen-
erate such terms in the ferromagnet, for example.

So far as we know, however, there has never been a
careful and complete discussion of the method of di-
agonalizing the spin Hamiltonian when off-diagonal
terms are encountered, especially within the context of a
film geometry. As remarked above, there is in fact a
tricky issue that is not revealed in examples that are dealt
with in a few lines of algebra. We address this question
in general terms, resolve it by constructing appropriate
transformations, and then apply the results to the study
of the thermodynamic properties of very thin ferromag-
netic films, where the spins interact via exchange and di-
pole coupling and are also influenced by surface or inter-
facial anisotropy.

The issue is the following, expressed in the language of
spin-wave theory. In our earlier paper,” we explored the
theory of spin waves in a ferromagnetic film in which the
spins interact by means of isotropic exchange couplings
and dipolar interactions. Spin canting could be induced
by the combination of surface or interfacial anisotropy
and an externally applied magnetic field. The spin-wave
frequencies, along with their eigenvectors, can be found
by diagonalizing a certain 2N X2N matrix, with N the
number of layers in the film. This matrix is in fact non-
Hermitian, in the presence of either noncollinear spins
(produced by layer-dependent canting) or dipolar cou-
pling. There are then right eigenvectors, which are those
produced by the conventional diagonalization procedure,
and also a distinct set known as left eigenvectors,10 which
we show below can be derived from the right eigenvec-
tors for a spin-wave Hamiltonian of general structure (in
the spin- wave limit). The original Hamiltonian is itself a
Hermitian form, of course.

So far as we know, there is no prescription in the litera-
ture for constructing the spin-wave annihilation and
creation operators from the left and right eigenvectors
that emerge from the analysis of the non-Hermitian form
associated with the equations of motion. The difficulty is
serious, because in the absence of a general prescription,
it is not clear how to calculate various thermodynamic
properties of the film, how to generate various spin-
correlation functions, and so on, from information gen-
erated from the equations of motion. As remarked ear-
lier, the only examples in the literature are handled rath-
er trivially in a few lines of algebra. The extension to the
more complex problems encountered in the theory of
multilayer films leads us to interesting aspects of the
linear algebra of non-Hermitian forms, as we shall see.
The analysis presented here provides a general prescrip-
tion for constructing the proper spin-wave annihilation
and creation operators of boson character in this cir-
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cumstance and casting the Hamiltonian into diagonal
form. We can then proceed to study any desired thermo-
dynamic property of the film, at least in the spin-wave re-
gime.

In Sec. II we derive the explicit form of the canonical
transformation that diagonalizes the Hamiltonian, and in
Sec. III we present studies of the physics of ultrathin
films using the formalism. Section IV contains some final
remarks.

II. CANONICAL FORM
OF THE SPIN-WAVE HAMILTONIAN

As in Ref. 5, we consider a ferromagnetic film, infinite
in planar extent, with two (001) surfaces. The film con-
sists of N layers stacked to form a cubic crystal (fcc or
bec), with one atom per unit cell, in the bulk realization
of the structure. In our model we include nearest-
neighbor Heisenberg exchange, dipole-dipole coupling,
and a uniaxial surface or interface anisotropy, with the
easy axis normal to the film surfaces. The anisotropy en-
ergy includes terms quadratic and quartic in the relevant
spin components. We also include an external magnetic
field H,, of arbitrary magnitude and direction.

In the limit of small-amplitude spin waves and after a
rotation to a set of layer-dependent local coordinates of
the classical ground state,’ we may write the Hamiltonian
as

—p L
H=E, 4S%[s_(1) S.(D]

X

AWLD) BWLIN*||S+U)
By AW ||S_)

— Hy,(1)AS,(1) (1a)
1

where E is the classical ground-state energy. The spins
have length S, S (7) are raising and lowering operators,
and

S,(1)=S +AS,(I) . (1b)

The +,— and z axes are reckoned with respect to the
layer-dependent local coordinate system defined in Ref. 5;
the local z axis, denoted by the unit vector Z(l)), is
aligned along the equilibrium orientation of the spins in
layer I,. At each site , in film layer /,, there is a local
magnetic field, aligned parallel to this Z(/, ) axis of quant-
ization, whose magnitude is given by

H, (1)=2(1)-H,+3 AR,
<

+ [k, (1,)+h (1) cos?0(1,)]

Xcosze(ll) , (1c)
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where 6([,) is the angle of canting, with respect to the
film normal, of a spin in film layer /,. In addition, the
coefficients appearing in the 2X2 matrix of Eq. (la) are
defined as

ALD)=AR (1,1 +1h(1))sin?6(1,)8, ;. , (1d)
B(LI"N=AR [(1,I")+Lh(1)sin?0(1 )8, ; , (le)
ho(1)=h, (1,)+3h, (1) cos’0(1,) . (19

Equations (lc—1le) contain coefficients of the form
AffB(l ,1'), which are components of the exchange and di-
pole tensor AR, rotated into the coordjnates of the classi-
cal ground state, as discussed in Ref. 5. The surface or
interface anisotropy dependence enters through the pin-
ning fields hsl(l 1) and hsz(l 1), which represent the

strength of terms quadratic and quartic in the spin com-
ponents perpendicular to the film surfaces. A detailed
discussion of the nature of the classical ground state un-
der various conditions has been given by us earlier.’

We consider the second quantization of the Hamiltoni-
an of Eq. (1a) via the Holstein-Primakoff transformation,
retaining only the leading terms relevant to the spin-wave
limit:

J
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s () =v2So(l), (2a)
AS,()=—a'(Da(l), (2b)

where a (I) and aT(l ) are boson annihilation and creation
operators, and the vector operator o (1) is defined as

o(l)= aj'(l) . (2¢)
a'(l)

If we apply Egs. (2) to Egs. (1), we find that we may write

H=E,+Ey+Hgy , (3a)
where

EH:__;‘;HIOC(IL) ) (3b)
and, most importantly,

st=%lzp g+aL(1)ﬂaﬁ(z,1')aﬁ(1'>, (3c)

where we label the entries of two-dimensional vectors and
matrices by +, —. The Hermitian tensor #, whose com-
ponents are 7{(13(1 ,I'), can be inferred from the two-
dimensional matrix

H, (1), ,— A(LL") —B(l,l')*
HLI)= —B(,1") Hyoo (1,08, 1 — AU | - (3d)
We now focus our attention on the spin-wave term Hgy. Consider a Fourier transform defined by
Tl D= —= 0okl )e T (4a)

VN, k)

where N is the number of atoms per film layer, x(1) is the position vector of lattice site /, and k; is a wave vector whose
direction is parallel to the film surfaces. Here we have defined the vector O'(k”,l 1), whose components are boson opera-

tors, by
a(ky,l))
al(—k,1,)

olkl)=

Therefore, substituting Eq. (4a) into Hgy, of Eq. (3c), we find

How=13 3 3 olik,l ) H okl 1 Vopk,l1)
k“ Il,a11’3

(4b)

(5a)

where the 2N-dimensional Hermitian matrix ##(k;) has components

H g ki1, 11)= 3 Hogl 10 1500

’
i

(5b)

and x(1,1’) is the vector from site [ to site I’. Via Egs. (3d) and (5b) and the properties of the tensor AX, which can be
inferred from the Hermiticity of the Hamiltonian, we may express the components Hopky;1,,17) in terms of a 2X2 ma-

trix. Thus we may write

Hyoo(1))8;,1] — A(k31,,17)

Fkly,10)= B

where

Hloc(IJ.)a[l,,l_A(—k“;ll'l‘l)* ’

—‘B(_k”;ll,ll)*

(6)
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Akl = AkgIL,1L) (7a)
B(—ky;11,1)=B(k;l,,1}) . (7b)

The form of Eq. (6), and therefore Eq. (5a), results strictly from the hermiticity of Hgy and is independent of the partic-

ular rotational symmetries of a given infinitely extended film.

A dynamical matrix D(k;), from which spin-wave frequencies and eigenvectors may be generated, can be determined
from the equations of motion of the annihilation and creation operators. In our notation these can be written (in units

with i=1)

. 3
15;0a(k||,ll;t)=[Ua(k",ll;t),HSW] .

Upon using Eq. (5a) for Hgy,, we have
. a 1’ ’
l‘a—t‘a'a(ku,ll;t)= 2 ﬁaﬂ(k”;ll’ll )C'B(k”,l_[_;t) ’
1.8
where components of the dynamical matrix are given by

Dogkysl 1 )=aFH o5k 1,10

(8a)

(8b)

(8¢c)

Here a,f=1 and one can see that D(k,) is in general a complex, non-Hermitian matrix of dimension 2N. Explicitly,

we have
Hy (I, )Sll,li— A(k”;ll,l'l)

Dy, 11)= Bkgl,,1})

By seeking a solution of Eq. (8b) of the form

~imk”)t
b

okl ;;t)=0,kl e (8e)

we can attempt to diagonalize D(k); however, it is easy
to see that D(k;) is not a normal matrix since
[.iD(k“),Z)T(k||)]#O. Hence a similarity transformation, if
one exists, cannot be unitary.11 It follows that, for @(k”),
we must introduce the concept of right and left eigenvec-
tors, which we shall denote by the column vector em(ku)
and the row vector u®*X k), respectively.!® Here the in-
dex s is defined to be an integer |s| <N, s#0. The com-
ponents of our eigenvectors satisfy the equations

2 $aﬁ(kﬂ; ll; ll )e(ﬁs) (k”; ll )=Q(S)(k“ )e{ES)(k“; IJ_ ) ’ (9a)
1.8

S ul (k1D pa k311, 1)=0 ku P (k1) ,  (Ob)
1.8

where Q(S)(k”) is the frequency, measured in magnetic-
field units, of a spin-wave mode. A basic property of the
right and left eigenvectors is the analog of the complete-
ness and orthonormality relations of the theory of Hermi-
tian matrices:

3 ekl uf (1) =8, 11855, (10a)

S ud (kpled (sl ) =8, .

la

(10b)

If the classical ground state is stable (there is no
guarantee of this), then the Hermitian matrix 7{(k"), as it
appears in Eq (5a), must be positive definite. In addition,
in view of Eq. (8c), we may construct the 2N-dimensional

—B(—kl,1)*

—Hyoe(11)8; ot A=kl 00 (8d)
I
Hermitian matrix J, defining its components by
Tapll111)=0d; 1 8qp (11)

such that D(k;) can be written as the matrix product
J# (k). Since D(k;) can be written as the product of
two Hermitian matrices, where ﬂ(ku) is positive definite,
then D(k;) can be diagonalized, such that all eigenvalues
{Q‘S)(k”); |s| <N, s#0]} are real numbers.!?

From the form of the dynamical matrix, as given by
Egs. (8d) and (7), one can determine important relations
among the eigenvalues and eigenvectors of D(k;). These
relations are easily verified; we state them below. (i) For
every right eigenvector em(k”), with eigenvalue Q(‘)(k“ ),
there exists another right eigenvector, which we label by
the index —s, with components that can be defined as

el (kI ) =[e (=K1, (12a)
and whose eigenvalue corresponds to
.Q(_S)(k”)= — Q) -k . (12b)

(ii) For every right eigenvector e‘s’(k”), there exists a left
eigenvector, corresponding the the same eigenvalue,
whose components can be defined as
uld (k31 )=sgn(s)[ael (k;1,)]*, (12¢)
where sgn(s) denotes the sign value of s. The factor
sgn(s) ensures that Egs. (12a) and (12c) are consistent
with the completeness and orthonormality relations of
Egs. (10), where Egs. (10) must hold for —k; as well as k.
(iii) Since ﬁ(ku) is assumed positive definite, then
e‘”(k“ )T-ﬂ(k")-e ‘)(k“) >0 for any s. However, from this
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statement and Eqgs (8c) and (12¢), it is easy to verify that
u(k)-D(k)e (k) <0, s<0

4 (k,)-Diky)e (k) >0, s>0° 12

Q(”(k”)=

It follows that half the eigenvalues for a given wave
vector k; are positive and half are negative. By our
definition of Eq. (12c), we have ordered the eigenvalues
and eigenvectors so that for positive integers s, 1 <s <N,
we have Q.(S)(k”)>0 and for negative integers s
—N =<s<—1, we have Q(”(k”)<0. As one would ex-
pect, there are precisely N distinct physical frequencies
that result from the diagonalization of D(k;); in addition,
one obtains, via Eq. (12b), the negative of the N physical
frequencies for —k;. We thus have arranged the eigen-
values so the following relation holds:

Q”)(k“)=sgn(s)0.”s’ )(sgn(s)k“) s (12¢)

where once again sgn(s) denotes the sign value of s.
In view of Eq. (12e), we introduce the positive integer
n, 1 <n <N, and define a canonical transformation by

N
akpl)— 3 [eP (k31 alky,n)

n=1

+e T (k1 a(—kyn)) (13a)
and its inverse by
N
a(k“,n)=121 (u'P(kp;1a (k1)
<
+u (k) at (k1) , (13b)

where, for example, a(k”,n) is a boson annihilation
operator. One can easily verify, via Egs. (10) and (12),
that a(ku,n) and aT(k“,n) satisfy the commutation rela-
tions appropriate to boson operators. The relations in
Egs. (13) constitute the generalized Bogoliubov transfor-
mation discussed in Sec. I.

We can also express the above transformation in a
more convenient form by defining the matrix I'(k;) to
represent the 2N-dimensional similarity transformation
implied by Egs. (9). We therefore let

Lokl ,n)=eP (k1)) , (14a)
Cog(kpn I ) =ug™ (k;l,) . (14b)
We may then write
Ua(k||’ll)=2 F,,B(k";ll,n)ag(k”,n) N (14C)
npB
oo (kp,n)=T3 Tog(kynlogk,l), (14d)

1
where we have introduced the vector operator O‘(ku,n),
given by

a(k“,n)

ot~k | (14e)

U(k”,n)=

We can now demonstrate, with the aid of Egs. (10) and
(12), that Hyy, is indeed diagonal in a(k,n) and a'(k,n).
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We first multiply #(k) by I'(k;), as defined in Eq. (14a),
to obtain, with the aid of Egs. (8c) and (9a), the result

S Hogky3l, 1), (k31 n)

1,8

=aQ""(k eI (k1) . (152)

Then, applying the relations of Egs. (12¢) and (12e) and
using the definition for the inverse of the similarity trans-
formation given by Eq. (14b), we find

S Hopkypl, 1T g, (k311 ,n)

1,8
=" (yk TH M ks1,n) . (15b)
Rearranging this expression, we have
S 3 Ulakpn, 1) Hoak1,00)
l,a li’B
T (k;l,n")=Q"(yk)8,,8,, . (15¢)

It is now straightforward to write Hgy in diagonal form.
Substituting Eq. (14c) into Eq. (5a) and utilizing Eq. (15¢)
above, we arrive at the result

Hgw=3 Q"(k)la"(kyn)a(k,n)+1] . (16
k”,n

As we have shown, the frequency Q'”(k,) that appears in
Eq. (16) is a positive number.

As a last remark in this section, we would like to com-
ment on properties of the dispersion relations in the
spin-wave limit, specifically, under what conditions
Q("’(k”) is an even function of k. If the ground-state
spin configuration is one with all spins parallel, whether
aligned normal or tangent to the film surfaces (or canted
out of the plane in the absence of dipole-dipole coupling),
the dispersion relations are even functions of k. This is
easy to see since, under these circumstances, one has
Aky;l,,17)=A(—k;;1,,11)* in Eq. (8d). Hence we find
that Q("’(k”), which is an even function of k| within the
context of a purely exchange-coupled spin model, is also
an even function of k; even when dipole-dipole coupling
is introduced, regardless of the symmetry of the infinitely
extended film.

However, in the presence of a surface anisotropy with
the easy axis normal to the film, where one finds the clas-
sical ground-state spin configuration to be one canted out
of the film plane, the demagnetizing effect of dipole-
dipole coupling renders a twist in the spin configuration;
i.e., the angle of canting is a function of film layer. When
such a deviation from ‘“hard” ferromagnetic alignment
occurs, the result is, quite generally, a nonreciprocal
dispersion relation, i.e., Q" —k, )%Q("’(k“). Under con-
ditions where the exchange coupling is much stronger
than dipole coupling, a feature found in very thin Fe
films, the twist present in the ground-state spin arrange-
ment is quite small. Our earlier calculations® show that
this is less than 1° in Fe films if one compares the direc-
tions of spins in, say, a four- or five-layer film. Under
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these conditions, to excellent approximation, Q‘")(k”) is
an even function of k.

III. CALCULATION OF THE TEMPERATURE
AND FIELD VARIATION OF
THE MAGNETIZATION IN ULTRATHIN FILMS:
THE MAGNETIC-FIELD VARIATION
OF THE MAGNETIZATION
NEAR THE SPIN-REORIENTATION TRANSITION

The discussion of the previous section provides us with
the formal apparatus required to calculate thermodynam-
ic properties and spin-correlation functions in the ul-
trathin film. We have seen that the eigenvalues of the
2N X2N non-Hermitian matrix D(k;), associated with
the equations of motion, quite generally yield N distinct
positive frequencies Q‘")(k”), which are, with #=1, the
various excitation energies of the spin waves. The boson
annihilation and creation operators associated with these
modes are a(kj,n) and aT(k”,n), and these are related,
via the generalized Bogoliubov transformation of Eqgs.
(13), to the spin-deviation operators a(k;,/,) and
at(k,/,) defined in Eq. (4). Keep in mind that /, labels a
particular plane in the film. Furthermore, if the spins in
the ground state in plane /, are canted with respect to the
film normal, then the z axis referred to in Egs. (1b) and
(2b) is a “local” z axis, aligned along the direction of the
spins in layer /.

J
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In this section we shall explore the behavior of
(s,()=s—(a'Da))=s—Ay1, 1, (7
where

Ay, T)=C(a'Da(l))

:Ning <aT(k”’ll)“(kn»li)>
I

is the spin deviation in layer /, of an N-layer film.

A measurement of the magnitude and temperature
variation of the hyperfine field, provided by Mossbauer
experiments such as those reported in Ref. 3, gives access
to Ay(/,,T). If the ground-state spin arrangement is
canted with respect to an applied magnetic field, the com-
ponent of the total magnetization of the film along the
direction of the applied field is given by

0

M
MH(T)_WE%<SZ(1)>COS\P(IL) , (18)

where M|, is the saturation magnetization and W(/,) is
the angle between the spins in layer /, and the applied
field. Thus the measurement of the total magnetization
of the film provides information on A y(/,T) also.

The transformation in Egs. (13) allow us to express
Axn(1,,T) in terms of the eigenvector components gen-
erated by the equation of motion analysis. We have

N
Ay, D=3 3 (le k1) Py (@7 k) + e kL)1 +np (27 )] (19)

I k” n=1

Qk, T . _y . ..
B° _1)~! is the Bose-Einstein func-

where ng(Q)=(e
tion.

Note that Ay(/,,T) remains finite as the temperature
T —0 because of the presence of the 1-+np term in Eq.
(19). In general, there are zero-point oscillations in the
spin system. In the absence of dipolar interactions and if
there is no layer-dependent anisotropy (i.e., we have a
perfectly aligned, ferromagnetic array of exchange-
coupled spins, possibly in an external magnetic field),
then B(l,1l’) in Eq. (3d) vanishes, Ie(,”)(k“,ll)l2 vanishes,
and Ay(l,,T)—0 as T—0. More generally, zero-point
spin motions exist, an issue that may cause concern in
thin films where the exchange and dipolar couplings are
of comparable magnitude. The role of zero-point oscilla-
tions would be a concern in such a sample if one wishes
to extract absolute values of the hyperfine coupling con-
stants from the data.

We now turn to the results of our numerical calcula-
tions of Ay(l,,T). We shall show results for Ay(/;,T)
for the monolayer and for a trilayer, with the parameters
in the latter case chosen to coincide with those deduced
from the soft-mode data of the authors of Ref. 2.

The films have nearest-neighbor exchange coupling J
whose strength is such that, in the long-wavelength limit,
the exchange stiffness constant D of bulk Fe is repro-

duced. The trilayer consists of three layers arranged in a
fcc fashion, with an external field H,, applied in the [100]
direction. The structure of the monolayer is defined by
removing two layers from the trilayer. The dipole mo-
ment per spin is adjusted so that, for bulk material
formed from such spin arrays, 4mM,=18 kG. We apply
easy-axis anisotropy to the two outer layers of spins of
the trilayer and to the monolayer, with the parameters
hg, and hg, in Eq. (1c) equal to 30.90 and 1.68 kG, respec-
tively. These parameters nicely reproduce the field
dependence reported for the k;=0 spin-wave mode in the
elegant Brillouin light-scattering experiment of Ref. 2.
Our fit to the data is displayed in Fig. 5 of Ref. 5. The
parameters are also compatible with those used in Ref. 2,
in the theoretical analysis reported there.

In Fig. 1 we sketch the ground-state spin arrangement
in the trilayer film as a function of external field. In zero
field the easy-axis anisotropy orients all spins normal to
the film surfaces, as illustrated in Fig. 1(a). Then appli-
cation of the field parallel to the film surfaces leads to
spin canting, as illustrated in Fig. 1(b). In our calcula-
tions we allow for layer-dependent spin canting although,
in our model of very thin Fe film, the variation in canting
angle from layer to layer is quite small, the order of one
degree. If the field is less than the critical field H¢,
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FIG. 1. Pictured is a schematic illustration of the ground-
state spin arrangement for the model film explored in Sec. III.
(a) When the external field is zero, the magnetization is normal
to the film surfaces by virtue of the easy-axis anisotropy. (b)
The external magnetic field H., applied parallel to the film sur-
faces is less than the critical field H¢, required to rotate the
magnetization through 90°. (c) When H,, > H¢,, the magnetiza-
tion is strictly parallel to the film surfaces.

(HS, =4 kG for the trilayer and the above parameters),
the canting angle is less than 7/2. When H,=H{, the
canting angle is 7/2; this is the field at which the k;=0
low-lying spin wave mode ‘““goes soft.” For H,, > Hg,, of
course, the canting angle remains pinned at the value
w/2, and as discussed in Ref. 2, the k”=0 spin-wave
mode has a finite frequency that increases linearly with
external field.

We found Ap(7,,T) to be essentially identical in each
layer of the trilayer for the values of the parameters we
considered. Hence, suppressing the index /,, we show in
Fig. 2 the magnetic-field dependence of A;(T) for various
temperatures. There is clearly a divergence at the critical
field H¢, for all temperatures. We presume that, in fact,
right at HS, where the low-lying spin-wave branch has
zero frequency at k=0, spin-wave theory must break
down. True long-range order should disappear at this
critical field.

The calculations in Fig. 2 include the contribution to
A4(T) from each of the three spin-wave branches associ-
ated with each wave vector k. In fact, the low-lying
branch provides the dominant contribution. We have
tested this by calculating A;(/,,T) for each of the three
layers, to find, as we have mentioned, only very small
differences for the temperatures considered in Fig. 2. The
low-lying branch is an acoustical branch, wherein the
spins in each of the three layers precess very nearly in
phase and with equal amplitude for all values of k,
significant in the thermodynamics. The very small
dependence of A;(/,,T) on [, thus shows that this one
branch dominates the thermodynamics, even for temper-
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FIG. 2. Plotted is the dependence on magnetic field of the
spin deviation A;(T), corresponding to a layer in the trilayer
film. We show calculations for various temperatures and for pa-
rameters chosen as described in the text. The spin deviation is
essentially identical in all three layers of the trilayer.

atures well above room temperature. Hence, in the re-
gime of temperatures covered in Fig. 2, the statistical
mechanics of the film is indeed two dimensional to a very
high degree of accuracy.

We wish to comment on the relationship between our
results and those reported by the authors of Ref 3, who
measured, by means of Mdssbauer spectroscopy, the
magnitude and temperature variation of A,(T) for Fe
films on W(110). The structure of these films (unknown
in detail) is different from the model film used to generate
Fig. 2. For example, the magnetization lies in plane in
the samples used in Ref 3, and surely the two-
dimensional unit cell of these ultrathin absorbed Fe films
is rectangular and the same as that of the W(110) sub-
strate upon which the films are deposited.

The authors of Ref. 3 fit the data to a power law
An(T)=bT" to find that n lies in the range of 1.510.2.
The zero-field results displayed in Fig. 2 can be fitted
with a power law also, where n =1.3, the lower end of
the range quoted in Ref. 3. There is no theoretical
justification for the power-law behavior of Ay (T) in such
films, so far as we know; it is often the case that informa-
tion which covers a limited temperature range can be
reproduced by a power law. The effective exponent n will
surely be affected by details of the anisotropy, which in
part controls the gap at k;=0 in the low-lying acoustic
spin-wave mode that we have seen controls the thermo-
dynamic properties of the ultrathin film. Nonetheless,
our calculations show clearly that Ay (T) displays a tem-
perature dependence stronger than linear and not so far
off the well-known T3/2 law provided by bulk spin-wave
theory.
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There is a most remarkable feature in the data reported
in Ref. 3, which is noted and discussed by these authors.
If we write Ay(T)=bT", then for films that range in
thickness from one to four monolayers the coefficient b
scales inversely with film thickness; to within experimen-
tal uncertainty the value of b for a four-layer film is
smaller than that of a monolayer by a factor of 4.

The authors of Ref 3 argue that if the dispersion rela-
tion of the spin-wave branch that controls the thermo-
dynamics of the film (our low-lying acoustic spin-wave
branch) is independent of film thickness, then this result
follows. One may see this scaling behavior from our Eq.
(10b), noting the relation between the left and right eigen-
vectors. For the low-lying acoustic spin-wave branch,
e(;)(k”,ll) will be independent of /, to a very good ap-
proximation, and so as layers are added, |e®’ (ky, 1y )|? will
scale inversely with film thickness [note the sum on /| in
Eq. (10b)]. From Eq. (19) it follows that Ay(/,,T) does
also, provided the dispersion relation is independent of
film thickness.

One must then inquire under what conditions the
dispersion relation is independent of film thickness. If
the spins in the film surface or at an interface experience
anisotropy substantially different from those in the film
interior (of a multilayer structure), then the gap in the
acoustic spin-wave branch, and consequently the disper-
sion relation of the acoustic branch, will not be indepen-
dent of film thickness. Under these conditions the scaling
relation evident in the data of Ref. 3 will not be obeyed.
We illustrate this in Fig. 3. Our model calculations for
the trilayer (Fig. 2) assume that the spins in only the
outermost layers experience the single-site anisotropy.
while those in the interior layer experience no anisotropy.
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FIG. 3. In zero magnetic field we plot the temperature varia-
tion of A(T)/3A3(T), where A(T) is the spin deviation in the
monolayer and A;(7) is the spin deviation in a layer of the tri-
layer. The spin deviation is nearly identical in all three layers of
the trilayer.
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In Fig. 3 we calculate the ratio A(T)/3A5(T), where
A5(T) is the spin deviation for the model trilayer in zero
field (the zero-field results of Fig. 2) and A(T) is that for
a monolayer in which all spins “feel” anisotropy equal to
that in the outer layers of the trilayer. The ratio is clear-
ly not unity.

The differences are influenced both by the gap at k; =0
and by the fact that the curvature of the dispersion rela-
tions at large k; differs for the two cases. In the mono-
layer a given spin is exchange coupled to fewer neighbors
than, on the average, a spin in the trilayer. The curva-
ture in the monolayer dispersion relation is thus smaller
than in the trilayer at large k; the large-k; spin waves are
“softer”” in the monolayer than in the trilayer, and so
A(T)/3A4(T) rises above unity at higher temperatures.'3
The gap at k in the monolayer is larger than that in the
trilayer, and so A,(T)/3A;(T) plunges below unity at the
lower temperatures.

If, in a multilayer film, spins in all layers experience
identical anisotropy, then within the framework of a
macroscopic theory, such as that presented in Ref. 2, the
gap in the low-lying spin-wave branch will be nearly in-
dependent of film thickness, provided the anisotropy is
much larger than the maximum dipole field of 47M,.
Under these conditions one may expect that the scaling
with film thickness, evident in the data, may be realized
more closely in theory. At least the sharp drop in the ra-
tio of A(T)/3A4(T) at lower temperatures (see Fig. 3)
will be absent.

These remarks have a bearing on the physical origin of
the anisotropy in the films studied in Ref. 3; it is very
likely that the anisotropy is strain induced, associated
with the rectangular distortion required for these films to
grow epitaxially on the W(110) substrate. If this were the
dominant source of anisotropy, then all spins in the film
would experience uniaxial anisotropy of the same magni-
tude. Such strain-induced anisotropy would also produce
an easy axis that lies within the film plane, rather than
perpendicular to its surface.

IV. FURTHER CONSIDERATIONS

We conclude with some final remarks. We have seen
that for the ultrathin film, the magnetization as measured
by Ay (1, T) is singular at the critical value of the applied
field at which the magnetization just becomes parallel to
the surface, [see Fig. 1(c)]. It is interesting to inquire how
this singularity depends on film thickness. Unfortunate-
ly, it becomes prohibitive to carry out full and complete
numerical calculations for films thick enough for the
higher-lying spin-wave modes to influence the thermo-
dynamics of the film importantly.

Nonetheless, some general remarks can be made. The
physical situation with the trilayer is illustrated in Fig.
4(a). For each value of the wave vector k; parallel to the
surface, we have three spin-wave branches, and the direc-
tion of spin-wave propagation is essentially isotropic (see
Fig. 6 of Ref. 5 and the associated discussion). The
lowest-frequency branch, the acoustical branch we have
seen that dominates the thermodynamics, has a gap «, at
k, =0 controlled by the anisotropy, critical field, and di-
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pole coupling. As H,,— H¢, from either above or below,
wy—0. The dispersion relation of this lowest branch is
represented reasonably well, near H,, =0, by the form

Q(k))=wo+ Dk} . (20)

Again, we may suppose A;(/,,T) independent of I, to
an excellent approximation, given the number of thermal-
ly excited spin waves present. Near H,, =0 we have
B(k;1;,11)=0, so that |e_(k/,)[*=0. Ignoring the
two higher branches in Fig. 4(a) gives, with the factor of
3 included from the normalization of the eigenvectors,

1
AT =—— ny(Q(k,0))
’ 3Nll k" ? !
AgkyT [kpT
=202 gn |2 21)
127D @

Here A is the surface area of the film, and so 4,=4 /N,
is the area of the two-dimensional unit cell.

Now suppose we add additional layers to the film,
where we have N layers with N >>1. The behavior of the
spin-wave spectrum then depends on the nature of the an-
isotropy. We may consider a thick film of material simi-
lar to that used in the magnetic-bubble samples. Then, to
excellent approximation, overlooking details of surface
effects, we have spin-wave branches with dispersion rela-
tions

2

1 nw

(n) = =2 2

Q"(k))=w+ 2D kj+ INd , (22)
where various subbands are labeled by integers

n=0,1,2,.... Hered is the spacing between film layers.
If the k;=0, n =0 frequency is calculated, assuming the
anisotropy field to be much larger than the dipole field
4mM, and uniformly distributed across the thickness of
the film, then o, is independent of N.

The situation for large N is sketched in Fig. 4(b). For
large N we may have many “minibands” that lic below
kpT in excitation energy. Then letting w, be driven to

]
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FIG. 4. Depicted are (a) the spin-wave normal modes of a tri-
layer, sketched at room temperature, and (b) the spin-wave
“minibands” in a thick layer.

zero by an external field applied normal to the easy axis
produces a modest singularity in the spin deviation
AN(T).

To see this, as a measure of the spin deviation, we sim-
ply use the number of thermally excited spin waves.
Thus, with normalization factor 1/2N for standing cosine
waves in a slab of width Nd,

L_s 5 nyak)) . 23)

AN(T)=
N 2NN i =0

For large N we may replace the sum on n by an in-
tegral. We do this keeping the first correction provided
by the Euler-MacLaurin formula:!*

p ny
S fm=[ Tdn f(m+LLf )+ flmp)]+ - 24)
Hence, at the same time replacing the sum on k; by an integral,
__4o 2 ® (n) 4o (0)
Ay(D)= 87T2Nfd ky J " dn ng Q)+ o [ dPhyng (@) - - (25)
or
W 3 1 ) 1 mAukgT kgT
Ap(T)= 2v3fd kny oo+ Dk |+ —— =1 o (26)

Here V), is the volume of the basic unit cell in the material.
The first term in Eq. (26) is well behaved and nonsingular in the limit w,—0. This is, in fact, the well-known formula
for the mean spin deviation in a ferromagnet. As wy,—0, we have the famous Bloch 73/2 law.
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The second term has a singularity identical in form to that in Eq. (21). However, it is proportional to 1/N and van-
ishes in the limit N — .

The singularity in the mean spin deviation at the critical field H¢, displayed in Fig. 2 is thus present only for the ul-
trathin films that are quasi-two-dimensional. A criterion for the crossover from quasi-two- to three-dimensional behav-
ior is derived by requiring the separation between low-lying spin-wave branches to be small compared to k3 T. Thus we
require f)(w'/N,,0 )2 <<kpT. This gives N>>N,=(7/V2)\/ D/ AykpT as the criterion for three-dimensional behavior.
Numbers for Fe give N, =2 near room temperature, not far from unity, and so only ultrathin films exhibit the singulari-
ty.
It is also of interest to examine the nature of spin correlations in the near vicinity of the critical field, in the ultrathin
film limit. Consider, for example, the behavior of a correlation function such as (S_(1)S (1) ), which describes the
amplitude and spatial variation of spin fluctuations in the plane perpendicular to the magnetization of the film. If we
decompose ! into a piece /; parallel to the film surfaces and a piece /,i; normal to the film surfaces, then our formalism
gives, in the spin-wave limit,

28 X — ik x(y — 1)

(S_(HS,(IN="23 Se

N, 22 eV (kI *%e' P (k1 ng(Q7(K,))
A

+e™ (k1 e (ks 11 )*[1+np(Q7(K )]} 27
We assume that very near the critical field and particularly at large lateral separations I =1, where small values of
ku are emphasized, the soft spin-wave branch n =1 provides the dominant contribution. In this limit,
Q)

]

np(Q (k) =1+nx(Q (k)

For simplicity we confine our attention to the monolayer; the results will be very similar in form for any ultrathin film
or which the low-lying acoustical spin-wave mode dominates the thermodynamics. For the monolayer we may suppress
reference to /, and /' and to the mode index n, such that

2SkpT —ikx=1) 1

(§_(D)S, . (I')) = e
* N, kz,, (k)

ey (kpP+le_ (k)] . (28)

For the monolayer and for spins canted at a general angle 6 relative to the film normal, one has®
Q(k))={[H,,— 4(k)*—|B(k)|*}'"?, (29)

where we may define cosh®[¢(k)]=|e . (k;)|* and sinh*[¢(k,)]=e_ (k)| with
|B(k)|

tanh[2¢(ku )= m .
oc |

(30

The definitions of Hy,., 4(k,), and B(k,) are given by Egs. (1c)-(1f), (3d), and (5b). In these definitions we encounter
certain dipole sums denoted earlier® as di(k), dyp(ky), dy (k)), and dy,(k|). We replace these by their limiting forms
as k;—0, noting d,(0)=0, d,(0)=d,,(0)=(47/3)n, and d |, (0)= (87 /3 )7, where

3 01 12

n=z;—‘7§~2—(m7)—572—=0.762... . (31

Lm'

The sum in Eq. (31) is evaluated quickly and efficiently using methods discussed a number of years ago.'’
In the interest of simplicity, we ignore h,, since it has little influence on the qualitative structure of the spin-
correlation function. The critical field is then H, =h,;—4mnM,, and for external fields H ., < H¢

exr
H,oc-—A(k")Eng(l—%sinZOH-%Dkﬁ (32)
and
B(k))=1H¢, sin’0 . (33)
After some algebra, we find for the monolayer
28ky T H,(1—1 sin20)+§Dkﬁ iy x(1— 1)

(S_(H)S (I =
" Nyt | (He+ 1D} (HE, cos™0+ LDKT)

(34)
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For 0 near m/2(H ,=H?¢, ), the combination
H{ (1—1 sin26)+%Dkﬁ
H¢, +1Dkj

approaches 1 as k;—0 and unity as k,— . Thus the ra-
tio of these two factors has rather little influence on the
result. As |x(I—1')|— oo, it is the small values of k; that
matter most, and so we replace this factor by % There-
fore, we have

kyT eik“~x(l~—l’)

S
S_(DS,(I")= . (35)
(5_(hs. () N, kzn'ngcoszenL%Dkﬁ

If A, is the area of the unit cell, then, evaluating the
sum on k”,

AoSkpT |x(1—1")|
))y= , H,<HE
(S_(HS (I') D K, £ ex ex
(36)
where the correlation length & _ is given by
172
D 1
= . 37
§< 2HS, cosf 37

The canting angle 6 is determined from sin6=H,, /HS,,
so that Eq. (37) may be rewritten in the form, where
H,, ~H¢, implies HE, /(HS+H,,)~1,
v'D 1

2 (Hy—Ho )V

(38a)

§<= H€X<ng *
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For fields just above the critical field, the spin-correlation
function is still described by Eq. (36), except the correla-
tion length & is replaced by

(38b)

§>: Hex>ng :

172
D 1
2 ] (Hex_ng)l/z’

Thus, as the critical angle of /2 is approached, by
varying the external field through the critical field H,
from either above or below, the spin correlations within
the film become very long ranged. While we have worked
out their form only for the monolayer, as remarked ear-
lier, the structure of the spin-correlation function will be
the same as displayed in Eq. (36) for any ultrathin film for
which the thermodynamics is dominated by the single
soft mode. Right at HZ,, the correlation length diverges
and, as we have seen, so does Ay(l,,T). This suggests
that true long-range order is absent right at the critical
field.

We hope that these remarks and the results displayed
earlier will stimulate further study of this intriguing
field-induced phase transition. The authors of Ref. 2, in
their elegant Brillouin study, have established the pres-
ence of the soft mode and also the fact that the Brillouin
intensity becomes very large at fields near H¢,. These
data, however, do not allow one to draw quantitative con-
clusions about the nature of the spin fluctuations near T,.
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