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We examine the effect of a random potential acting on the conduction electrons in the Anderson-
lattice model of a heavy-fermion (HF) compound (treated to leading order in the 1/N expansion). The
model is of relevance to diluting normal-metal sites of an HF system. We go beyond coherent-potential-
approximation treatments by summing up the Langer-Neal ladder series responsible for weak-
localization effects. We find the heavy-fermion mass-enhancement factor enters into the frequency-
dependent components in the ac conductivity but not in the static parts. This suggests that some weak-
localization effects may be significantly enhanced in HF systems.

I. INTRODUCTION

Heavy-fermion (HF) systems continue to raise as many
questions as they leave unanswered. Among the many
unsolved questions relating to their ground states is the
problem of the effect of disorder. In the Fermi-liquid re-
gime it has been known for some time that small amounts
of doping of the HF compound can lead to enormous
changes in the residual resitivity.! ~® Various theoretical
approaches to the disorder problem have been formulat-
ed.*> These start in general from a scheme that gives
good qualitative agreement of the single impurity and lat-
tice limits of the rare-earth concentration, such as the
Kondo boson formulation, and incorporate the effect of
disorder via either a coherent-potential-approximation
(CPA) -type treatment,* or use in one dimension (1D) an
exact diagonalization procedure to handle the random-
ness.’

Experimentally, the scattering from impurities in the
HF state is enormous, as if each impurity is scattering at
the unitarity limit.> This has given rise to the “Kondo-
hole” concept.? Since the ground state at each Ce ion in
the spin-compensated Kondo lattice is itself producing a
phase shift of 7/2 in the coherent regime, replacing a Ce
ion with a nonmagnetic ion is equivalent to introducing a
scattering phase shift of —w/2 relative to the back-
ground. This elegant description does not, however, ex-
plain why very similar changes in p, arise when the nor-
mal host sites are the ones to suffer disorder. Recent ex-
periments on UPt; samples with a residual resistivity of
~1 puQ cm found changes of ~10 u{) cm per atomic per-
cent.*

The fact that such changes are independent of whether
the host or rare-earth sites are being doped suggests that
the host disorder problem be examined somewhat closely.
It would certainly seem to be a much more tractable
problem than trying to treat rare-earth site disorder,
since it would appear to involve only potential scattering,
and perhaps local changes in the hybridization as well.
This latter aspect will affect the Kondo processes at a
particular site quite significantly and therefore we shall
only focus here on simple random potential scattering of
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the conduction electrons by the disordered host sites.
This restriction allows us to explore effects beyond the
coherent potential approximation and study the quantum
interference effects associated with weak localization.®
Our effort is directed towards an understanding of the
differences and similarities between simple metals and HF
systems with regard to the very fundamental questions
associated with disorder, and the interplay with many-
body interaction effects.

Our approach in this paper will be to resum perturba-
tion theory in the random potential affecting the conduc-
tion electron states by keeping the set of Langer-Neal’ or
maximally crossed diagrams known to give diffusive be-
havior in the density fluctuation spectrum. The
remainder of the problem, namely the part associated
with the heavy-fermion aspects, will be treated in the
mean-field Kondo boson manner known to become accu-
rate for large values of the spin degeneracy. We will not
include the interference between diffusive electron propa-
gation and the Kondo effect, or the effect on quasiparticle
scattering on the diffusion pole behavior itself. We shall
regard weak disorder as a probe of the dynamics of the
HF state, at least as a starting point from which to in-
corporate the above features later.

In the next section we formulate the Hamiltonian of
the problem and recap on the large-N mean-field descrip-
tion, including to very lowest order, the effects of poten-
tial scattering (as given by Millis and Lee®). In the fol-
lowing section we represent the conductivity tensor in the
usual Kubo manner and relate it to conduction electron
Green’s functions. We sum the set of maximally crossed
diagrams, obtaining the diffusion pole behavior and cal-
culate the low-frequency behavior of the electrical con-
ductivity. In the final section we shall discuss the conse-
quences of our result for experiments.

II. FORMULATION

The full Anderson-lattice model® in the boson repre-
sentation with random potential scattering present is
given by
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where 4pW
where q,=Q /N is the rescaled total charge (taken to be

= 2 8kcljm + EEOflszkm
k,m im
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describes the conduction electron states (labeled by
creation operators c,jm , where k,m denote the momentum
and spin label), the bare f-electron states (labeled by f imo
where i is a site index), and hybridization between these,
with mixing element V, with the creation (or destructlon)
of an empty site (labeled by a boson operator b ). The
electron energies are given by €,, and E, denotes the bare
f-level position. The restriction to states involving zero
or single f occupancy is handled by adding a term

COﬂSt 2}" 2f1mf1m+bTb _Qz > (3)

where A is a Lagrange multiplier for site i and Q; is the
total charge at site i. Since the constraint that

Q;=nk+ni= 4)

is satisfied at all times by virtue of the fact that
[H',Q;]1=0, A; can be chosen to be time independent.

The potential scattering term in the Hamiltonian is
written

Hi: 2 Vlcltmck’m ’ (5)
k,k'

which acts only on the conduction electrons. Following
Millis and Lee® we rescale the hybridization, boson
operators, and total charge by appropriate powers of the
spin degeneracy N =2j +1, where j is the magnetic
quantum number. Assuming broken symmetry in the
rescaled Bose field and in the Lagrange multiplier leads at
leading 1/N order to the Hamiltonian being replaced by

H=Hy+H,+Hy, +H, , ©6)
where
Ho=3 [&CfmCiom €1 LimSiom +Va (o from +H.c.)]
k,m
+boson terms , (7)

and H ,, H;, contain coupling to Bose fluctuations as
well as coupling to the zero point boson terms. By insist-
ing that these latter terms are cancelled by the leading or-
der Hartree-like contribution from H,,, (see Ref. 8 for de-
tails) the values of a and €, (the broken symmetry expec-
tation values of b and A;) are determined. The fermion
term shown above is tr1v1ally diagonalized with the result
that the conduction electron propagation to leading order
in 1/N is given by

-1

2.2
Va , @)

G (kjiw)= -
(l(l)"Ef)

iCL)_Ek -

where the hybridization is renormalized by the quantity

finite) and W denotes the bandwidth, while p, is the con-
duction electron density of states at the Fermi level. The
mean-field number of f electrons is given by

nf=(1+8f/p0V2)'1 N (10)

while the parameter €, is basically the single impurity
Kondo temperature (to leading order in gq)

90 |Eol
e,=W|l— exp |—
4 poW poV?
— 2
=we o0~ (11)

The mass enhancement is given by V2a2/8%~qu /Ty.
We note that if we set g, =1/N the results for G (k,iw)
agree (for w < T, ) with those obtained from perturbative
resummation techniques.” The result in this formalism
actually appears as

T, !

G (kjiw)= iw—ek—m . (12)

The poles of G, yield the quasiparticle energies which fol-
low the well known renormalized hybridized band struc-
ture.® Taking (1) or (2) as the HF Green’s function for
conduction electrons allows the effects of H,, to be
readily calculated perturbatively. To leading order,
Dyson’s equation yields for the conduction electron-self-
energy®

=sgn(w)mp,Vin , (13)

—Im 3, (k,w) =N

i

which contributes the usual Drude result to the conduc-
tivity.

III. DIFFUSION POLE BEHAVIOR
AND RELATION TO THE CONDUCTIVITY

The conductivity can be evaluated in the usual Kubo
manner since only the conduction electrons in the Ander-
son Hamiltonian are concerned: In going beyond the
usual Boltzmann type of analysis we require higher-order
contributions which lead to the following expression for
the conductivity tensor:

. 2
Gly= 4N 75 2kat 4 2kt gp DK G0
m

(14)
G.(k,io")G (K,io' )G, (k+q,iwt+iw' )G (k' +q,io+tiw'),
which is represented graphically in Fig. 1. As in the usu-
al manner G’ relates the vector potential to the current
density. The theory of weak localization tells us that the
crucial contributions to I' are given by the maximally
crossed graphs Fig. 2(a) [drawn uncrossed in Fig. 2(b)].
Each graph at finite order in this maximally crossed set is
known to be nonanalytic in the impurity concentration.®’

Consequently the entire series has to be summed in order
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FIG. 1. Two-particle Green’s function involved in the con-
ductivity tensor expression.

to obtain a finite result. The uncrossed series of graphs
obtained from Fig. 2(a) by reversing the bottom line is
easier to visualize since it constitutes a ladder sum. Sum-
ming up the ladder series yields for T for the result [see
Fig. 2(c)]

n|V,|?
[1—X(k+k'+q)] ’

r'k,k',q,0')= (15)

(a)

\ 4

-
»

FIG. 2. (a) Maximally crossed diagrams leading to the
diffusion pole behavior, drawn uncrossed in (b). The ladder
series involved in the determination of T is shown in (c).
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where
X(p,0)=n|V,|*3 G.(p—pio+io")G.(p, i) (16)
>
represents the contribution from the intermediate

particle-particle ladder rungs. As usual, »’ and w+o’
have to lie on opposite sides of the real axis in order for X
to be nonzero. The crucial aspect of the sum in (16) lies
in the frequency dependence. Ignoring this (i.e., setting
®=0%) the remaining momentum-dependent terms are
given by the usual result for an unenhanced metal,
-1
—nt+y— 2 i 1
X (p,0=0")=n|V,] % ot Npy v l

. —1
i1 8,]

X

27 Npo_ P

=1—(vp7)’p2/3 . amn

The constant terms in the Green’s functions make no
difference to the result. The mass enhancement has no
effect in this term since the analytic properties are deter-
mined by 1/27. On the other hand, we do obtain a
significant contribution from expanding X (p,w) to lead-
ing order in w. We find this coefficient to be (setting
p =0)

83X =(—m*/m)iotnV*3 G.(—p,0+0')G(p,o'),
N
(18)

which is straightforwardly evaluated in the usual manner
to give

8X(0,0)=(m*/m)iwiTt . (19)

We note the huge enhancement factor m*/m entering
the frequency-dependent term. The overall result of
these manipulations is that the I'(k,k’,q,0,0") has the
usual diffusion pole dependence

nlV;|?
'kk',o,0')= ST, (20)
T(wm* /m +D|k+k’'+q|?)
where the diffusion constant has its wusual value

D =1/3v}r. In keeping with earlier transport results in
HF systems the momentum-dependent features are
unaffected while frequency-dependent effects are severely
affected by the mass enhancement.®!® The conductivity
tensor then takes the form (for g =0)

f 2 n|VI|2

Nge oo k
m2y s FBEP. om*/m +Dp?)

Glplg =0,iw)=+

xXI(p—k,K,0),
1)

where I is the product of the four Green’s functions
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13 6.0p-k0)6,.K,0)

I(p—k',k,0)=
P B <

XG (p—k' o+ )G (k' ,0ot+o'),

(22)

and, since the dominant region of importance in the p
integration is over the long-wavelength region
p <1/VpT<<kp, we may replace I(p—k’,k’,0) by its
value at p =0,

O(—0')0(w+w')4
b ©ITOTE TP (23
21

® |-

I(—k'k',o)=
% ’ (0+1/7)}
We note that for small frequencies the important energy
scale is 77!, so that our final expression for the conduc-
tivity tensor becomes
—1

Bap s (24)

N,e?
f
TV %

o m*
D m

G{;B(q =0,iv)=iw p2+

since the electric field at frequency w is proportional to
the vector potential by a factor iw, we finally obtain after
analytic continuation iw—w+id the frequency-
dependent conductivity for an isotropic HF system

Nfez
14 >

p

2 o B
D(m*/m) ’
(25)

o maxcrossed( 0,0)=—

p

due to summing up the interfering Langer-Neal graphs.
To this must be added the regular ohmic contribution

Oonm=ne’r/m , (26)

which is unaffected by mass-enhancement processes
(these cancel from both the collision time and effective
mass).

The important feature to note in (25) is the appearance
at the mass-enhancement factor multiplying the frequen-
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cy. As is well known, the frequency-dependent conduc-
tivity increases with increasing frequency as (w7)!/? in
3D signaling the destruction of the coherent backscatter-
ing effects responsible for localization.!! In the present
problem this term is substantially enhanced as a result of
being multiplied by the mass-enhancement factor, so that
the conductivity increase can be written

80/00=%;?7\/(m*/m)w'r . 27

Consequently such an increase may be observable in a
HF system, although it competes with the Drude falloff.
However, it may be possible to observe other features as-
sociated with the frequency-dependent aspects of the lo-
calization problem which should be similarly enhanced in
a HF system. It should be noted that at the present level
of calculation the frequency dependence shows a univer-
sal dependence on the mass enhancement. A number of
HF properties reveal such a one scale universality,'? not
only at the mean-field level but also calculated to one-
loop order.

In conclusion, we have developed an approach to the
interplay between localization and interaction by working
in a model where the interaction effects are treated as
fundamental and the disorder aspects are treated pertur-
batively by resumming maximally crossed graphs arising
from the randomness. We find that although no particu-
lar difference (compared with usual weak localization)
arises in the dc conductivity, the frequency dependence is
significantly enhanced. The model should be applicable
to heavy-fermion systems in which the normal-metal sites
are replaced by impurities or made vacant as a result of
radiation bombardment.
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