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Critical surface coupling in anisotropic Heisenberg ferromagnets
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We consider an anisotropic Heisenberg model on a semi-infinite cubic lattice within the Green-
function formalism. We analyze various possible configurations for the surface and bulk anisotropy pa-
rameters. We determine a complete phase diagram for the multicritical points and our results are in
agreement with real-space renormalization-group calculations.

I. INTRODUCTION

Surface magnetism has been a subject of growing in-
terest in the recent years. From a theoretical point of
view, several techniques have been used to investigate
surface magnetic ordering: effective-field theories,!?
series  expansions,” Monte Carlo simulations,*>
renormalization-group techniques,®”® and Green func-
tions.® !

Since the discovery'? in 1981 that Gd can exhibit a
magnetically ordered phase over a magnetically disor-
dered bulk, techniques have been devised to probe the
magnetization of the surface layers. Among these, the
most frequently used is the spin-polarized low-energy
electron diffraction (SPLEED).'»!* For a discussion of
these experimental methods, we refer to the paper of
Celotta and Pierce.'

In this paper we consider an anisotropic Heisenberg
model on a semi-infinite cubic lattice. Through a suitable
choice of the anisotropy parameters of the volume and
surface, we can determine different configurations for the
spin ordering of the system. We apply to this problem
the Green-function formalism with a random-phase ap-
proximation (RPA). This method is particularly interest-
ing because we obtain the magnetization profile and
dispersion relations for the surface spin waves as a func-
tion of temperature. We determine a complete phase dia-
gram of multicritical points as a function of the anisotro-
py parameters. In particular, we discuss the delicate
point about the sums inside the first Brillouin zone, in the
case where the surface and volume are both described by
pure Heisenberg models.

In Sec. IT we present the model Hamiltonian and calcu-
lations performed using the Green-function formalism.
In Sec. III we present the results and discussions for the
magnetization profile and phase diagram of our model.
Finally, in Sec. IV we present our conclusions.

II. DESCRIPTION OF THE MODEL
AND CALCULATIONS

We consider the following model Hamiltonian on a
semi-infinite simple-cubic lattice:

H=—-73 [J,~j(1—e,-j)(S,?‘SJ?‘+S,?’S}’)+JijS,-ZSJ-‘] , (1)
(i,j)

&

where J;; represents the exchange interaction between all
pairs {ij) of nearest-neighboring spins. We choose the
following values for the parameters J;; and €;: If the
sites i and j are at the surface plane (/l =0), we take
Jij=J, and €;;=¢,; if i is at the surface plane (/ =0) and j
is at the next inner plane (I =1), we take J;;=J, and
€;=€,. For all others neighboring sites, J;=J and
€;=¢€. The S"»? are the components of the spin-i
operators. If e=0, we have a Heisenberg model, while
the value e=1 represents an Ising model. In our calcula-
tions based on the Green-function formalism, we must
avoid the value €e=1. Therefore, we will take in our
analysis the value €=0.99 as representing the limit to the
Ising model. We can see that by choosing the values of
the parameters €, and € between zero and 1 we obtain
different combinations of models between the surface and
bulk. The surface is parallel to the (010) plane, and we
assume that the spins will be oriented preferentially
parallel to the surface, so that demagnetizing fields can be
neglected.

The equations of motion for the Fourier transform of
the Green functions {S; (2);S,(¢'))), are given by

+(S))S (1= )y (8738, >>E=$<Sf>a,m ,

()

where ((S;;S_, )y are the Fourier transforms of the
Green functions and we have employed the RPA decou-
pling. In our calculations we have assumed that the
mean value (S7?) is the same for all sites in a given plane
[, that is,

(SP)y=(sf), 3)

where /=0 is the surface plane, / =1, the next inner
plane, and so on. For /=2 we have also taken
(S7)=(S8?),, where (S?), stands for the bulk magneti-
zation per site.

Because of translational symmetry parallel to the sur-
face plane, we introduce the Fourier transform of the
Green functions, G (K, E), where the wave vectors K be-
long to the two-dimensional Brillouin zone of a square
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lattice. After some tedious manipulations, the Green
functions can be determined by the following matrix
equation:

[lezm=$<sf>81m , (4)

where Q) is given by

2t tay  Qy 0 0 0O
Qo 2t+ay, Q4 0 0O
Q= 0 a 2t+ay;, a 0 O ,
0 0 a 2t a 0
: : 0 a 2t a

(5)
and we have defined that

aooz[(l—es )JSZYK_ZJsKS(z))—Jl(Si)

—[z(1—elyx—(2+2)J1(S3) , (6)
a;=—J,(S§)+[(1—e)lzyx—2J]{S?)

—[z(1—eyx—(1+2)eJ]1{S3) , @)
ay=—eJ(Si)+eJ(S3), (8)
Qo =(1—€ ), {S3) , 9
Qp=(1—¢,J,(S%), (10)
Q,=(1—€)J(S%), (11)
a=(1—eJ{(S3), (12)
2 ={E+[z(1—eWyx—(2+2J]}{(S3) . (13)

In the above equations, y¢ =21[ cos(aK, )+ cos(aK,)]
is the structure factor for a square lattice (z =4) of spac-
ing a. In order to determine the layer magnetization, we

need to calculate the matrix elements of Q7! It is
straightforward to show that
(Q‘l),,z—g% , (14)
where
No(€)=E[ant’+(a®—aQtaa,)E
+aXay tay)+at], (15)
N (&) =E[ant’+(a®+anay)E’
+aXagtay)é+at], (16)
and
5 .
D(§)=i§0a,~§’ R (17)
with
ay,=ab, (18)
a,=a*agp+a; +ay), (19)
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‘12=2a4—'91203+(a“+a22)a00+a“a22
Q61 Q0 5 (20)
a3 =(ag+ta; +ayla’—aw,a
— 000, Q 10t g0 103 2D
a,=a*—Qa+(ayp+a;)a,, , (22)
as=ay, . (23)

The parameter £ is given by the solution of the equa-
tion '

E2—2tE+a?=0. 24)

The roots of the above equation are complex for
|t| <a. In this case we can write that t = —q cos(aK,),
and if we put this in Eq. (13), we recover the bulk disper-
sion relation for magnons. On the other hand, if || > «,
the roots of Eq. (24) are real and only those for which
|€] <1 will have a physical meaning. As we can see from
Egs. (4) and (14), the poles of the Green functions are
given by the real roots of the equation

D(£,)=0. (25)

The spectrum of the surface magnons can be obtained
from the roots of the above equation with the restriction
that |£;| <1. Then we have the following expression for
the surface magnons:

vk =(&—a’E ) —[(1—e)zJyg —(2+2)J{(S3) .  (26)

Nevertheless, in order to calculate the roots of D (£,),
it is necessary to evaluate the layer magnetizations (S3 )
and (S{) and the bulk magnetization (S?),, which in
our approximation is attained at the third layer. There-
fore, from the properties of the Green functions,'® we can
show that

1
2

(8¢, >=m , 27)
where
2
—_2|a a , Im[Ny (§)/D(£)]
®o,1 7 | 2 de[f_adt P —1)

7 NoilE) (P—&)

249 DE) EeP—1) |

(28)

&, being the real roots of D(&,) and D’( §,) its derivative
calculated at the point £ =¢§,. The energy spectrum is
given by

v=2t —[(1—€e)zJyg—(2+2)J)(S?), , 29)

B=(kg 1, kg is the Boltzmann constant, and T is the
absolute temperature.

In our calculations we first must determine the bulk
magnetization as a function of temperature. It is easy to
show that
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(8%),= 152 ° (30
where
1 Bow —1
=—% (e 1—-1) ", (3D
N q
and
wq=zJ(S’)b[1——(1——e)I‘q] (32)

is the spectrum of the bulk magnons. Here the q values
run over the first Brillouin zone of a simple cubic lattice
(z =6) with structure factor I';. The sum in Eq. (31) was
performed using a set of 816 special points in the first
zone that can be obtained from the work of Chadi and
Cohen.!’

The set of equations (27)—(29) must be solved self-
consistently for (S§) and (S ) for each value of temper-
ature. In this way we are able to determine the bulk mag-
netization and the first- and second-layer magnetizations,
as well as the spectrum of the bulk and surface magnons
for our semi-infinite anisotropic Heisenberg model, as
functions of temperature.

The above formalism is suitable for temperatures below
the bulk critical temperature. As we are also interested
in situations where we can have a surface magnetic order
over a paramagnetic bulk, we must consider this case sep-
arately. If we put {(S?),=0, for [ >2, in our system of
equations (2), the matrix Q becomes simpler and the cal-
culations follow along the same lines as before. We do
not present here the explicit expressions for the layer
magnetization and magnon surface spectrum.

III. RESULTS

We present in Fig. 1 the curves of magnetization of the
two first layers and bulk as a function of temperature for
€,=0.0,€=0.89, J,/J =2.78. In this case the bulk is de-
scribed by an anisotropic Heisenberg model, while at the
surface we have a pure Heisenberg model. For these
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FIG. 1. Magnetization as a function of the reduced tempera-
ture (r=kpT /6J). A, B, and C represent the first layer, second
layer, and bulk magnetization, respectively. We have €,=0,
€=0.89, J,/J =2.78, €,=¢, and J, /J =1.0. 7% is the bulk criti-
cal temperature.
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values of the parameters, our model exhibits a surface or-
dering above the paramagnetic bulk critical temperature
(%) and the slope of the magnetization curves of the first
two layers is discontinuous. This is also supported by
renormalization-group calculations.”® On the other
hand, recent Monte Carlo calculations® give a continuous
slope at (%). Moran-Lopes and Sanches? have shown,
within a mean-field approximation, that the discontinuity
in the derivative is due to the limited number of indepen-
dent planes above the bulk.

Increasing the number of independent planes, the
discontinuity disappears. From an experimental point of
view, measurements'® on Gd show no discontinuous slope
in the magnetization curve at the bulk critical tempera-
ture. We believe that the observed discontinuity in the
slope of the magnetization at (%) is due to our approxi-
mation, in which the third plane is taken as the bulk
plane.

In Fig. 2 we have plotted the surface critical tempera-
ture (7, =kg T /6J) as a function of J; /J. This phase dia-
gram exhibits three distinct phases, namely, the paramag-
netic (P), surface ferromagnetic (SF), and bulk ferromag-
netic (BF). They meet at the multicritical point, which
occurs for (J;/J),=2.27, when €,=0.00 and €=0.89.
The value of (J; /J), is defined as the particular value of
J, /J, above which we can have surface ordering even for
a paramagnetic bulk. For the values of J,/J less than
(Jy/J)., the bulk and surface order at the same critical
temperature.

We observe in Fig. 3 the behavior of the relative sur-
face critical temperature as a function of €;, when
€=0.89. We have chosen to plot the different curves for
constant values of [(2—¢,)/(2—¢€)](J;/J) because they
become almost straight lines. For the values of J /J
greater than (J; /J),=2.27, the surface can always be or-
dered over a paramagnetic bulk. On the other hand, for
(J,/J)<2.27, the surface can order only above a given
value of the surface anisotropy parameter €;.
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FIG. 2. Surface critical temperature (75) as a function of the
relative coupling J;/J. BF, SF, and P, respectively, represent
the bulk ferromagnetic, surface ferromagnetic, and paramagnet-
ic phases. We have €,=0, €¢=0.89, 2=k, T/6J, €,=¢, and
J, /J =1.0; C denotes the multicritical point.
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FIG. 3. Relative critical surface temperature (75/7%) as a
function of the surface anisotropy parameter (¢,). We have
€=0.89, (J;/J).=2.27, €,=¢, and J, /J =1.0. Curves are for
constant values of RJ =[(2—¢,)/(2—¢€)](J,/J). A (RJ=8.0),
B (RJ =4.09), C(RJ =3.0), and D (RJ =2.0).

Finally, we exhibit in Fig. 4 the location of the mul-
ticritical points where all three P-BF, P-SF, and BF-SF
critical lines join, that is, for a given pair of values of ¢,
and ¢, the value of (J;/J), above which the surface fer-
romagnetic phase appears. Our diagram, obtained within
Green-function formalism, is similar to that obtained by
Mariz, Costa, and Tsallis’ through a real-space
renormalization-group calculation.

We point out that with the use of Green-function tech-
niques it is not possible to obtain exactly the condition €,
or €e=1, which would represent an Ising model. In our
calculations we take €; or €=0.99 as representing the Is-
ing model behavior. In particular, if €, =€=0.99 (surface
and bulk quasi-Ising), a critical value (J; /J),=1.37 is ob-
tained. The value found by Mariz, Costa, and Tsallis’
was 1.74. Results from a mean-field approximation give
the value 1.25, while series expansions® give 1.6 and a
Monte Carlo simulation* gives 1.5. When €, =0 (surface
Heisenberg), we observe that the critical line decreases
smoothly from €=1.00, exhibits a minimum at €=0.058,
with (J; /J),=2.21, and then begins to increase, showing
a divergent behavior at e=0.0.

We now focus our attention to the region of the dia-
gram in which the surface and bulk are both described by
Heisenberg models. We can see that all critical lines
present a divergent behavior when we approach this re-
gion. It is interesting to note that this behavior, obtained
through the use of the Green-function method with the
RPA approximation, is similar to that obtained previous-
ly with the use of the renormalization group.” In that pa-
per the authors suggest that with Green functions within
the RPA it is not possible to obtain a divergent behavior.
We now explain why we are able to determine a divergent
behavior. When we work with the Green-function for-
malism, usually, we must perform sums over wave vec-
tors in the first Brillouin zone. In our case we can use a
small number of two-dimensional special points,'® which
are points of high symmetry in the first Brillouin zone.
With these few points the computational efforts are great-
ly reduced. Nevertheless, we must use these points with
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FIG. 4. Critical coupling (J;/J) as a function of the surface
(€;) and bulk (€) anisotropy parameters. The critical lines lo-
cate the multicritical points.

caution when the surface is described by a Heisenberg
model. In this case the spectrum of magnons goes as K2
in the neighborhood of K=0, and the integrals over K
[Eq. (28)] need to take into account these contributions.
For example, using the ten special points of Cunning-
ham,'” the nearest special point of K=0 is
K=(w/8a,m/8a), and the contribution to the integral is
not very important. As a consequence, we find a finite
critical value for (J;/J),; that is, the surface can order
over a paramagnetic bulk, even when surface and bulk
are both described by pure Heisenberg models.

But if we divide the first Brillouin zone in a fine net of
points, the contribution around the center of the Bril-
louin zone becomes more realistic. With this in mind we
performed the sum using up to 2 X 10° points on an IBM
3090 computer. The results are quite surprising: The
values of (J, /J), seem to go to infinity when we increase
the number of points in the first Brillouin zone. There-
fore, as in the renormalization-group calculations, the
Green-function method asserts that the surface cannot
order over a paramagnetic bulk when surface and bulk
are both represented by pure Heisenberg models.

IV. CONCLUSIONS

We have considered in this work the application of the
method of Green functions to the study of the phase tran-
sitions in a semi-infinite anisotropic Heisenberg model.
Through a suitable choice of anisotropy parameters, we
could determine the complete phase diagram in the space
of the critical coupling and anisotropy parameters of the
surface and bulk. Our phase diagram for the multicriti-
cal points, where a bulk ferromagnetic, surface ferromag-
netic, and a paramagnetic phase join, is in agreement
with  earlier results obtained via real-space
renormalization-group calculations. The discontinuity
that appears in the slope of the magnetization curve at
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the bulk critical temperature may be a consequence of the
limited number of independent planes used in our calcu-
lations. An increase in the number of independent planes
would take a much longer time of computation, but the
results would change slightly. For instance, when the
number of perturbed planes varies from two to three, the
surface critical temperature increases only 1%.
Meanwhile, we cannot say anything about the number of
perturbed independent planes necessary to suppress the
discontinuity in the slope of the magnetization at the
bulk critical temperature. On the other hand, as RPA
decoupling is equivalent to the mean-field approximation
in the vicinity of the critical points, we expect that the
discontinuity in the slope of the magnetization disappears
as we increase the number of independent planes.

We have also explained why we were able to observe
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no finite critical coupling when surface and bulk are both
described by pure Heisenberg models. The use of a small
number of special points in the first Brillouin zone causes
a finite critical coupling because we cannot approach
sufficiently close to the center of the Brillouin zone. Nev-
ertheless, by using a huge number of points, the divergent
critical behavior appears naturally.
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