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The numerical quantum transfer-matrix method has been applied to the s =1 easy-plane ferromagnet-
ic chain system CsNiF3 ~ A detailed analysis of experimental data on the static properties reveals that the
generally accepted spin Hamiltonian for this compound gives an accurate description of the individual
chains for J/k~ =25 K and D/k& =7.7 K. At temperatures up to several degrees Kelvin above the
three-dimensional ordering temperature, deviations between theory and experiment are found that are
attributed to the coupling between the chains. A comparison of the quantum-transfer-matrix-method re-
sults with various analytic results supports the description of solitary excitations in CsNiF3 by the classi-
cal sine-Gordon model, extended to include spin fluctuations out of the easy plane and quantum effects.

I. INTRODUCTION

One-dimensional magnetic systems with a dominant
nearest-neighbor spin-spin interaction have attracted
considerable attention during the last decades, both
theoretically and experimentally. A number of studies
have revealed that, apart from linear excitations, in these
systems nonlinear excitations contribute significantly to
the static and dynamic properties. Exact descriptions of
the quantum chain systems, however, are still lacking.

In this context the quasi-one-dimensional compound
CsNiF3 has been extensively studied. From a variety of
experimental investigations, ' it was deduced that the
individual chains in this compound can be represented by
the spin Hamiltonian

H= —JQS„.S„+,+Dg(S„') —gpgB gS„,

where J represents the (ferromagnetic) intrachain ex-
change interaction, D the (easy-plane) single-ion anisotro-
py, and B the applied magnetic field. Approximate pre-
dictions for the static properties of chain systems de-
scribed by this equation have been obtained from numeri-
cal calculations, such as extrapolating the results for
finite chains ' and quantum Monte Carlo techniques. "

The Hamiltonian (1) defines a widely used model for
soliton-bearing magnetic chains. ' ' Detailed theories
of solitary excitations in these systetns (as well as in sys-
tems with different symmetries) are usually based on the
treatment of the Hamiltonian in the classical limit,
which, of course, is in strong contrast to the fact that the

spin quantum number of the magnetic ions is s =1. The
classical picture allows one to develop a physical and in-
tuitive picture of these excitations, which is to a large ex-
tent based on the results of large anisotropies D (which is
identical to the sine-Gordon limit), whereas various esti-
mates show that a perturbative inclusion of quantum
effects should give meaningful results. ' ' Nevertheless,
efforts to obtain accurate results for experimentally acces-
sible soliton-related properties have for many years been
hampered by the di%culties in treating quantitatively a
spin chain with s = 1.

Recently, the numerical quantum transfer-matrix
method (QTM) (see Ref. 18 and references therein) has
been applied to the ferromagnetic s =

—,
' easy-plane system

[C6H»NH3]CuBr3. A very good description of the ex-
perimentally observed static properties of this compound
was obtained. ' In this paper we will present results of
the s = 1 version of this QTM and compare these with
both relevant experimental data on CsNiF3 and corre-
sponding predictions for soliton-bearing model systems.

The organization of the paper is as follows. In Sec. II
we will briefly outline how the static properties of the
spin chain described by Eq. (1) have been calculated by
the QTM. In Sec. III we will compare results of these
calculations with different sets of experimental data on
CsNiF3, in order to deduce accurate values of the param-
eters J and D and to obtain detailed information on the
validity of the description of this compound by the Harn-
iltonian (1). In Sec. IV the QTM results will be compared
with corresponding predictions from classical transfer-
kernel calculations and the sine-Gordon model, extended
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by including spin fluctuations out of the easy plane and
quantum effects. This will provide us with some infor-
mation about the applicability of the soliton picture to a
real s =1 system. The paper will be concluded in Sec. V.

II. NUMERICAI. METHOD

The numerical results on static properties of the system
described by the Hamiltonian (1) have been obtained by
the quantum transfer-matrix method as described in de-
tail in Ref. 18.

For spin quantum number s =1 and general values of
the parameters J and D and 8, we had to calculate the
elements of the local 9 X 9 transfer matrix
(oo';a~ V((kii TAf)', a, )~o "o"';a) numerically (see
also Ref. 20). All calculations have been performed for
an open chain of N = 150 sites and Trotter numbers up to
At=6. While upon increasing the chain length beyond
N = 150 the results are not found to change significantly
(see also Refs. 18 and 19) at all temperatures considered,
the restriction to A, 6, as is enforced by the limited
computer storage, prevents the QTM from providing reli-
able data at very low temperatures. Our final results are
obtained from extrapolating the results for AS=4, 5, 6 to
At = ao using the 1/Af, rule.

The applicability of the QTM with At ~ 6 for parame-
ter values appropriate to CsNiF3 was questioned in Ref.
11, because the "errors due to a finite value of Af, in the
Trotter approximation should scale with the parameter
Js /At, kii T "Howe. ver, confirming previous observa-
tions ' for spin-1 chains, we have found very good con-
vergence in the temperature region where the majority of
the experimental data on CsNiF3 have been collected.
Typically, results from extrapolations for At, =3,4, S
agreed within 5% with results from extrapolations for
At =4, 5, 6 down to T =4 K (heat capacity, susceptibility)
or T =3 K (magnetization). Moreover, our results agree
fairly well with the Monte Carlo data for the magnetiza-
tion obtained in Ref. 11 with Trotter numbers up to
A, = 12, as indicated in Fig. 1(a). Figure 1(b) reveals that
the Monte Carlo data for the excess heat capacity AC
display a considerable scatter. In addition, at T=7 K
the Monte Carlo data seem to deviate systematically from
the QTM results.

The very good convergence on the one hand and the
satisfactory agreement with Monte Carlo data for the
magnetization on the other hand can be explained by the
following two arguments. First, the real-space decompo-
sition used in our calculations is known to be superior
to the checkerboard decomposition as applied in Ref. 11
and therefore can compensate for smaller values of Af.
Second, the requirement of a small value of the above
quoted parameter in order to guarantee good conver-
gence in the calculation of expectation values is too res-
trictive, because it does not take into account the fact
that the noncommutativity of the involved operators be-
comes unimportant in the classical limit s~ce. With
respect to the excess heat capacity AC, we do not consid-
er the above-mentioned deviations of the Monte Carlo
data from the QTM results to be significant. This is not
only because of the large scatter in the Monte Carlo data,

but also due to the observation ' that b, C (for spin- —,
'

chains) may be underestimated by numerical calculations
within the checkerboard decomposition for finite AL.

In the following we list some further details of our nu-
merical procedure. The heat capacity C= dE—/dT and
the susceptibility g =—dM /dB along a=x,y, z have
been obtained by a numerical differentiation of the results
for the internal energy E = (H ) /N and the magnetiza-
tion M =gpii g„(S„)/N, respectively. Assuming
that in zero field the spin-spin correlations (SOS„) decay
exponentially for large distance n, we have calculated the
inverse correlation length ~ by appealing to the formu-
la

N/2
(1~ )'=2 lim g (SOS„)

N/2
n'(S S )

=—N/2
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FIG. 1. (a) Temperature dependence of the magnetization
and (b) field dependence of the excess heat capacity per spin of
the model described by Eq. (1) with the field in the easy plane.
Numbers attached to the curves correspond to the field values
(in units of T) and temperature values (in units of K), respective-
ly. QTM results are represented by solid curves; data points
denote Monte Carlo results from Ref. 11. In these plots the pa-
rameter values are J/k& =23.6 K, D/k~ =9 K, and g =2.4.

(2)

For details of the actual evaluation, see Ref. 19. Similar-
ly, we have calculated the static structure factor at wave
number q in the presence of a nonzero field by appealing
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to the formula

N/2
(q)= lim g exp(iqn)((SoS„) —(So ) ) .

2'7l N~ oo

The numerical results for the classical version of the
model described by Eq. (1), to be presented in Sec. IV,
have been obtained by the classical transfer-kernel
method (CTM)

III. COMPARISON OF EXPKRIMENTAI. DATA
TO QTM RESULTS

In this section we will present a direct comparison of
observed static properties of CsNiF3 with results of the
QTM calculations outlined in the preceding section. For
a meaningful comparison of numerical predictions with
available experimental data, the spin Hamiltonian and
relevant parameters of CsNiF3 should be accurately
known. Qn the other hand, no information is required
about the underlying physical processes in terms of ele-
mentary excitations. Note that this is complementary to
the next section, where we compare the QTM results
with predictions from soliton-bearing model systems.
Such a comparison, in principle, can be done for arbi-
trarily chosen values of parameters.

Several estimates for the values of g, the exchange pa-
rameter J, and the easy-plane anisotropy parameter D [cf.
Eq. (1)] have been reported. ' ' The accuracy of these
values, however, is not quite clear, since they often have
been obtained from a description of experimental results
by approximate theoretical calculations. Apart from
this, we like to stress that Eq. (1) describes a purely one-
dimensional (1D) system, whereas in the actual experi-
mental system 3D e6ects due to the interchain coupling
may be important, especially at low fields and tempera-
tures, where eventually 3D long-range order is induced.
Therefore, we will use a strategy where we deduce the pa-
rameter values from static properties for which accurate
experimental data are available (under conditions where
3D eff'ects are small) and for which the convergence of
the QTM results in the Trotter number JR is particularily
good, such as the magnetization. Next, we will use this
set of values in the calculation of other properties, such
as the excess heat capacity and spin-spin correlations.

A. Magnetization and susceptibility

Experimental data on the magnetization of CsNiF3
have been reported for external fields up to 1 T within
the easy plane. Since, in general, small deviations from
ideal model behavior are expected to be less significant at
higher fields, we have supplemented these results with
measurements for 1.2 K& T &20 K at fields up to 5 T
within the easy plane and up to 3 T perpendicular to it.
The data were collected using a commercial vibrating-
sample magnetometer. The absolute accuracy of the ob-
served magnetization is better than 4%%uo, whereas the rela-
tive deviations are about 1%. No demagnetization
corrections were applied, since they amount to at most
0.01 T. Temperature readings were obtained from a cali-

g =2. 1 (4)

will be used as a fixed parameter in all calculations to be
presented below. We will compare our QTM results with
the data collected at temperatures above 4.2 K, which are
plotted as M/M, against 8 in Fig. 2(a).

The measurements for fields perpendicular to the easy
plane (B~~c) were performed on a single crystal with a
m.ass of 108.3 mg. For this direction of 8, the magnetiza-
tion shows only a small temperature dependence below
T =7 K. For sake of clarity, we have only included the
data collected at higher temperatures in Fig. 2(b). Be-
cause of the pronounced easy-plane character of CsNiF3,
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FIG. 2. Reduced magnetization M/M, of CsNiF3 for 8 (a)
within or (b) perpendicular to the easy plane at various tempera-
tures. Solid curves denote the corresponding QTM results,
whereas the dashed curves reAect the inclusion of 3D e8'ects

within a mean-field approximation.

brated carbon-glass thermometer and reAect the actual
sample temperature within 50 mK. The temperature
could be controlled with a typical stability of 20 mK at
1.5 K, gradually decreasing to 100 mK around 20 K.

The measurements for external fields within the easy
plane (Blc) were collected using two single crystals with
a mass of 14.5 and 18.0 mg, respectively. At 1.2 K, satu-
ration could be reached at the highest fields. From the
observed magnitude of the saturation magnetization
M, =gp~, a value of g =2. 1+0.05 was deduced, which
compares reasonably well with the various results quoted
in the literature. ' Since the present value is obtained
without any fits of model calculations to the data, the
choice
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Bo=B,h+B,MIM, . (6)

A similar correction has been applied in the descrip-
tion of the experimental results for fields perpendicular to
the easy plane. In this case no direct experimental infor-
mation on the mean-field correction is available. Howev-
er, since for this field direction the magnitude of M is rel-
atively small, the correction is also small. Hence we have
taken the interchain coupling as isotropic, i.e., used Eq.
(6), although it may be largely of dipolar origin.

The corresponding theoretical predictions are given by
the dashed curves in Fig. 2. The solid curves reAect the
numerical results for the purely 1D system. Inspection of
the figure reveals that the inclusion of a mean-field
correction yields a nice description of the data above 0.5

no saturation could be reached. Since, in general, both
the J and g tensors of Ni + systems are fairly isotropic,
we will use the value (4) inferred above also in the
analysis of the data for 8~~c.

Our aim in the analysis of the magnetization is to ob-
tain a description of the experimental data for both B~~c
and Blc within experimental accuracy using the same set
of values for the parameters J and D. The best overall
description was found for the set of values

J/k~ =25 K, D /kii =7.7 K .

The inferred values of these parameters compare well
with the values J /k' =23.6 K and D/kIi =9 K obtained
from an analysis of the magnon dispersion relation within
a classical model. Inclusion of quantum corrections
changes the latter values to J/kz =26 K and D/kz =8
K, yielding an even better agreement. However, some
systematic deviations between theory and data for the
magnetization persisted, which increased up to 5%%uo of the
saturation magnetization at lower temperatures. Since at
temperatures above 4.2 K, where the analysis is per-
formed, the numerical error in the QTM calculation of
the magnetization is less than 1%, the observed devia-
tions very likely originate from the fact that the real mag-
netic behavior of CsNiF3 is not adequately described by
the pure 1D model Hamiltonian (1). Since the interchain
interactions can neither be treated analytically nor be in-
cluded in the QTM calculations, we have estimated their
eAect by a mean-field approximation.

Experimental information about the magnitude of the
interchain coupling can be obtained from the magnetic
phase diagram of CsNiF3, which has been deduced by
neutron-difraction experiments from the field and tem-
perature dependence of the intensity of the ( —,', 0,0) Bragg
reAection. At low temperatures a transition from an anti-
ferromagnetic domain state to a ferromagnetic alignment
of the chains is observed at an applied critical field

B,=0.21 T within the easy plane. At this field the Zee-
man energy equals the (antiferromagnetic) interchain-
coupling energy. Within the mean-field approximation,
the interchain interactions will reduce the "e6'ective"
field at the individual chains by an amount B,M/M, .
Consequently, the magnetization M of an individual
chain in a field B,h is actually reached at an applied field

Bo given by

T, but at lower fields the 1D model seems more appropri-
ate. This is corroborated by the analysis of the zero-field
susceptibility. In Figs. 3(a) and 3(b) we have plotted the
reported data for the in- and out-of-plane susceptibility,
respectively. The solid curves denote the numerical re-
sults for the 1D model Hamiltonian, using the same set of
parameter values as above. The dashed curves reQect the
inclusion of the interchain-coupling energy vJ~ & 0,
where v denotes the e6'ective number of neighboring
chains, within a mean-field approximation. In this ap-
proach the observed 3D susceptibility y3D is related to
the susceptibility g, D of an individual chain by '

X3D X1D

' —1vJi
2 2 +1D

g pg
(7)

By equating the Zeeman energy at the critical field 8,
and the antiferromagnetic interchain-coupling energy,
this relation can be rewritten as
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FIG. 3. Zero-field (a) in-plane and (b) out-of-plane magnetic
susceptibility of CsNiF3. Squares represent the experimental
data taken from Ref. 5. The solid curves denote the corre-
sponding QTM results, whereas the dashed curves reflect the in-
clusion of 3D efFects within a mean-field approximation.
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From Fig. 3 it is obvious that the description of the ex-
perimental out-of-plane susceptibility by the corrected
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numerical results is very good. The calculated in-plane
susceptibility, however, shows large deviations from the
data if the mean-field correction is included. The reason
for this systematic deviation, which is also present in the
low-field magnetization for Blc, is not clear. It may be
related to the observed domain structure of CsNiF3
within the ordered state. This structure suggests a cer-
tain degree of competition between the (long-range) dipo-
lar and (short-range) superexchange interactions between
the chains, which cannot be properly accounted for by
the simple mean-field approximation used in the present
analysis.

To conclude this part of the analysis, we feel confident
to state that our QTM results describe the observed
zero-field susceptibility and the field and temperature
dependence of the magnetization in CsNiF3 with an accu-
racy that is comparable to the uncertainty caused by the
interchain interactions.

B. Heat capacity

The heat capacity of CsNiF3 has been studied much
more extensively than the magnetization or susceptibility.
These studies have been stimulated by the observation
that the excess heat capacity hC, i.e., the heat capacity
measured in the presence of an external field within the
easy plane minus the zero-field heat capacity, is dominat-
ed by the contribution of nonlinear excitations. Never-
theless, 'comparison of experimental data on b, C (Ref. 33)
with predictions based upon the classical sine-Gordon
model reveal large systematic deviations, which increase
at lower fields and temperatures.

The adequacy of the classical sine-Gordon model to de-
scribe the excess heat capacity of a 1D s =1 easy-plane
ferromagnet with the parameter values representative for
CsNiF3 will be discussed in Sec. IV. In this section we
focus on a direct comparison of the experimental data on
b.C with results obtained from QTM calculations. For
this purpose we have plotted the reported data on hC
(Ref. 33) against the applied field 8 in Fjg. 4. The solid
curves represent the corresponding QTM results, calcu-
lated for the parameter values (4,5), inferred from the
analysis of the magnetization and susceptibility. Inspec-
tion of this figure reveals only a qualitative agreement be-
tween theory and data. The maxima of the experimental-
ly observed excess heat capacity are lower than the QTM
results, the difference being larger at lower temperatures.
Apart from this, the applied fields B,„at which these
maxima occur are systematically larger than the corre-
sponding theoretical fields by about 0.1 —0.2 T.

Since in the present temperature region the uncertainty
induced by the extrapolation in the Trotter number A,
(cf. Sec. II) is expected to be less than 5%, we attribute
the observed discrepancies to deviations of CsNiF3 from
ideal model behavior or, more specifically, to the cou-
pling between the individual chains. We can, of course,
include these 3D effects within a mean-field approxima-
tion, similar to the analysis of the magnetization and sus-
ceptibility presented above. Such a procedure indeed
yields a reduction of the effective field at the individual
chains of roughly 0.15 T, which is sufficient to explain the
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FIG. 4. Field dependence of the excess heat capacity
AC = C (Blc ) —C (0) of CsNiF3 at various temperatures. The
symbols represent the experimental data taken from Ref. 33.
The dashed curves are parabolic fits to these data. The solid
curves denote the corresponding QTM results.

observed shift of 8,„. However, it does not change the
magnitude of KC(8) itself. In our opinion this can only
be achieved by including the inter chain interactions
directly in the spin Hamiltonian, which, however, can no
longer be treated within the present QTM formalism, as
already mentioned above.

C. 1D spin corre1ations

Using quasielastic neutron scattering, it is possible to
determine the spin-spin correlations within the individual
chains. In CsNiF3 these ferromagnetic correlations give
rise to diffuse scattering with maximum intensity in
planes in reciprocal space perpendicular to c at even
values of the Miller index l, because the spin-spin dis-
tance equals c/2. The scattering cross section along a
direction normal to such a plane can be approximated by
a Lorentzian

do
dQ

K2~aa
=A 4 (q)=

v +q
In this equation 3 is a proportionality factor, sc is the
inverse correlation length for the spin components S,

is the magnetic susceptibility of the chain along
a =x,y, z, and q is the distance of the scattering vector to
the plane. Since only spin components perpendicular to
this vector contribute to the magnetic scattering, it is, in
principle, possible to determine selectively the correla-
tions between the components within or out of the easy
plane, by choosing a suitable scattering configuration.
We will confine ourselves to the experimental results
which have been reported for the in-plane components.

In Fig. 5 we have reproduced the experimentally ob-
served maximum scattering intensity in the (0,0,2) plane
at various values of the external field applied perpendicu-
lar to c*. The scattering configuration was chosen such
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FIG. 5. Universal plot of the maximum diffuse neutron-
scattering intensity in the (0,0,2) plane at various magnetic
fields, where h —=gp&B. The symbols represent the experimental
data taken from Ref. 35. The QTM results for B =0.2, 0.5, and
0.7 T are denoted by the solid, dashed, and dot-dashed curves,
respectively.

FIG. 6. Temperature dependence of the HWHM of the
neutron-scattering intensity profile perpendicular to the (0,0,2)
plane at B =0 and 0.5 T. The symbols represent the experimen-
tal data taken from Refs. 35 and 36. The solid curve represents
the QTM result for the inverse zero-field correlation length,
whereas the dashed curve reflects the result of a QTM simula-
tion of the experimental analysis {see text). The abbreviation
"r.l.u."means reciprocal lattice units.

that the intensity is proportional to the sum of the in-
plane susceptibilities y, with e IB and e ~~B, respective-
ly. The data are plotted in the usual "universal" way in
order to check if the sets collected at different fields col-
lapse onto a single curve. The various curves in the
figure refiect the corresponding numerical QTM results
for the spin Hamiltonian (I), scaled by one constant fac-
tor in the vertical direction to match the data. These re-
sults have been obtained directly from the spin-spin
correlations using Eq. (3) for q =0. In the calculations of
(SoS„) we again used the set of paramter values (4,5).
The figure reveals a very nice overall agreement between
theory and data. At the lowest field of 0.2 T the experi-
mental intensity seems somewhat higher than the theoret-
ical prediction. Both the numerical results and data show
deviations from universal behavior, in the sense that the
maxirnurn of the intensity increases at lower fields, but
these deviations are very small.

Next, we will consider the correlation length. From
Eq. (9) it is obvious that the inverse correlation length a is
equal to the half width at half maximum (HWHM) of the
observed scattering profile S(q). In Fig. 6 we have plot-
ted the reported HWHM as a function of temperature for
B =0 (Ref. 35) and B =0.5 T. As already noted by the
authors of Ref. 36, the correlation length is independent
of the applied field within experimental error. The solid
curve rejects the calculated temperature dependence of ~
for B =0, using Eq. (2) and the parameter values (5).

The numerical results for ~ obtained from this equation
are equal to the HWHM of the calculated scattering
profile S(q) according to Eq. (3) within a few percent, in-
dicating that the approximation of S(q) by a Lorentzian
[Eq. (9)] is allowed. Inspection of Fig. 6 reveals that the
calculated values of ~ are significantly higher than the ex-
perimental data. The difference increases at higher tem-
peratures, where the QTM results are very accurate. On
the other hand, 3D effects can be ruled out completely,

since only the 1D correlations contribute to the intensity
profile in the neutron-scattering experiments.

To resolve this discrepancy, we performed a numerical
simulation of the experimental analysis of the measure-
ments, in which a high-temperature (T )40 K) back-
ground was subtracted from the observed intensity to ob-
tain the purely magnetic scattering. More precisely, we
calculated S(q) at T =50 K and subtracted this intensity
from the scattering profile calculated for 4 K ~ T ~ 20 K.
The temperature dependence of the HWHM of the re-
sulting profile is represented by the dashed curve in Fig.
6, which agrees very nicely with the experimental data.
Obviously, a direct determination of the spin-spin corre-
lation length from the observed quasielastic neutron-
scattering intensity profile is very dificult when the
scattering profile is broad.

IV. INTKRPRKTATION OF QTM RESULTS
IN TERMS OF SOLITONS

As already mentioned in the Introduction, the present
QTM results give the opportunity to aim at a quantitative
comparison of numerical data with both experiments and

approximate analytical treatments. Of course, the nu-
merical data alone and their comparison to experiments
cannot verify or falsify an underlying physical picture,
but the discussion of the present results in terms of ap-
proximate analytical results (both classical and semiclas-
sical) will allow one to draw conclusions about the
relevance of the physically appealing soliton picture for a
magnetic chain system with s =1. This is what we aim at
in this section.

The power of this effort is obviously quite different for
static quantities such as the heat capacity and for dynarn-
ic quantities such as the properties of the soliton-related
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central peak in the dynamic structure factor: Whereas
static quantities can be compared directly to the results
of the numerical calculations, the discussion of dynamic
quantities will be necessarily restricted to global numbers
obtained by an integration over frequency and requires
some additional analysis to disentangle the different con-
tributions to the related static quantity, which is accessi-
ble numerically to the QTM method.
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A. Soliton-induced magnetic heat capacity

The discussion of the magnetic heat capacity usually
starts from the fact that in the classical sine-Gordon (SG)
approximation a plot of C/m vs T/E„i, where
m =(gp~B/Js)' is the soliton mass and E„,—=8mJs is
the soliton rest energy, gives a universal curve. It is well
known from the numerical transfer-kernel calculations in
Ref. 37 and from the analytical work in Ref. 38 that the
final classical SG result is considerably below the result
for the noninteracting one-soliton phenomenological ap-
proach (obtained in the spirit of Ref. 39), but that
higher-order terms in the expansion of the free energy
(power-law terms as well as one- and two-soliton terms)
are necessary and sufBcient to give agreement with the
classical SG transfer-kernel results. Following these cal-
culations the understanding of the magnetic heat capaci-
ty in the real magnetic chain material CsNiF3 developed
in the following steps.

Transfer-kernel calculations (CTM) for the classical
version of the Hamiltonian (1) gave a large enhance-
ment of the heat capacity above the SG result (see also
Refs. 40 and 41). Qualitatively, this was understood in
the soliton description as resulting from the strong out-
of-plane fiuctuations for finite 1,—:2Ds/gp~B (finite A.

gives the SG theory), predicting an increase in soliton
density by a factor exp(3/&A, ). On the other hand, the
reasonable agreement between experimental and classical
SG results now appeared as fortuitous and enforced the
conclusion that quantum efFects must be essential for a
quantitative understanding of the magnetic heat capacity.
In a qualitative way, this turned out to be in agreement
with semiclassical calculations: Whereas quantum
corrections to the SG model did not show any significant
decrease, ' the combination of out-of-plane and quan-
tum corrections' lead to a substantial decrease of the
heat capacity and thus showed that it should be possible
in principle to discuss the magnetic heat capacity in
terms of the soliton picture also in the real s =1 spin
chain.

The numerical results to be presented below give a
much more quantitative picture, which is completely con-
sistent with the "state of the art" described above. In
Fig. 7 we show the results for several magnetic fields ap-
plied in the easy plane for the s =1 spin chain and its
classical analog, both for D/k~ =7.7 K. For comparison
the classical SG result (universal plot for all magnetic
fields) is also shown. Consistent with Ref. 28, it is seen
that for the system described by the full Hamiltonian (1)
the scaling property survives only approximately and that
the system has a strongly enhanced heat capacity in the
classical limit. On the other hand, the reduction due to
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k THEso/

0.3 04

FIG. 7. Reduced excess heat capacity hC/mk& vs reduced
temperature k&T/E„~ with various magnetic fields applied in
the x direction. Comparison of QTM results, CTM results, and
the classical SG result.

quantum efFects is also clearly seen and improves the
description of the experimental data (cf. Fig. 4). Figure 8
demonstrates that this reduction is essentially influenced
by the out-of-plane fluctuations: When we increase the
strength of the single-ion anisotropy to D/kz =35 K, the
ratio of classical to quantum peak heights increases.

At this point we should mention that approaching the
quantum sine-Gordon (QSG) model is more subtle than
just increasing the anisotropy energy D in the QTM cal-
culations, since the coupling constant of the QSG chain
corresponding to the magnetic chain is
g =(2D/Js )'~ . Therefore increasing D soon brings
one beyond the range of definition of the QSG system
(g & 8m. ), if the spin value s is not increased at the same
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to the curves. A field of strength 1 T is applied in the x direc-
tion.
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soliton-induced and spin-wave-related in-plane correla-
tion functions. For a more detailed discussion, we con-
centrate on S (0). In Fig. 10(a) the variation with tem-
perature of this quantity is shown for a magnetic field of
1 T along the x axis and an anisotropy of D/k~ =7.7 K,
both for the s =1 chain and in the classical limit. The
overall behavior in these two cases is similar; introducing
quantum mechanics lowers the maximum by about 20%
and shifts the maximum to higher temperatures. Varying
the parameters, the following variations are observed:
Changing D/k~ to 35 K, we find in the classical limit lit-
tle change for low temperatures and a definite increase
for higher temperatures. The latter is consistent with a
suppression of out-of-plane fluctuations with larger aniso-
tropies, leading to larger in-plane components. For a
magnetic field of 0.5 T, the curves are qualitatively simi-
lar, apart from the expected general shift to lower tem-
peratures. The classical SG transfer-kernel results (as ex-
trapolated from Ref. 37) lie somewhat (10—20%) below
the CTM results for the classical spin chain with
D/k~=7. 7 K. As a whole, 4""(0) as a static quantity
has the same qualitative behavior as the heat capacity:
an increase due to out-of-plane Auctuations at the classi-
cal level and a compensating decrease upon the introduc-
tion of quantum effects. Quantitatively, these changes
are much less spectacular than for the heat capacity.

With respect to soliton-induced properties, the most
interesting question is whether it is possible to decompose
the global result for S" (0) into soliton and two-magnon

TABLE I. Contributions to the classical structure factor at
zero wave number 4 "(0) with a field 8 = 1 T applied along the
x axis. If the numerical calculation of the soliton shape in Ref.
47 is included, the numbers indicated by an asterisk change to
0.166 and 0.566, respectively.

Classical phenomenology T=4 K T=6 K T=8 K

(1) Noninteracting solitons
(2) Noninteracting solitons

including out-of-plane and
spin-wave interference
correction factors

(3) Two magnons
(4) Classical analytic results

[sum of (2) and (3)]
CTM results

0.0009

0.001
0.100

0.101
0.094

0.036

0.038
0.225

0.263
0.298

0.226

0.197
0.400

0.597*
0.504

contributions. Starting from the classical description, the
claim is that at suKciently low temperatures the simple
noninteracting soliton result quoted above can be im-
proved to give quantitative results; the improvements
consist in correction factors for out-of-plane fluctuations,
interference effects with spin waves, and quantum effects.
The present numerical results offer an opportunity to
check this claim and thus to assess more solidly the valid-
ity of the phenomenological soliton description. At the
classical level this is possible within an error bound of the
order of 10% (data for 8 =1 T are given in Table I); in
the quantum case the ambiguity is larger: Whereas the
classical correction factors will continue to apply, we
have in addition the reduction due to the decrease in
effective in-plane spin component, and it is not clear to
what degree this quantum correction factor is multiplica-
tive. When we take this quantum correction at T =0 as
calculated recently, we reproduce the general decrease
by a factor of 2 from quantum effects as seen in the nu-
merical results (see Table II). Whereas this is by no
means a quantitative confirmation of the phenomenologi-
cal approach, it should be considered a reasonable guide
to an estimate of the soliton-related contribution to the
central peak. Since only half of the two-magnon contri-
bution is in the central peak, we conclude that solitons
and two-magnon processes contribute equally to the cen-
tral peak for a field of 1 T and a temperature of 8 K.
This should be a lower bound for the soliton part at
higher temperatures, since the two-magnon part no
longer represents the analytical contributions at higher

TABLE II. Contributions to the quantum structure factor at
zero wave number S "(0) with a field 8 = 1 T applied along the
x axis.

0.0
0

I

10 15 20 25 30 T=6 K T=8 K
T (K)

FIG. 10. Temperature dependence of the static structure fac-
tor at zero wave number 4 (0) (a) for a=x and (b) for a=y. A
field of strength of 1 T is applied in the x direction.

(1) Solitons
(2) Two magnons
Sum of (1) and (2)
QTM results

0.02
0.10
0.12
0.12

0.11
0.18
0.29
0.256



11 782 DELICA, de JONGE, KOPINGA, LESCHKE, AND MIKESKA

temperatures, which will decrease stronger than the soli-
ton strength.

For a quantitative comparison to the results of
neutron-scattering experiments on CsNiF3, it is most use-
ful to present the results of the numerical calculations in
units of the low-temperature spin-wave intensity, since
this quantity can be measured without ambiguity. At
q =0 we can assume that the one-magnon intensity is
given directly by W~(0). In Ref. 46 the experimental
central-peak intensities are given in units of the spin-
wave intensity at T=2 K, which unfortunately is not
within the range of our numerical calculations. There-
fore, this intensity was estimated by extrapolating the
QTM results presented in Fig. 10(b) down to T =0, using
as a guide to the low-temperature behavior the results of
Ref. 30. This allows us to express the experimentally
measured central-peak intensity in the units applied in
Fig. 10(a), without any adjustable parameter. The exper-
imental value at T = 12 K is eP"(0)=0.3, whereas the nu-
merical calculation gives 0.43. The numerical value has
to be larger than the experimental one since the latter in-
cludes the central-peak contribution only, whereas the
QTM calculation also includes the high-frequency two-
magnon contribution. Taking this into account and as-
suming as discussed above that the strengths of the three
contributions to 4'" (0) (soliton, low-frequency two-
magnon, high-frequency two-magnon) are equal, agree-
ment is again obtained within about 10%%uo. In view of the
large uncertainties related to the disentangling of the
various contributions to S(q), this is all that can be ex-
pected. Moreover, the temperature variation of the nu-
merical resu1ts is in qualitative agreement with the data
presented in Ref. 46 and shows a maximum at about the
correct temperature.

V. CONCLUSIONS

On basis of the comparison of QTM results with exper-
imental data on CsNiF3, we conclude that the spin Ham-
iltonian (1) provides an accurate description of the indivi-

dual chains in this compound for g =2.1, J/k~ =25 K,
and D/k~=7. 7 K. Systematic deviations between the
numerical and experimental results are found, which ex-
tend up to several degrees kelvin above the 3D ordering
temperature and are attributed to the coupling between
the chains. Attempts to include this coupling within a
simple mean-field approximation did not yield satisfacto-
ry results, probably because of the presence of competing
interchain-interaction mechanisms.

Comparison of results of QTM calculations with those
of the classical sine-Gordon model and classical transfer-
kernel calculations qualitatively corroborates the physical
picture describing the nonlinear excitations in CsNiF3 in
terms of solitons. However, it is obvious that the sine-
Gordon model has to be extended by including quantum
e6'ects and spin components out of the easy plane in order
to obtain quantitatively acceptable results. At tempera-
tures below 10 K, satisfactory agreement between such a
phenomenological theory and QTM is found, which sup-
ports the interpretation of neutron-scattering experi-
ments on CsNiF3 in terms of the extended sine-Gordon
model.

Concluding, we note that for both s =
—,
' and 1 systems

the static properties such as heat capacity, magnetiza-
tion, susceptibility, and spin-spin correlation functions
can be accurately calculated by the QTM down to values
of the reduced temperature k~ T/Js (s + 1)=0.08. Nev-
ertheless, a quantitative evaluation of the time-dependent
properties, including the specific elementary excitations,
still requires an enormous theoretical e6'ort.
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