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A microscopic approach to evaluate the disorder-induced light scattering spectra in solids is pre-
sented. A quite general theory is developed and then specialized to some model systems that can
represent an extended class of real systems. The general features of the disorder-induced spectra of
real systems can be predicted, once the microscopic disorder and the mechanism responsible +or the
induced polarizability are correctly taken into account.

I. INTRODUCTION

For many years a great deal of theoretical and experi-
mental work has been devoted to the study of disordered-
induced light-scattering (DILS) spectra, i.e. , of those
spectral components that are absent in perfect crystals
and become important to the spectra of all solids that
show some kind of microscopic disorder. In fact, because
of the disorder, the k-conservation rule breaks down and
each mode of the system can couple with the radiation
Geld, giving rise to a broad spectrum.

In the harmonic approximation the intensity of the
DILS component I p(u) has been generally related to
the overall density of states p(w) and to the Bose popu-
lation factor n(co) as follows:i

I p(co) oc C p(~)/i(~) .n(u)) + 1

Here, a frequency-dependent coupling coe%cient C p(u)
has been introduced and the indexes n and P (running
over z, y, and z) represent the polarization components
of the scattered and incident electric fields. Equation (1)
can be formally compared with the expression of the one-
phonon incoherent neutron scattering spectrum, I;„,(u),
which, iv a simple Bravais cubic lattice, reads2

n(co) + 1I;„,(~) oc p(~) .

In this expression the density of states is simply mul-
tiplied by the step-up factor n(u) + 1 and by the nor-
malization of the harmonic propagator 1j~, while in the
light scattering case [Eq. (1)] the same quantities are also
multiplied by a frequency-dependent coupling coeKcient

C p(u), which measures how much the modes with fre-
quencies close to co are active in scattering light. C p(u)
strongly determines the DII S spectral shape and, in gen-
eral, it may be a rather complicated function of ~.

In the past years many works have been devoted to
the theoretical determination of the coupling coe%cient
C p(u) in a variety of disordered solids.

The pioneering work on this subject was done by
Whalley and was concerned with orientationally disor-
dered crystals. He showed that the randomly oriented
molecules generate an "electrical" disorder that is respon-
sible for the observed broad depolarized spectra. Assum-
ing perfect lattice vibrations and no correlation between
the anisotropic polarizabilities of diR'erent molecules, he
derived an co2 behavior for C p(u) along the entire acous-
tic branch.

Some years later Shuker and Gamon claimed that the
DILS spectrum in amorphous solids could originate from
the mode localization produced by structural disorder.
As a matter of fact, in their work the presence of "electri-
cal disorder" was completely ignored and the DILS spec-
trum was described just as a coherent spectrum some-
what broadened because of the mode localization.

In 1974 Martin and Brenig developed a model for light
scattering in amorphous films. They described this sys-
tem in terms of fluctuating elasto-optic coeKcients and
strain tensors, assuming that modes could be represented
as distorted plane waves. They used an empirical Gaus-
sian ansatz for the spatial decay of the fluctuations cor-
relation function, thus obtaining

(~) 2(Q e-m /2(cgk) + g —cu /2{c~k) )

They made a distinction between longitudinal and trans-
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verse excitations, contributing to the DILS spectrum
with different Raman activities Az, and A~, respectively.
At low frequencies (~ && c~k ) the cu dependence of
C p(cu) they found agrees with the Whalley's results,
while, due to the finite range 1/k of the correlation func-
tion, two different cutoff frequencies appear in the spec-
trum which are related to the longitudinal and transverse
sound velocities cz, and c~, respectively.

In 1979 some of us used a microscopic model to deal
with the light scattering from disordered systems consist-
ing of anisotropic molecules. It was shown that while the
usual Brillouin doublet is not influenced by the electri-
cal disorder, the anisotropic spectrum is essentially gov-
erned by the single molecule dynamics. The spatial cor-
relation function of the anisotropic part of the molecular
polarizability (which was empirically assumed to have an
exponential decay) cancels the contribution of the high
wave-vector modes from the disordered Raman spectrum.
In this model the origin of the DILS spectrum was at-
tributed to the rototranslational coupling.

In 1981 we performed experiments and built up a the-
ory in order to extract the translational phonon density
of states from the Raman spectra of ice. The density
of states spectral shape was reconstructed by using the
depolarization ratios as measured in the three indepen-
dent scattering configurations and was found to be in
good agreement with lattice dynamics calculations and
specific heat behavior.

In this paper we will begin by establishing a general
formalism to deal with DILS spectra in harmonic solids,
avoiding any a priori hypothesis on the dynamics of the
systems and on the origin of disorder. The scattering
equation so obtained will hold for many different kinds of
disordered solids, and most of the existing results can be
derived by specializing our equations to a chosen physical
system. The calculation will be applied to simple mod-
els which can represent an extended class of systems and
then analytically solved for a linear chain. An interest-
ing result which in some way contradicts the theoretical
prediction of Whalley will be derived and discussed.

approximation the Harniltonian of such a system reads

where Pi(t) is the momentum of the lth unit and 4 p(t'I)
are the force constants. Hamiltonian (5) can be diago-
nalized by writing

(t)=
~

"~~ ). („i)i {2~, ) (6)

(9)

where

.„,(, ) = ' f '" P.,(, )P;,(,0)

and

where p is the mode index (p = 1,2, . . . , 3N —6), Az(t)
is the normal-mode field operator of eigenvalue ~& and
e(p~t) represents the orthogonal set of eigenvectors.

The field operator is expressed in terms of boson cre-
ation [a„(t)]and annihilation [az(t)] operators as follows:

A„(t) = a„(0)e'""' + at (0)e

The light-scattering spectral density I(q, u) (expressed in
photon/sec for unit frequency) can be written in terms
of the correlation function of the space Fourier transform
of the macroscopic polarizability density tensor P p(r, t)
(8 f. 9)

P d(gt) = fdr, e 'e Pp(r, t)'
and reads

II. BASIC THEORY

R,'(t) = x'+ u'(t), (4)

where x' is the equilibrium position and u'(t) the dis-
placement from equilibrium. In a solid system it is rea-
sonable to assume the relation ( u &(& a, where a is
the nearest-neighbors average distance. In the harmonic

For solid systems, either ordered or not, a general for-
mulation of the DILS scattering can be developed from a
microscopic point of view. This is the most natural and
powerful procedure for those systems where one or more
kinds of scattering units, having much smaller dimension
then the light wavelength, can be identified. The DILS
spectrum appears when the effective polarizability ten-
sors of such units do not have the translational symmetry
of the lattice.

The instantaneous position of each unit of mass en~ is
defined by the vector K'(t):

In solid systems the time dependence of x' p(t) can be
well approximated by its first-order expansion in u (t)

~' p(t) = x'
p + ) V'p „u„(t), (12)

In Eq. (9) xn and n are the polarization unit vectors of the
scattered and incoming radiation, p the number density,
J; the photon Aux of the incident light, AQ the collected
solid angle, and V the scattering volume. hu; and bc', are
the energies of the incoming and the scattered photons,
respectively; hu = hu; —hu, and q = k; —k, are the
exchanged energy and wave vector.

In atomic and/or molecular systems P p(q, t) can be
described microscopically in a general way by using the
effective microscopic polarizability tensor x' &(t).io Fol-
lowing the procedure adopted in Ref. 11 we may write
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where both

~'
p

— ~' p(t)

and

(a .', (t) l
Vi

~p&p ( gum )
(14)

It follows that, by replacing P with Pk P in Eq. (15),
and considering that

—i(q —k) x' gg (k—q)
l

(here Ek = 1 if k is zero or a reciprocal lattice vector,
otherwise b,k = 0) we obtain

are relative to the equilibrium configuration of the sys-
tem. The time dependence of P p(q, t) can be obtained
by using Eqs. (11) and (12) and the normal mode repre-
sentation for u (t), i.e. ,

P-p(q t) =
2 ) .) .e, (q, X)L.p,.(q)

(20)

P p(qt)=) ~
e

(2mi

x) ) e.(pl[)L'.p,,(q)
"

P IJ

where

I'
p „(q) = i q„z' p +—Q'

p „(q) (16)

and

Qi ( ) ) yml —iq [x —x'l

e(p(l) = ' e'e(» X),k.,

N
(18)

Equation (15) shows that the local polarizability is mod-
ulated through a coupling amplitude I'

p (q) by the os-
cillation amplitude produced by mode p on the l unit
je(plI) lV'mi j.

Equation (15) is a good starting point for light-
scattering calculations in all solid systems: its applica-
tion to a mona&amic perfect Bravais lattice is straightfor-
ward and somewhat useful for further steps. In fact, in
this case, due to the total translational invariance of the
lattice, the electrical quantity L p „(q) is site indepen-
dent since both zi

p and Q'
p (q) are site independent.

Moreover, the normal modes are perfect plane waves with
polarization unit vectors e(k, y), where y is the branch
index and k the wave vector of the normal mode (k, y).
The relation between the general eigenvector e(p~l) and
e(k, y) is therefore

Equation (20) states that the time dependence of
P~p(q, t) is due only to those modes with k = q (q-
conservation rule) belonging to any branch y, for which
the term e(q, y) L p(q) does not vanish. This is the well-
known result which gives the Brillouin spectrum: the in-
tensity of the polarized longitudinal mode is essentially
due to q&z~p, while in the depolarized configurations,
transverse and longitudinal intensities are governed by
the Q p &(q) term [see Eq. (16)j.

On the other hand, as we have stressed, if some kind of
electrical disorder exists the DILS spectrum appears, and
all modes of the system contribute to it because the quan-
tity L p (q) becomes site dependent. The whole spec-
trum wilf contain the Brillouin as well as the DILS con-
tribution; however the first (which comes from the k = q
modes) is confined in the very-low-frequency range, while
the second will extend on a very-large-frequency range
(up to some hundred wave numbers) because of the con-
tributions from all k values.

In the following, disregarding the eA'ect of the disor-
der in the Brillouin spectrum, we will calculate the DILS
contribution from (10) and (15) just assuming q 0, i.e. ,

by taking the q = 0 limit of P p(q, t) in Eq. (10). As
far as the scattering amplitude is concerned this is jus-
tified because only the local fluctuation of L'

p „(q) will

contribute to the DILS spectrum because of the small ~q~

value exchanged by radiation, so that only the Q'
p „(0)

term will be relevant in Eq. (16).
If the Hamiltonian of the crystal is independent on

the electrical disorder, the dynamical variables Akx(t)
and the equilibrium quantities Q p„(0) are statistically
independent. Furthermore, the translational invariance
of the lattice ensures that the eigenvectors e(p~l) in Eq.
(15) can be expressed through Eq. (18). Therefore, by
substituting Eq. (18) into (15) we obtain

( ) ID LS(p ) )~) ) ikx( ik' (x-
kg k'g' ll'

) (k &) (k & ) Qi (())Q
'

(())~p&p ~p&"

dt e'"' ( Ak„(t)Ak x (0) ) (21)

Since for the Stakes side we have
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we get for the scattered intensity

) .C-p(k ~) ~(~ —~~(k))
h . n((u)+ 1

kX

where

(22)

C p(k, y) = ) e'" ("''"")) e„(k,y)e'„(k, y) & Q~p „(0)Q' p „(0)&
ggl pv

Equation (22) is the same as Eq. (1) if

) C~p(k, g)b(ur —(uq(k))
kx

P(~) = ) .~( — x(k))
kx

(24)

of the latter without any loss of generality.
In the short-range approximation of DID, ' the ef-

fective atomic polarizability tensor for the ith scattering
unit, x'

&, can be expressed in terms of its bare polariz-

ability p'
p as follows:

'-p(~) = p*-p+ ) .) .p'.,&,'"(R*'(~))pl (25)

We wish to stress that the procedure used to derive the
scattered intensity [i.e., Eq. (22)] from Eqs. (10) and (15)
is valid only if the electrical disorder does not influence
the dynamical properties of the system. In other words,
the obtained results will hold only for those media, if any,
which are ordered from a mechanical point of view but
electrically disordered. As a matter of fact this model can
be a good approximation in describing the translational
contribution of systems such as orientationally disordered
crystals and some mixed crystals, while it becomes unre-
alistic for amorphous solids and glasses. The calculation
of DILS spectra in the last classes of disordered media
requires a different approach because both electrical and
mechanical disorder, and their mutual correlation, need
to be taken inta account. ~

where T~p)(r) is the short-range dipole propagator:

(g) 1 [3p&yTp b~p] (26)

and R,'& (t) = EU(t) —K& (f). We wish to stress that for the
model system we want to treat, the DILS spectrum will

be entirely due to the derivatives of the induced term [the
second term in Eq. (25)]; these are site dependent even in

a mechanically perfect lattice if the bare polarizabilities
of the units are disordered (electrical disorder). As a
consequence, the quantity Q' p„(0) will be nonzero and

site dependent, and can be explicitly evaluated together
with its correlation function.

III. MODEL SYSTEMS A. Disordered cubic lattice of isotropic units

In this section we will apply the relation introduced in
the previous section to the calculation of both C p(k, y)
and C p(~) in the case of some simple systems. In order
to proceed we need to know the explicit dependence of
the effective molecular polarizability on the coordinates
of all the molecules of the system.

In general a number of dift'erent mechanisms (like
dipole induced dipole, overlap and exchange effects,
dipole-quadrupole interaction, dispersion forces, bond
polarizabilities, etc. ,

~s ~4) can contribute to the induced
polarizability in real systems. Among them, the dipole-
induced-dipole (DID) mechanism is always present and
it cannot be neglected being responsible, for example, for
the Lorentz-Lorenz relation. Because all of the previously
mentioned efFects can be formally treated like DID, in
the following we will restrict ourselves to the treatment

I

For the sake of simplicity and without loss of generality,
in the following we will consider a monatomic cubic Bra-
vais lattice with harmonic interaction potentials. ~s The
electrical disorder is produced by randomly assigning to
each atom a different isotropic, pointlike polarizability
0,', i.e., p'

&
——a'b p. From a mathematical point of view

the polarizability o.' is a random, spatially uncorrelated
variable with a site-dependent single-site probability dis-

tribution P(n'). The assumed lack of correlation among

the polarizability values at different sites implies that the
n-site joint probability distribution is given by

P(n)(~l 2 ~n) P(~&)
k=1

Using Eqs. (14), (17), and (25), Eq. (23) becomes

C p(k, g) =, ) ) ) (& o.'o.'o. 'n & —& cx & )
ij i+i rngj

x ) -r.
p (~").,(k, &)(.'"" —.*""')) .~.p', ( '-).;(k, x)( *"" — *"" )",

7 7
(28)
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(n)"P(n)dn .

Inserting Eq. (29) into (28) we have

C p(k, g) = —[M2 —(Mi) ] g p(k, g)

+—(Mi)'[M2 —(Mi)~]f p(k, y) (3I)

2

g p(k, y) = 8) sin
~ ~ ) T p (x')e~(k, y)

where T(pl (r') = —P'~V'pV'~(l/(r))].
The explicit evaluation of the configurational average( n'n&nin ) yields (see Appendix A)

)=(M ) +(M) [M —(Mi) ]

x(b;, +b; +b, (+b, )
+[M2 —(Mi) ] (~v~& +~ ~i&)

(29)
where M„are the moments of the single-site probability
distribution function:

both are proportional to ~k~2 near the Brillouin zone cen-
ter, they behave differently when k approaches the zone
boundary. A first idea of the ~ dependence of these two
terms in the high-~k~ region can be had by taking into
account only the effect of the nearest-neighbor atoms in
the sums of Eqs. (32) and (33). In this approximation,
because of the different periodicity of the argument of
the sine, g p(k, y) attains its maximum value at zone
boundary where f~p(k, y) is expected to have a mini-
mum. Therefore the u behavior produced by f p(k, y)
will show a cutoff frequency.

In order to evidence the relevance of the results ob-
tained we will erst restrict ourselves to a one-dimensional
system.

&. Analytic results for a linear chain of disordered
isoteric mnit8

In the case of a linear chain with only nearest-neighbor
longitudinal interaction (force constant 4), the radiation-
phonon coupling coefFicient C(cu) can be analytically eval-
uated as a function of phonon frequency.

The eigenvalues of such a system are

, (ka)~ (k) = &rosin &2) '

f p(k, g) = 4 ) sin(k x') ) T(p) (x')e~(k, y)

Note that the phonon-radiation coupling coefFicient nat-
urally splits into two terms, the first of which is propor-
tional to the square of the variance of the polarizability
distribution (Mq —(Mi) ), while the second to the vari-
ance itself multiplied by the squared mean polarizability
(Mi) . As expected, C p(k, y) vanishes for electrically
ordered systems [i.e. , M2 —(Mi) ].

It is worth noting that the two terms appearing in
C p(k, g) have a difFerent k dependence. Actually while

I

f(k) = —
i

—
i

sin2(ka),
9 (2'~' . ,
4 (a) (35)

(36)

and therefore

where ceo = 2(4im) i~2, and a is the nearest-neighbor dis-
tance. Phonons are always polarized along the chain, like
the incident and scattered electric field that we choose.
From Eqs. (32) and (33) and taking into account only
the DID contribution coming from the nearest neighbor,
we obtain

(2b' 9 ~ (kab
C(k) =

~

—
~ (Mg —(Mi) ) (Mi) sin (ka) + (M2 —(Mi) ) sill

gay 4N & 2&. (37)

From Eq. (34) it is easy to get

ka (cu(k) 5
sin (38)

f(k) = 9 —
I

1 —('"')' ( ("&)

Finally, C p(~) is given by

(~(k) 5 (~(k) 5
'

MO

Therefore we obtain

(39)

(40)

(2& 27
C p(~) =

~

—
i [Mg —(Mi)']

gay 2N

&~o)

+(Mg —(Mi) } i

—
i

&~0)
(42)
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P(n) = zb(a —n~) + (1 —z)6(o, —n~), (43)

and de6ning

0!~ + 0,'~
2

In this equation the disorder of the polarizability is
completely accounted for by (Mi) and [M2 —(Mt) ],
which represent the mean value of the polarizability and
the mean-squared polarizability Auctuation, respectively.
Thus Eq. (42) states that the u behavior of the phonon-
radiation coupling depends on the ratio between (Mi)2
and [M2 —(Mi) ].

It is interesting to consider the particular case of a sys-
tem where only two atomic species of polarizabilities o.~
and o.~ are present. Assuming z to be the concentration
of species A, the single-site probability distribution for
the polarizability may be written as

FIG. 1.
lattice.

t

1 2 3
FREQUENCY (arb. units)

Vibrational density of states for a simple cubic

(45)

we obtain

Mi ——a + (2z —1)An

Mg —(Mi)2 = 4z(1 —z)(An)2 . (47)

The maximum contribution to the spectrum due to
the polarizability fluctuation is then reached for x=0.5,
where

(M)' (n &'

M, -(M )2 .„ (48)
1 2 3

FREQUENCY (arb. units)

For some real inixed crystals (i.e. , those for which the
two diA'erent species can be reasonably treated from a
dynamical point of view as an average particleis) this
ratio largely exceeds unity (n~ n~). The behavior of
C(cu) is therefore dominated by the term which cuts the
density of states in the high-frequency range.

FIG. 2. g p(u) (see text) in two different scattering con-
figurations. Solid line: polarized configuration (VV). Broken
line: depolarized configuration (HV).

2. 1Vumerical results for a three dimensional -lattice

Since an analytical solution is impossible for the three-
dimensional simple cubic case, we carried out a numerical
computation for both f p(u) and g p(u) [whose defini-
tion in term of f p(k, y) and g p(k, y) is obvious, see
Eq. (24)] in a perfect lattice with disordered isotropic
polarizabilities. The calculation was performed by intro-
ducing only first neighbor stretching and bending force
constants, with a strength ratio of 3. A grid of about
3 x 10 points was used for sampling the irreducible part
of the Brillouin zone which, for the light-scattering prob-
lem we are considering, is 8 of the full zone. For each
k value, both eigenfrequencies and eigenvectors were cal-
culated and subsequently used to evaluate the scattering
coeKcients in Eqs. (32) and (33). In Fig. 1 the overall
density of states p(~) is shown, while in Figs. 2 and 3
we report the functions g p(u) and f p(u), respectively,

1 2 3
FREQUENCY (arb. units)

FIG. 3. f p(ur) (see text) in two dHferent scattering con-

figurations. Solid line: polarized configuration (VV). Broken
line: depolarized configuration (HV)
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in both polarized (UV) and depolarized (HV) scattering
configurations. Once the first and the second moments
M~ and M2 of the polarizability distribution are known,
the Raman scattering coefficient ( p(k, X) can be com-
pletely reconstructed following Eq. (31). In our calcu-
lation the DID contribution was truncated to the sec-
ond coordination shell; in fact, since the T p (r) tensor
rapidly decays with increasing the interatomic distance,
the contributions from more distant atoms are completely
negligible. The difFerence in shape between f p(u) and
g p(u), as well as their u dependence for different scatter-
ing configurations, clearly show that neither the spectral
shapes nor the depolarization ratios as a function of fre-

quency can be predicted if the details of the microscopic
mechanism involved in the polarizability modulation are
unknown.

B. Orientationally disordered crystals

For orientationally disordered crystals the electrical
disorder is due to the random orientation of anisotropic
molecules. Therefore in our model we assign to each site
of the perfect lattice an anisotropic polarizability tensor
p'

&
which is randomly oriented in space. The Raman

coupling coef5cient may be written as

~.p(kx) =,).):).) ) (& p.„p-,.e.„p',. &- & p.p &'~..~p.~..~p. )ij mgi le pv p'v'

X ) T(3) ( im) (k )( ik x ik-x,
) ) T( ) ( gi) (k )( -ik x~ -ik x~)

'y
y

(49)

Taking for simplicity a synmnetric-top molecule, the bare polarizability tensor may be written as

p'
p

—nb p + p'
p

——nb p + p(y' yp
—

s b p),

where y' is the unit vector parallel to the synimetry axis of the ith molecule, and a and P are the isotropic and
anisotropic parts of the polarizability, respectively. Considering that only the terms with m g i and 1 g j contribute
to the sums appearing in the expression for ( p(k, x), and that for fully uncorrelated molecular orientations the
relation

& PaPP&6 &—~ml & PaPPP6 & (51)

holds, we obtain

4I ~p~PvPap'~Pv' + & PaP + ~ap~pv~~pI ~pv'

= & (~~ i + P'„)(~&p. +Pp.)(~4„+P'„.)(~&p. + pp'„, ) & n4b„bp„b „,S—p. ,
''

~au~ p, ~aml & ppuppuI & +A 6 pb upbuji&jpappapl
2 2

+ pu aP il & PapPpu' & +~ ~ay'6p ~muj & ppu pap'
+(')ij~ml & Pal Pap'&& PpuPpu &. +&;l&~ & p „pp„&&pp„p „ (5S)

In terms of the molecular anisotropy we have

p2
& P p&6 &= —l~(~ ~~p6+~ 64~) —2~ p~ ~~p6]45

(53)

thus obtaining

4 2 2
+ap(k X) = ~ (45)2 g p(k, X) + — f'p(k, X),

i-'~(" &) = (~ —»-~)l-~(k, ~) + 3/f-(&, x)fey(&, x)

+ 2 (1+ ~ p) ) .[f &(k, X) + fp~(k, X)],

(55)

g-p(k x) = (5 —4b-p)g-p(k, x)+ —,'(1+ 4p)
x).b- (k x)+gp (k, x)]

+-(I+6 p)) g (k, x),

where and the functions fap(k, x) and gap(k, x) are defined in
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Eqs. (32) and (33).
Note that in this case also the phonon-radiation cou-

pling coeFicient splits into two terms, whose k depen-
dence is the same as for disordered crystals of isotropic
molecules. : The tensorial character of the polarizability
for anisotropic molecules produces a complicated ten-
sorial expression for f'p(k, y) and g' p(k, y), but their
weight in the spectrum will be again given by

and

n2P2
(Mg) [Mg —(Mi) ] = (58)

The relative weight of the two terms will be therefore
related to the ratio

IV. SUMMARY AND CONCLUSIONS

In this paper we have shown that the mode-radiation
coupling coeKcient for DILS spectra can be successfully
evaluated (without any empirical ansatz) once a micro-
scopic approach to the phenomenon is adopted.

The DILS contribution has been written in terms of the
induced molecular polarizability derivatives, i.e., quanti-
ties which can be site dependent even in topologically
perfect crystals because of the irregularity of some elec-
trical variables. In particular we have calculated the DID
contribution to the DII S spectra of a perfect lattice con-
sisting of scattering units bearing a random polarizabil-
ity. We have assumed that the polarizabilities of diA'erent

sites are completely uncorrelated and that this electrical
disorder does not inAuence the dynamics of the crystal.
We have found that under these hypotheses the coupling
coef6cient C p(k, y) strongly depends on the polarizabil-
ity distribution.

A general expression for C p(k, y) has been obtained
for two kind of polarizability, i.e. , (i) a perfect lattice con-
sisting of isotropic scatterers randomly distribuited on
the sites and (ii) a perfect lattice consisting of identical
anisotropic molecules randomly oriented in their equilib-
rium configurations.

In both cases C p(k, y) turns out to be a linear com-
bination of two functions which are very diA'erent in the
high-~k~ region. We have shown that the relative weigths
of these two terms depend on the square of the ratio
between the average polarizability and its fluctuation.
Therefore the coupling coefficients for a given (k, y) mode
can be determined only if the details of the polarizability
distribution are known.

The evaluation of the frequency-dependent coeKcient
has been analytically performed for a linear chain. For
a three-dimensional simple cubic crystal consisting of

(Mg)2 nl
Mg —(My)z P)

Since usually n ) P, the main contribution to the spec-
trum is expected to come from f' p(k, y) in the case of
orientationally disordered systems as well.

isotropic scatteres the calculation has been performed
numerically.

In the case of a one-dimensional lattice, Whal-
ley's results for orientationally disordered crystals [i.e. ,

C p(cu) oc u2] has been recovered in the limit of small
isotropic polarizabilities (n « P) which, nevertheless, is
unrealistic for an extended class of molecular solids. If,
on the contrary, n » P the behavior of C p(u) deviates
from Whalley's result because the contribution from the
high-frequency modes rapidly drops to zero.

In the case of isotropic disorder the two diA'erent be-
haviors (previously obtained for n « P and P « n) can
be achieved assuming 6 « Ao. or 6 )) Ao. , respectively.

We want to stress again that for real systems n )& P (or
n )& An) is the most common case, and that therefore a
falling down of C~p(u) at high u may be expected. This
behavior is similar to that found by Martin and Brenig5
by introducing a finite correlation length for the Auctu-
ating quantities. It is worth stressing that the drop of
the high-frequency part of the DILS spectra has been
obtained here without introducing any correlation be-
tween the disordered electrical variables. In other words,
the high-frequency shape of DILS spectra changes just
changing by the ratio (Mq) /M2, even if the microscopic
variable involved is completely uncorrelated.

This result is not produced by the particular induc-
tion mechanism we are considering, but rather from the
general structure of the induced term, which is a multi-
particle property and depends (assuming pairwise addi-
tivity) on the relative position of all pairs of molecules.
As a consequence, the correlation function appearing in
the general expression of C p(k, y) has a nonzero spatial
correlation length even in the absence of any microscopic
correlation. In the DID theory this is mathematically ex-
pressed by the presence of a four-site polarizability cor-
relation function in Eqs. ('28) and (51).

It follows that even in simple physical systems (like
those we have treated in this paper) one has to be very
careful in extracting information on the correlation prop-
erties of microscopic quantities (as, for example, molec-
ular orientations) from the DILS spectral shape.

APPENDIX A: EVALUATION OF
&n'n nn

In order to evaluate ( n o. o,3n4 ) the following prop-
erties of the single-site probability distribution have to be
taken into account:

P(n)dn = 1, P(ni, n2, . . . , n") =

Further we have defined the nth moment of the single-site
probability distribution as

M„= (n)"P(n)dn .
0

Therefore the configurational average & o. n o. o,

may be written as
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& = (Ml) (1 —bl2)(1 —bls)(1 —bl4)(1 —b23)(1 —b24)(l —b34)

+(Ml) M2[b12(1 b13)(1 b14)(1 b34) + bls(1 —bl2)(1 —bl4)(1 —b24)

+b14(1 b12)(1 b13)(1 —b23) + b23(1 —b2l)(1 —b24)(1 —bl4)

+b24(1 —b2l)(1 —b23)(l —bl3) + b34(1 —bsl)(1 —b32)(1 —bl2)]

+ l 3[b12b13(1 b14) + b12b14(1 b13) + blsbl4(1 bl2) + b23b24(1 —bl2)]

+(M2) [bl2b34(1 —bl3) + b13b24(1 —b12) + b14b23(1 —bl2)] + M4bl2bl3bl4

Remembering that in Eq. (28) only the terms with i g I and j g m will contribute, this reduces to

(Ml) (1 —b12)(1 —bl4)(1 —b23)(1 b34)

+(Ml) M2[b12(1 b14)(1 —b34) + bl4(1 —bl2)(1 —b23)

+b23(1 —bl2)(1 —bl4) + b34(1 —b23)(1 —bl2)] + (M2) (bl2b34 + bl4b23)

and finally trivial algebra yields

+—(Ml) + (Ml) [M2 (Ml) ](b12 + b14 + b23 + b34) + [(Ml) M2] (b12b34 + b14b23)
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