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We show that the Feynman path-integral formulation of the quantum many-body problem, when com-

bined with a quadratic trial action whose parameters are determined variationally, leads to a partition
function with a temperature- and volume-dependent ejective potential that can easily be evaluated by
the classical Monte Carlo method. This leads directly to reliable thermal properties of solids over a wide

range of volumes and temperatures. To demonstrate the power of this theory, we apply it to
Mie —Lennard-Jones crystals. We compare the results systematically with predictions of anharmonic

and self-consistent lattice dynamics as well as classical Monte Carlo calculations. The results of this

theory agree with the former ones, where they are applicable, for a wide range of volumes and from
T=O K to melting. This method should be regarded as an alternative to the quantum Monte Carlo ap-

proach for most quantum solids, since it is reliable and requires much less computer time.

I. INTRODUCTION

To calculate the thermodynamic properties of solids is
an old problem. Despite the development of a variety of
theories, it remains dificult to account for both quantum
effects and anharmonic vibrations. Lattice dynamical
theories, ' based on the expansion of atomic vibrations
about their equilibrium positions, generally are valid at
low temperatures, where these vibrations are small. They
fail at high temperatures when the atomic vibrations get
larger and larger and more anharmonic. To deal with the
large thermal anharmonic vibrations, one can use classi-
cal Monte Carlo (CMC) or molecular dynamics (MD)
techniques. Since CMC and MD are based on Newton's
laws, they cannot account for quantum effects. So they
are not applicable at low temperatures when quantum
effects become important. The relevant temperature here
is O~ (the Debye temperature) below which quantum
effects are important, and CMC and MD are no longer
reliable. With the Wigner expansion, CMC, for exam-
ple, can be applied down to temperatures around the De-
bye temperature. The Wigner expansion is in terms of
h/T, so it is clear that it cannot work at low tempera-
tures.

Thus we face the fact that, generally speaking, we have
theories for low temperatures and theories for high tem-
peratures, but we do not have one that works at all tem-
peratures. This temperature gap, where no theories
work, depends on the kind of material being studied.
Since perturbation theories work up to roughly half of
T (the melting temperature) and CMC is applicable
down to about OD, we can get a fairly good idea of the
gap for a specific material by looking at its T and OD.
If T is very large compared with OD, then the gap is
very small and existing theories will overlap. On the oth-
er hand, if T is comparable with OD or in some cases it

is even less than OD, then there is a big gap.
Of course, self-consistent lattice dynamical theories

were formulated to remedy the deficiencies of lattice dy-
namics based on perturbation theory. These theories are
particularly useful at low temperatures, T & OD. Howev-
er, in this regime the reliability of self-consistent theories
is hard to assay and they become rapidly more complicat-
ed when pushed to higher orders. The present paper will
give information on the reliability of one version of self-
consistent lattice dynamics, namely, the improved self-
consistent theory (ISC).

It is clearly desirable to have a theory that works quan-
titatively at all temperatures. Such a theory must ac-
count for quantum effects at low temperatures as well as
large thermal vibrations at high temperatures. We be-
lieve the recently proposed effective potential method ' is
a very promising candidate. This method is based on the
Feynman variational path-integral theory. The Feynman
path-integral form of the partition function is approxi-
mated by replacing the true action by a trial action. The
trial action is of a quadratic form, so the path integration
can be carried out analytically. The parameters in the
trial action are then determined variationally using the
well-known Feynman- Jensen inequality. The path-
integral form of the partition function then reduces to a
classical partition function with the potential replaced by
a temperature- and volume-dependent effective potential.
This effective potential method has been applied to spe-
cial problems, mostly particular cases of one-dimensional
systems. For this approach to be generally accepted, it
is necessary to show that it is reliable for a wide variety of
solids. This paper should be regarded as a step in that
direction.

We have recently extended the effective potential
method to a realistic three-dimensional solid. ' Coupling
this new method with the CMC technique, we calculated
thermodynamic properties of solid Ar in order to investi-
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gate whether the efFective potential method does indeed
work at all temperatures for a realistic three-dimensional
solid. In this paper, we will study the thermal properties
of Mie —Lennard-Jones (MLJ) solids in parameters ap-
propriate to all inert gas solids (except solid He) in a sys-
tematic way. For the MLJ crystals there are many accu-
rate numerical results of earlier theories available at high
and low temperatures to provide a reliable check on our
systematic calculations. We are well aware of the fact
that reliable potentials describing the inert gas solids ex-
ist. But, before using these in our theory, we felt that we
must be sure of its quantitative accuracy by making con-
tact with corresponding earlier work. Also, from heavy
solids such as Xe to the light members such as Ne, inert
gas solids show a variety of quantum efFects. We believe
they provide an ideal system for which we can test the
effective potential method.

In Sec. II, we will present the variational path-integral
theory for a three-dimensional system. In Sec. III, we
give the results for inert gas solids described by a
nearest-neighbor MLJ potential.

II. THEORY

Since the full three-dimensional theory used in this pa-
per has not been presented in its complete generality, we
present a summary here. We start with the Feynman
path-integral form of the partition function

N
Z=e ~~= ~Dr u el

with r(u)=Ir, (u), r2(u), . . . , r&(u)], P=1/k2) T, where
N is the number of atoms. The action S for a given po-
tential is

p~S[r(u)]=f g —,'mr;(u)+ V(r(u)) du .
0

The integration variable u has the dimension of time. We
use the following three-dimensional trial action,

N

So[r(u)]= f g —,'mr;(u)+ W(r)+ —,
' g [r, (u) —r;] [r (u) —r ]0; (r) du,

i=1 i j =1
(3)

with r—= Ir„r2, . . . , r&], where r, is the average point
over each path so that

f3'r;= f r (u)du .
0

(4)

In Eq. (3), W(r) is the potential at the average point of
the path and Q(r) is a symmetric N XXmatrix. Both are
to be determined by the variational method. The last
sum in Eq. (3) is not of the most general form possible,
but has the advantage of simplicity in that each interac-
tion is described by a single parameter. According to Eq.
(3), a particle oscillates around the average point of its
path in a harmonic way. This is a major improvement

I

over Feynman's original approximation, in which he
neglected the last sum in Eq. (3). It is clear that our ap-
proximation will become better and better as the temper-
ature increases. At high temperature, a particle has little
"time(ph )" to travel, it can only oscillate around the
average point of its path.

Since 0,. is a symmetric matrix, it can be diagonalized
by an orthogonal matrix. Let U be such a matrix. One
then has,

—1 2
ai +jj Ujb I~a~ah

where men, are the eigenvalues of Q.
After carrying out the path integral, we find

Z0=e = Dr; ue

f —)3W(-) m

2mPfi sinhf;(r)

and

1—(S —So)0= f + Dr,.(u)(S —So)e
i=)

So[r(u) j

N—Plv(r) ~ d 3r
2vrPA sinhf;(r)
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where

N
K(r)= f V(U q+r)g d g;

j =] &EX.

—g; /~;(r)
(8)

In Eqs. (6), (7), and (8), we have used the abbreviations

L
OO D;.K(r)= —g g b, ' 'u(r, —r ),

2 L=OL';~, . 2
(18)

where 6' ' is the I.th power of the Laplacian operator.
The quantum renormalization factor D, is defined to be

and

f, = —,'pRco;, (9) , &k
D'j(r) X ( Uki Ukj )

k=1
(19)

a, = (cothf, —IIf, ) .
2m;

The Feynman-Jensen inequality tells us that

F &F,+ (S ——S, ), .1

(10)

The unknown parameters in Eq. (3) will be determined
by minimizing the right-hand side of Eq. (11). Since the
matrix 9 is determined by its eigenvalues and the U ma-
trix, varying the matrix Q is equivalent to varying co, and
U,b.

From

It is very dificult to solve the self-consistent equations
(15), (16), (18), and (19) because they depend on the
configurations of particles which are changing constantly.
However, as long as the quantum Auctuations, as mea-
sured by the quantum renormalization factor D, , are
small, one can expand these self-consistent equations
around the equilibrium configurations. The validity of
this kind of expansion will be discussed quantitatively
later.

Let d„be the distance between the nth neighbor parti-
cles at their equilibrium positions, h„ the number of the
nth neighbors per particle. Then we find, at the equilibri-
um positions,

5 1Fo+ —(S —So) =0,
5IV(r) P

Dn—X~, X
L=0 '

n

"v (d„)(h„b„; ), — .(20)

one finds

N

IV(r)=E(r) — g a;f;
p iii

This leads to (S —So )o
=0, and

Z, = f e '"' g d'r-,
2~piri

with

3/2

(12)

(13)

where b„; stands for the condition that particles a and b
are the nth neighbors. For a one-dimensional chain, for
example, one would have h& =2, b&; =6; +&+6,
etc.

The solution of the self-consistent equations (15), (19),
and (20) depends on the specific structure of the solid.
Here, we will solve them for the fcc lattice, which is the
structure of inert gas solids. The solution of these self-
consistent equations in the case of all-neighbor interac-
tions is presented in the Appendix. For a potential in-
volving nearest-neighbor interactions only, we find

3m ~ 3
V,a(r) =K(r) — g a;f; —g ln— D = ', , f f f [G(k)cothG(k) —1]d k,

2Pb, u (d)y'~'

(21)

Notice that Zo has the classical form with the potential
V replaced by an effective potential, V,z. Finding the
minimum of V,z with respect to co, and U,b, one gets,
after some algebra,

where

G (k) =APy&bu (d)/m [1—
—,'(coskicosk2+coskzcosk3

+cosk, cosk3) j', (22)

T 12m
Uai +ij j b 2 ~a ~ab

where

&;, =V;V.K(r) .

(15) and

(16)

L

g(L+1!u (d)
bv(d) z 0 L! 2

(23)

V(r)= —,
' g u(r, —r ) .

lWJ

For this potential, we find

(17)

So far, our formalism has been very general in the
sense that we did not put any restriction on the interac-
tions between particles. To simplify matters, we will now
assume the potential has the two-body form

The nearest-neighbor distance d is adjusted to give the
appropriate pressure for the system. The expression (22)
for G(k) is essentially an eigenvalue of the dynamical
matrix for nearest-neighbor interactions in the fcc lattice,
except that the trial action used in our theory is
equivalent to using a single force constant for each in-
teraction.

As in the one-dimensiona1 case, once the solution of
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where

v,~(r' —r )=
L,

D
2

(24}

x[6.' 'u(r; —r ) Lb, ' '—u(d)]. (25)

This effective potential is fully consistent up to terms of
order D . The usefulness of the expansion of Eqs. (23)
and (25) in terms of D, of course, depends on how large D
is. More specifically, the higher-order terms must be
small compared with the 1ower-order ones. For example,
taking the ratio of the second term in Eq. (23) to the first
term, one gets the so-called Ginzburg parameter

1 6 u(d)
2 b,v(d)

If G is very small compared to 1, one needs only keep the
first term in Eqs. (23) and (25). The resulting effective po-
tential is the first-order effective potential. For a larger
G, or higher accuracy, one then has to keep the second
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the self-consistent equations is found for the equilibrium
configurations (an fcc lattice, in our case), one can calcu-
late the first-order corrections to the eigenvalues and ex-
pand the effective potential in terms of the quantum re-
normalization factor D. The result is

V,'(r) =—g [u(r, —rj)+ v,~(r' —r, )]-=1
lWJ

3X ~ " ~ sinhG(k}
p~3 o o o G(k)

term in Eqs. (23) and (25). The resulting efFective poten-
tial is called the second-order effective potential. It is
clear that for the effective potential method to work, the
parameter G must be less than 1. For inert gas solids, it
varies from very small in the case of Xe to quite large in
the case of Ne. For He, G is about 2 and so the present
formalism is not suitable for that case. We plan to treat
He in a separate paper. In particular, we can avoid the
series expansion by using a numerical integration tech-
nique. The parameter G for Ar and Ne is plotted in Fig.
1. In general, G decreases with increasing temperature,
so the effective potential method works better and better
as the temperature rises. At high temperatures, the first
term of the Wigner expansion is recovered in this theory.
At the highest temperatures, the particles have no "time"
to travel at all, they must stay on their classical trajec-
tories. The quantum fiuctuations are then zero (D =0)
and we go back to the classical case, V,z= V. So the
effective potential method is guaranteed to work at tem-
peratures around the Debye temperature and above.
Whether it can be usefully applied at lower temperatures
depends on the size of the quantum effects in the system.
As we will see in the next section, for solids with
moderate quantum effects, the effective potential method
is reliable at all temperatures!

III. DISCUSSIQN QF THE RESULTS FOR MI.J SOI-IDS

Since Eq. (13) is of the classical form, one can use trad-
itional classical techniques to calculate equilibrium prop-
erties. In the following, we will use the CMC technique"
to calculate thermodynamic properties for a nearest-
neighbor MLJ model of solid Xe, Kr, Ar, and Ne (the
neon isotope). Modifications are made to account for the
temperature and volume dependence of the effective po-
tential. A feature of the self-consistency requirement of
the effective potential method is that the effective poten-
tial must be redetermined for each temperature and each
nearest-neighbor distance.

We shall use a nearest-neighbor MLJ(12-6) potential,
12 ' 6

u(r) =4e (26)
r r

The quantum effects for inert gas solids are then mea-
sured by a single parameter, the de Boer parameter,
a=A'/o ~mE. We list values of a along with other data
for inert gas solids in Table I.

When studying MLJ solids, it is convenient to express

TABLE I. MLJ potential parameters for the inert gas solids.
All data are taken from Horton (Ref. 12) except for the neon
isotope in which case we use the same parameters as the ones
used in Ref. 5.

c(10 ' erg)

TEMPERATURE k)3T/E
FIG. 1. The Ginsburg parameters as a function of tempera-

ture for solid Ar and Ne (solid line).

Xe
Kr
Ar

zzNe

0.008 73
0.013 93
0.025 51
0.076 09

452.55
325.2
235.95

72.09

3.8469
3.5600
3.3043
2.7012
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all physical quantities in reduced units. From now on, we
will express the temperature t in units of e/kz, internal
energy per atom E in units of c, distance d in units of o.,
pressure P in units of e lo. and heat capacity per atom C„
in units of kz. That leaves the de Boer parameter as the
one species specific quantity in the formalism. The
Monte Carlo calculations were done for a sample of 108
atoms with periodic boundary conditions. At each tem-
perature, we carry out at a Monte Carlo run of 4.2 mil-
lion configurations. The first 0.2 million moves were used
to warm up the solids. They were then discarded. The
remaining 4 million moves were then broken into 20
blocks to enable us to estimate statistical uncertainties.
At each temperature, the nearest-neighbor distance is ad-
justed until the pressure, in reduced units, is less than
0.01. Based on the isothermal compressibility data for
these solids and our test runs, the nearest-neighbor dis-
tance given here should be within 0.02% of its value at
absolute zero pressure in the worst case. Our results for
the nearest-neighbor distance d, for internal energy per
atom E and the heat capacity per atom C„, for the inert
gas solids are shown in Figs. 2—7, and listed in Table II.
For the heat capacity, the error bars in the figures corre-
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—4.5

—5.0

—5.5

II

—6.0

—4.5

—5.0

—5.5
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0.1 0.2 0.3 0.5
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1.15

TEMPERATURE kpT/E
FIG. 3. Internal energies per atom as a function of tempera-

ture for solid Xe, Kr, and Ar. Other notation as in Fig. 2.
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FIG. 2. Nearest-neighbor distances as a function of tempera-
ture for solid Xe, Kr, and Ar. The upper dashed lines corre-
spond to perturbation theory to order A, . The lower dashed
lines correspond to perturbation theory to order A, . The solid
lines correspond to smoothed CMC results. The points are the
results of the first-order effective potential method. The crosses
are results of the second-order effective potential.
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FIG. 4. Heat capacities per atom as a function of temperture

for solid Xe, Kr, and Ar. Other notation as in Fig. 2.
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d)
d2

d3

1.127 34
1.127 32
1.127 32

1.13030
1.13026
1.13026

Ar

1.13708
1.13695
1.13692

e

1.170 36
1.16901
1.168 35

TABLE III. Results of the eff'ective potential methods at
zero degrees. d& and d2 are the nearest-neighbor distances cor-
responding to the first and the second-order effective potential,
respectively. d3 is the nearest-neighbor distance calculated by
using the effective potential with the third terms of Eqs. (23) and
(25) included. Ej, E2, and E3 are the corresponding internal en-
ergies per atom. All distances and energies are expressed in the
reduced units.

/

/

/

/

/
/

/

/

/ /

/
X

/
/

I

—5.808 9
—5.805 9
—5.805 8

—5.698 8
—5.691 1
—5.690 8

—5.463 7
—5.438 4
—5.437 0

—4.596 7
—4.395 4
—4.367 6

(I

4 4 )~—
X

spond to one standard deviation. For the internal energy,
the statistical uncertainties are much smaller than the
size of the symbols. Though not shown in these figures,
the CMC results' for the heat capacity have statistical
uncertainties of about the same magnitude of those of the
eA'ective potential results.

E6'ective potential results at zero degrees are listed in
Table III. These results are directly determined from the

I»[« I I [» II
I

I

0 0. 1 0.2 0.3 0.4 0.5

TEMPERATURE kpT/E
FIG. 6. Internal energy per atom as a function of tempera-

ture for solid Ne. The upper dashed and lower dashed lines
are smoothed results of the second- and the first-order effective
potential method with the actual data shown as crosses and
points. The open circle is the result of the effective potential
method with the third terms of Eqs. (23) and (25) included.

2 ~ 5 I I I I

[

I I I I

I

I I I I

I

» I I I I I

[

1.18

1.5

1.0

] g I I I I I I I I I I I I I I I I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5
0.5

TEMPERATURE k~T/p
FIG». 5. Nearest-neighbor distance as a function of temper-

ture for solid 2Ne. The points and crosses are the results of the
first- and second-order effective potential method, respectively.
The open circle is the result of the effective potential method
with the third terms of Eqs. (23) and (25) included. The solid
line is the ISC result (Ref. 5).

0.0
0 0.1 0.2 0.4 0.5

TEMPERATURE kpT/E

FIG. 7. Heat capacity per atom as a function of temperature
for solid Ne. Other notation as in Fig. 5.
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effective potential at T=O. By comparing results of
effective potentials of different orders, one can check the
validity of the effective potential method. For example, if
the corrections due to the second-order effective potential
to the first-order one are small, the effective potential
method is reliable. To estimate higher-order corrections,
we include the third terms of Eqs. (23) and (25). Though
these third terms are not fully consistent, they should
give a good indication how important the third- and
higher-order effective potential is. We now discuss each
of the inert gas solid results individually.

A. Solid Xe and Kr

Among the inert gas solids, solid Xe and Kr show the
smallest quantum effect. One would certainly expect the
effective potential method to be very reliable for them.
Our theory agrees remarkably well with the perturbation
theory' at low temperatures. Based on temperatures at
which the different orders of the perturbation theory
diverge, the perturbation theory should be reliable up to
a reduced temperature of about 0.2. Our theory also
agrees with CMC at high temperatures. This is no
surprise since our theory contains the CMC formalism
exactly, as well as the leading quantum correction to it.
The present results show that solid Xe becomes classical
at about t =0.3 and solid Kr does so at about t =0.4.
From Table III one can see that corrections due to
second- and higher-order effective potentials are negligi-
ble. The Ginzburg parameters, G, are very small for
these two solids. Overall, we conclude that the theory ac-
counts reliably for the thermal properties of these solids.

B. Solid Ar

Solid Ar exhibits moderate quantum effects. From
Figs. 2 —4, one can see very small corrections due to the
second-order effective potential. Our theory, once again,
agrees very well with the perturbation theory' results
under conditions where they are reliable (t ~0.2). At
very high temperature, our theory, as expected, ap-
proaches the CMC results. There is a small difference be-
tween the present theory and CMC at high temperatures.
This is due to the fact that near the melting temperature,
there are still some quantum effects present. This is un-
derstandable since for solid Ar, the Debye temperature is
abont the same as the melting temperature.

From Table III, one can see that the third- or higher-
order corrections are negligible for Ar. As shown in Fig.
1, the parameter G is about 0.2 at t =0. The ratio of the
third term of Eq. (23) to the second term at t =0, is, how-
ever, 0.018. This also means that higher-order correc-
tions are not important.

C. Solid 22Ne

Solid Ne has such large zero-point vibrations that
theories based on a perturbation expansion diverge even
at zero degrees. The improved self-consistent (ISC)
theory was used to account for such large zero-point vi-

brations. It is not clear, however, how reliable ISC really
is. The big difference between the second- and the first-
order effective potential also reAects the fact that solid
Ne exhibits large quantum effects, as one can see from
Fig. 1, the parameter G is quite large (6 =0.7, at t =0).
However, the ratio of the third term of Eq. (23) to the
second term is 0.19, at t =0. This suggests that the
third-order correction for Ne is of the same order as the
second-order corrections for Ar. The third-order results
at t =0 also show this. The first-order effective potential
actually gives a large negative thermal expansion at very
low temperature. The situation is much improved by the
second-order corrections. Though we do not have the
fully consistent third- and higher-order effective poten-
tials, we believe that will add a small correction to elimi-
nate this problem, as Fig. 5 indicates. Thus, we believe,
the second-order results for Ne are quite reliable, espe-
cially at high temperatures. In comparison with ISC, our
present theory gives about the same heat capacity, but
somewhat larger nearest-neighbor distances.

It is also clear from studying solid Ne that the effective
potential method will become unreliable for systems with
larger quantum effects such as solid He. Further
refinements are needed.

To summarize, the theory presented in this paper ac-
counts reliably both for quantum effects and large
thermal vibrations. It is reliable at all temperatures for
systems with a large range of quantum effects. Since
most solids are of this kind, we believe the effective po-
tential method will have wide applications and offer an
advantageous alternative to the quantum Monte Carlo
(QMC) approach for these solids. This is important, be-
cause, using QMC to obtain reliable values of higher-
order derivatives of the free energy, such as the heat
capacity, has proved to be very dificult. ' ' On the oth-
er hand, more work needs to be done to make the
effective potential method applicable to systems with very
large quantum effects, such as solid He.
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APPENDIX: SOLUTION OF THE SELF-CONSISTENT
EQUATIONS

The key point is to find an orthogonal matrix U to di-
agonalize Eq. (20). We will use three indexes (i„i2,i3) =i
to label the ith atom positioned at i&a&+ i2a2+i3a3,
where a&, a2, and a2 are the three base vectors. For an fcc
lattice, one has a, =(d/ /2)(1, 1,0),a&=(d/&2)(1, 0, 1)
and a&=(d/V2)(0, 1, 1), where d is the nearest-neighbor
distance. The condition that the ith and the jth atoms
are the nearest neighbors is
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1, /, J I(,J)+ l2J2 l3J3 l2 J +1 l J) l3J3 l3,J3+1 I)JI l2J'2

J 1 l J l J I J 1 i J l J I J 1 I J l J

+~i&,ji+l~i2, j2 —i~i& j3+~i&,ji —l~i2,j2+l~i3j3+~iij i~i2, j2+l~i3, j3 —i

+~ii jinni&j 2
—i~i 3j3,+ i+

alii,

ji+ i~i&j &~&3,j3 —i+

alii,

ji —l~i2 j2~i3,j3+ i

The question now becomes to find the U matrix which diagonalizes Eq. (Al). The answer is

Uj —
U'i~2I3 JiJ2J3 UIi J2J UI2 J&J3 UI3 JIJ2

where

(Al)

(A2)

U-'I JZ J3

' 1/2
2 2~ii(jz+j3)

2M+1 2M+1
1/2

i1=0

—M &i1& —1

(A3)

1/2
2 2vri2(J3+J'i )

1&i &M
2M+1 2M +1

1/2
2vriz( J3+J i )

2M+1 '" 2M+1
1/2

—M&i2& —1

U.
'2~J3Ji

1

2M+1 i2=0 (A4)

1/2
277l2( J3+j, )

SIIl2M+1 2M+1

1/2
2 2'ir'3(Ji+J2)

2M+1 2M+1
1/2

—M&i3& —1

U.
~3'J1J2

1

2M+1

2M+1

i3=0
' 1/2

2vri3( j,+j~ )
sm 1&i &M

2M+1

(A5)

In Eq. (A2), means the direct product and the number of atoms X =(2M +1) . In the continuous limit, M will be
taken to be infinite. It is easy to check that the U matrix given by Eq. (A2) is orthogonal and it diagonalizes Eq. (Al).
The result is

U„i(Jii bi, , )Uk& 12Q—(k)5„„, ,

where

2mk1 2mk2 2mk2 2wk3
k =1——cos COS +COS

3 2M+1, 2M+1 2M+1 2M+1
2~k1 2~k3+COS 2M+1 2M+1

Substituting Eq. (A2) into Eqs. (1S) and (19), one gets

2
'L

f 2 —i g2(k) y g(I. +i) (d)
tn L 0 Lf 2

(A7)

(AS)
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and

D (d) =—g a„g (k) . (A9)

In the continuous limit M~ ~, the summations over k will be replaced by integration. One then gets Eqs. (21) and
(22).

The U matrix given by Eq. (A2) can actually diagonalize all b„;l at the same time. Let n, =j, i „—nz =j2 —i2, and

n2 =j3 —i 3. For a potential involving all-neighbor interactions, we then fj.nd
I.

h~ ~ 1 D„
OI.

(A10)

For an fcc lattice, we have

Q„(k)=1— g cos
1

(, , )

2m(n2+ n 3 )k,
2M+1

2m(n, +n3)kz
2M+1

2m(n
&
+n2 )k3

235 +1 (A 1 1)

and
N

D„=—y a„g„'(k) .
k=1

(A12)

In Eq. (Al 1), the summation is over all the nth-neighbor atoms.
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