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Using a method of integration over commuting and anticommuting variables, we study the
motion of noninteracting electrons in a system with short-range disorder and in a strong magnetic
field. An explicit calculation shows that the static conductivities cr, and o.

~ vanish if the Fermi
energy is situated in the lower tail of the lowest Landau level. At the same time, the Hall resistivity

p ~ remains finite, although the longitudinal resistivity diverges. These results are valid both for
two-dimensional (2D) and for 3D systems. We compare our theoretical findings with experiments
on magnetic-field-induced metal-insulator transitions in 3D systems. Furthermore, the result for
the Hali conductivity of 2D systems is generalized to higher localization regions in order to study
the deformation of the Hall plateaus in microwave experiments on GaAs-Al Gal „As heterostruc-
tures.

I. INTRODUCTION

In the present work, we intend to give a complete ac-
count of our recent work on the low-frequency asymptot-
ics of the Kubo conductivities of an electron gas subject
to disorder and a strong magnetic field. In previous arti-
cles' we focused our attention on the application of the
theoretical results to experiments, whereas, in the follow-
ing, emphasis will be put on a comprehensive presenta-
tion of our method.

The motivation of the present investigation has been
threefold. In a recent experiment, Hopkins et al. stud-
ied the behavior of the resistivities in a three-dimensional
(3D) system of uncompensated degenerately doped Ge:Sb
slightly above the critical concentration as a function of
the magnetic field. Increasing the magnetic field beyond
4 T, they observed an increase of p „by about 3 orders of
magnitude whereas the Hall coeScient changed only by a
factor of 2 —4.

This phenomenon cannot be explained by the expected
magnetic freezing out because this would imply a simul-
taneous reduction of the apparent carrier concentration
and thus a drastic increase of the Hall coefFicient. Hop-
kins et al. conjectured that some magnetic-field-induced
localization mechanism might be involved.

One would be inclined to assume that the observed
transition occurs when the lowest Landau level (LLL)
crosses the Fermi energy but we are not able to describe
the critical behavior near the transition. However, an ex-
plicit analytical calculation of kinetic coefticients far from
the transition in the lower tail of the disorder-broadened
density of states (DOS) is possible. This region can be
reached experimentally, provided that the magnetic field
is strong enough. In this field range, there are no extend-
ed states below the Fermi energy and thus the longitudi-
nal and the Hall dc conductivity vanish simultaneously.
However, any conclusion concerning the resistivities is

more difticult. Since the dc resistivities are obtained by
an inversion of the conductivity tensor, we have to con-
sider finite frequencies co first —a direct inversion of the
dc-conductivity tensor which vanishes in the localization
regime is mathematically undefined. Only afterwards
may the limit cubo be performed in order to obtain the
dc resistivities. We will see that the energy scale on
which m is assumed to be small when referring to the
low-frequency asymptotics is determined by the
disorder-induced level broadening.

It will be shown below that, in the energy region under
consideration, the leading term of the longitudinal con-
ductivity o. is proportional to i~, which is just the
characteristic of an insulator or dielectric having a finite
static polarizability. At the same time, the Hall conduc-
tivity in the low-frequency limit is proportional to co .
From this proportionality it follows immediately that, al-
though the longitudinal dc resistivity p„diverges, the
Hall resistivity p remains finite as m~O.

In the metallic region far from the transition where the
classical Boltzmann equation is app1icable, the finiteness
of the Hall resistivity is guaranteed by the well-known
formula p = B /en. In contrast to—the Drude formulas
for the conductivities, this result is independent of the
disorder parameter. One could formally even consider
the limit of vanishing relaxation time ~ without changing
the result for the Hall resistivity. However, here we con-
sider the ultra-quantum-mechanical limit where the
Boltzmann equation cannot be used. We indeed obtain a
finite p„„but our result difI'ers from the above one. Let us
emphasize that the finiteness of the Hall resistivity in the
case under consideration is not related to the existence of
edge states because they exist only if there is at least one
Landau level (LL) below the Fermi energy.

The low-frequency behavior of the Hall conductivity in
a 2D electron gas (EG) obtained in the present work can
be also useful to understand phenomena related to the
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quantum Hall effect (QHE). This question leads us to
another set of experiments, i.e., to transmission measure-
ments of GaAs-Al Ga

&
„As heterostructures in mi-

crowave waveguides ' which indicate that Hall plateaus
persist up to frequencies above 30 GHz. Nevertheless,
the width of the plateaus decreases with increasing fre-
quency and they seem to develop a finite slope. Until
now, the QHE at finite frequencies has only been dis-
cussed qualitatively in the percolation limit (cf. Ref. 6).
Using our approach, we can study the deformation of the
Hall plateaus quantitatively. Of course, in the static limit
co —+0 we obtain exact quantization of the Hall conduc-
tivity.

The method we will use to determine the Kubo con-
ductivities is the calculation of functional integrals in su-
per symmetric representation near nontrivial saddle
points (instantons). This technique has been applied by
Aleck in the calculation of the tails of the DOS of a 2D
EG in the disorder-broadened LLL. However, this ap-
proach did not reveal any new physics since the exact re-
sult for the DOS in the one-band model had already been
obtained by Wegner (see also, Ref. 9). The advantage of
the integration around instantons is that, in contrast to
the procedure yielding the exact solution, it may be ap-
plied not only to a one-particle Green's function but is
especially suitable for the averaged product of n retarded
(advanced) Green's functions which will turn out to be
important in the subsequent calculations. Our third
motivation was thus to apply and to generalize this
method to the calculation of kinetic coefFicients.

The article is organized as follows. In Sec. II we will
introduce the basic notations of our model and define the
quantities to be calculated subsequently in terms of super-
symmetric functional integrals. The purpose of Sec. III is
mainly didactical since we rephrase Ameck s saddle-point
method for the calculation of the density of states. In
Sec. IV we calculate the leading terms of the low-
frequency expansion of the Kubo conductivities. In Sec.
V we relate our theoretical results to the above-
mentioned experiments.

II. THE MODEL

We consider noninteracting electrons in two and three
dimensions under the inhuence of a perpendicular mag-
netic field 8, i.e., a system described by the one-particle
Hamiltonian

H =H0+ V(r),

where

HD (p —e A), A= —,'8( —y, x, 0) .
2f7l

(2.1)

With a white-noise random potential V, i.e., it has the
averages

V(r) =0, V(r, ) V(rz) =A5(r, —rz) . (2.2)

p(E) = ——ImG (r, r;E),1
(2.3)

kinetic quantities depend, in general, on higher-order
correlation functions. We want to calculate the
frequency-dependent Kubo conductivities, ' i.e.,

cr„(co)=/3f e' ' "'(j;j„(t))dt, (2 4)

where we have used the Kubo scalar product

( A;8 ) =P 'Tr f pA(itic)B dA,

with P '=kti T . (2.S)

In terms of retarded and advanced Green's functions G —,
the zero-temperature conductivities can be expressed
equivalently by the relation"

The magnetic field is assumed to be strong in the sense
that the disorder-induced broadening of the LL's is small
compared with the Landau-level distance

Whereas the density of states p(E) can be expressed in
terms of the averaged retarded and advanced Green's
function 6—,i.-.,

o.„(co)= . [y„,( —co) —y„„(0)],1

y„(co)= . fdE f (E)Tr[v„[G+(E)—6 (E)]u G (E+co)—u„G+(E co)v [6+(E—) —6 (E)]],2~t V

which is equivalent to the more compact formulation'

(2.6)

o„(co)= —f dE f (E)Tr[u„[G (E)—6+(E)]v 6 (E —co)G (E)

—u„G+(E +co)6+(E)u,[6 (E)—6+(E)]J .

Equation (2.7) is most convenient for the calculation of the conductivities in the metallic region. However, in the locali-
zation regime in which we are going to work, the coordinate representation is more convenient. For this purpose we
use the equation of motion for the velocities

u„=i[H, r„]
in the form

(2.8)

6 (z)v„G(z') =i [G (z)r„rG (z')+—(z —z')G(z)r„G (z') ] . (2.9)
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For any finite frequency co, a repeated use of Eq. (2.9) in the velocity-velocity correlation function of Eq. (2.7) yields

2

cT&,(co)= jjjr, (r& —r„')[[f(E) f (—E —co) jG+(r, r';E)6 (r', r;E —co)

+f (E)[6+(r,r';E+co)6+(r', r;E) G—(r, r';E)G (r', r;E —co)][dr dr'dE .

(2.10)

Shifting the energy argument of the above integral by +co/2, the frequency-dependent conductivities can be decom-
posed into two contributions

~„(co)=o „',](co)+~„'+'(co),

where

(2.1 1)

'+'( ) (
'

) K'+'( ' E )d d 'dE
P& 4~@ & P P

CO

(2.12)

the first of which —in the limit co~0—is determined by states near the Fermi surface only, whereas for the calculation
of 0' ' one has to integrate over all states below the Fermi energy, i.e.,

K' '(r, r';E, co) =26+(r, r', E+co/2)G (r', r;E —co/2) —6+(r, r';E+co/2)6+(r', r;E co/2—)

—G (r, r', E+co/2)G (r', r;E —co/2),

K'+'(r, r';E, co) =6+(r, r'E +co/2)6+(r', r;E —co/2) —6 (r, r';E+co/2)6 (r', r;E —co/2),
(2.13)

where we have adopted units in which ]]]=1, V denotes the volume, and f is the Fermi function.
In principle, it is possible to give the functional-integral representation of the kernels K' —' and to calculate the corre-

sponding conductivities straightforwardly. However, since we are mainly interested in the low-frequency asymptotics,
it is more convenient to perform the cu expansion first in those quantities which are analytic near m=0. This is the case
for the kernel K'+' which, up to linear order in co, reads

K'+'(r, r', E,co) =2iIz(r, r';E)+co jIz(r, r', r;E)dr+0(co )

with

(2.14)

Iz(r„rz,'E) =ImG+(r„rz;E)6 (rz, r„'E),

I3(rl lz 13 E)=Re[G+(r] rz E)6 (rz 13', E)G (r»r]'E) (rz~r3))
(2.15)

To leading order, the low-frequency expansion of the energy integral contributions to the longitudinal conductivity thus
yields

o'+'(co) = jjjf (E)(x, —x, )'Iz(r„rz, E)dr] drz dE .
2+V

(2.16)

S]nce Iz(r, r';E) is symmetric with respect to interchanging r~r' and is rotationally invariant in the x,y plane, as will be
shown below, it can only contribute to o'~~ ' but not to o'+'. The first nonvanishing contribution to o'„+' thus comes

3 ( ]y rzy r3y E), which changes its sign when any two of the spacial arguments r, ~r, i &j, are interchanged. Using
this property we can write

jj jx](y] —yz)I3(r] rz r3 E)d]] d]zdr3 3 jj j~(r] rz r3)I3(r] rz r3 E)d]]drzd]. 3,
where

A(r„rz, r3) =
—,
' (r, X rz+rz X r3 3 X r, ),

(2.17)

(2.18)

denotes the oriented area of the triangle spanned by r&, r2, r3. Consequently, the leading term of the low-frequency ex-
pansion of the Hall-conductivity contribution o'„+' reads

o'„+'(co)= jjjf (E)b,(r„rz, r3)I3(r„rz, r3;E)dr] drz dr3 dE .
6~V

(2.19)

In the tails of DOS, i.e., in the region where p(E) is ex-
ponentially small, one has localization. In this region,
the low-frequency asymptotics of o'„' for high LL's have
already been obtained elsewhere" and the calculation for

0 yz is not essentia 11y more comp li cat ed. We wi 11 treat
the Fermi-surface contributions to the conductivities in
Sec. IV 8 and show that they satisfy, to leading order in
co, the relation
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(2.20)

The calculations which we wil1 present in the fo11owing
sections are based on the functional-integral representa-
tion of the averaged Green's functions in terms of boson-
ic and fermionic fields. The commuting and anticommut-
ing fields will be denoted by s and y, respectively.
N = (s,y) is the corresponding supervector.

In order to keep a main line of reasoning, we first want
to focus our attention on all those quantities which de-
pend on products of either advanced or retarded Green's
functions only. We have to calculate the DOS of Eq.
(2.3) from the functional integral

S= i f—4(E H—0+i')&&dr+ —f (C&4) dr . (2.22)

One possible way to calculate I2 3 would be to introduce
one pair of superfields N;W, for each Green's function in-
volved. However, the calculation simplifies considerably
if the functions I23 are represented as a functional-
integral representation in terms of one pair of fields 4, N
only. This can be done as follows:

G+(r, r;E)= —i f [d4][d@]yg(r)exp( —S), (2.21)

where S denotes the action

and

Iz(r„rz, E)= —™J [d@][d4']~(r, )s *(r~)y(rz)X(r, )exp( —S) (2.23)

I3(ri r2 3 E) Re[J(ri rz r3 E) (r& r3 r& E)]
J(r, , r2, r3;E) =i f [d@][d@]g(r,)g(rz)s(r2)s*(r3)y(r3)g(r&)exp( —S) .

(2.24)

In order to obtain the energy integral contribution to
the conductivities o' ', one has to insert Eqs. (2.23) and
(2.24) into Eqs. (2.16) and (2.19). We want to emphasize
that the representation of the I3 given in Eq. (2.24) in
terms of one pair of fields only which, at first glance,
might not seem to be a natural choice constitutes a major
achievement and simplifies the subsequent calculation
considerably.

In contrast to the fact, o„' ' contains mixed products of
Green's functions, i.e., 6 6, and we will have to intro-
duce two pairs of fields for the proof of Eq. (2.20). How-
ever, we want to postpone this discussion and first focus
our attention on those quantities which can be obtained
with exactly the same techniques as those used by
AfBeck to determine the DOS in the tails of the LLL of a
2D EG.

(m& ) (m2)'(r)=h ' (z)u ' (x,y),
m .(3.2)

1u' '(x y)=
(2~l m!)'~

x +iy
&2i

x +y
exp

4I

where l denotes the magnetic length, i.e.,

s(r)= ga p' '(r), y(r)= gg q™(r). (3.3)

The coefficients a occurring in the expansion of s are
complex and the coefficients g in the expansion of y are
Grassmann variables. The functional integration now
reduces simply to an integration over the set of variablesa,a*,g,g, together with a spatial average. Denoting
by c=E —~, /2 the energy distance from the center of
the LLL, we thus can rewrite Eq. (3.1) in the form

III. THE DENSITY OF STATES

For the calculation of the DOS in the region of the
tails, one has to expand the action S around its nontrivial
extrema (instantons) and to perform the functional in-
tegration over the quadratic fluctuations around the in-
stanton solutions. The main contribution in the region
under consideration comes from the one-instanton
configuration. According to Eqs. (2.3) and (2.21) we have
to perform the functional integration

Re J [d4][dC&]y(r)g(r)exp( —S) (3.1)

in this approximation. A most transparent way to under-
stand the technique of functional integration over
superfields to expand the fields s, g in terms of an ortho-
normal set of functions y' '(r) labeled by the integer m
[the set of z and (x,y)-dependent functions h and u are la-
beled, respectively, by m, and m2], but only precisions
about the (x,y) dependence are required in the following:

= 1
p(E) = Re g J + da *

da& dg& dg& g g exp( —S),~v

S = i g (e+iil)(a'—a +g g )

+
2 g (a„*a +2g„g )I„~k(ak*a(,

n, m, k, l

I„k&=f y' ' (r)q&'"'(r)y' ' (r)y'"(r)dr .

(3.4)

This procedure is equivalent to the one used in Ref. 7 and
the following sections. We chose it here to visualize that
the essential techniques used throughout the article can
be understood on the basis of:he integration rules for
commuting and anticommuting variables only.

After a transformation to real bosonic integration vari-
ables, we rotate the contour of functional integration by—m/4 and end up with the variables b& =e ™4Rea&,

1

b& =e '" Ima& (cf. Ref. 7). In order to find the saddle-
'2
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point solution of the above integral after projection to the
LLL, Aleck proposed the ansatz s„(r)=Ay' '(r). In
2D this is a real multiple of the m =0 eigenfunction of
the unperturbed Hamiltonian Hp in symmetrical gauge
[see Eq. (3.2)j. In 3D, it has to be multiplied by

1 BS
2 Bs; (3s.

3 0= —e —As„(r)

BS = —e —As„(r),
~X ~X

(3.10)

h' '(z)=(m ~s~/2)' cosh '(&2m ~e~z) Consequently, in the one-instanton approximation, we
are left with two Gaussian integrations, one with respect
to the fermionic modes g, g and the other over the real
bosonic modes s„s2. Explicit calculations can be carried
out, provided that the eigenfunctions and the correspond-
ing eigenvalues of the above operators are known. In the
following we will refer to the eigenfunctions of the opera-
tors of (3.10) as fermionic (bosonic) modes and to the cor-
responding eigenvalues as A, 'F '(A,s™).

There is one bosonic mode with negative eigenvalue
and we have to rotate back the contour of functional in-
tegration with respect to this mode so that the integral
becomes imaginary, as required. Furthermore, there are
bosonic modes with vanishing eigenvalue (henceforth
called zero modes) corresponding to invariance of the ac-
tion S with respect to translations of the spacial coordi-
nates C&(r) ~@(r—ro) and to rotation in functional
space, i.e., 4~e'+4. Instead of integrating with respect
to these modes, we transform to the corresponding con-
tinuous parameters (ro, y) of the invariance group and in-
tegrate with respect to the latter.

Finally, we have to take into account that there is also
one fermionic zero mode with the eigenvalue A,F '=0 and
the coe%cients gp, gp. Due to the Grassmann integration
rules

(cf. Ref. 13, m is the mass). The variation has to be per-
formed with respect to the coe%cient A. Inserting this
ansatz into Eq. (3.4) and after integrating out the fer-
mionic variables, the DOS becomes proportional to

(3.5)b exp sA + —,'A, l, OA + gin(a+A. l, 3 )

where we have used the notation b =
~

&p' '(0)
~

and
Lp

=
Ipppp L Ipp . The corresPonding saddle-Point

condition now reads

2A, L

2As+2AloA + g =0 .
C. +EL

(3.6)

4~l
s~ for 2D,

16~1 &
~
e

~
/2m for 3D .

rt f IIdgldglg g exp y~F g g
m I =p n

(3.7)

There is, of course, one trivial saddle point at the origin,
i.e., 2 =0. However, this saddle point does not contrib-
ute to the quantities under consideration. The other
saddle-point manifold is characterized by 3 = ~e~/Alo, , ,

provided that ~e~ ))A, l,o. This condition means that the
energy has to be situated in the deep tail of the DOS.
After explicit calculation of the integrals Lp L, we obtain

= f Q dg, dg, exp
' —y A,F"'g„g, (3.1 1)

with

1 dS+ S; I Sj I d7"
2 Bs; Bs.

(3.8)

Calculating the one-instanton contribution to the DOS
now means to approximate the action S in Eq. (3.1) by
the quadratic expression

S—+So+ fg (r) A(r)dr
a's

~X ~X

—s0, 1 BS
p(E) = e ' det'—

2 BS; BS

—1/2

det''
a&a&

we get a nonvanishing contribution in Eq. (3.4) only if
there is a fermionic zero mode in the preexponential.
The density of states is thus determined by the saddle-
point value of the action Sp by the determinants arising
from the Gaussian integrations and the Jacobians
from the transformation of the bosonic zero modes to the
invariance parameters:

—1 /2
2w1

for 2D, X cp' ' r —rp drp, (3.12)

Sp= '

and

I3
32~1

3A,&2m

—2/3

for 3D,
(3.9) where the primes at the determinants denote the omission

of zero modes. Due to normalization, the last integral
equals unity. Inserting the numerical values of the
nonzero eigenvalues A, 'F ', A, ~

' of the operators of Eq.
(3.10) (cf. Ref. 7 for 2D) into Eq. (3.12) yields

2~2r, r,
2

exp
I2

for 2D,

p(&)= '
5/2

+2m /I ~ exp~ 2~1 I3

' 3/2

for 3D .
(3.13)
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Of course, for 2D this agrees with Wegner's exact re-

sult ' in the limit of large
~
E

~
/I z.

Both results, although with different numerical prefac-
tors, have been obtained by Ioffe and Larkin' using the
optimal fluctuation method and the 3D case has recently
been reconsidered by Hayn et al. ' within the framework
of supersymmetry.

Although the method presented above does not allow
us to obtain the exact solution for the DOS in the one-
band model, it is more useful for our purpose than the
method of Refs. 8 and 9 because it can be generalized to
kinetic quantities to be calculated in the one-instanton
approximation. For different averages of Green's func-
tions, only minor modifications are necessary which con-
cern mainly the different preexponential and thus the spa-
tial integration. In the following section we will exten-
sively use the above-described method with special em-
phasis on the simplifications due to fermionic zero modes
in the preexponential.

IV. THE CONDUCTIVITIES

It has been shown in Sec. II that the conductivities can
be decomposed into two contributions o„'+' and cr„' ', the
first of which contains an energy integral whereas the
second is determined by states at the Fermi energy only.
As already mentioned, these two contributions are equal

to each other in the one-instanton approximation, i.e.,
~( —)(~)—~(+)(~) (4.1)

to leading order in co. The proof of this equality will be
given in Sec. IV 8. To begin with, we want to determine
the low-frequency asymptotics of the conductivities 0.„'+'
in analogy to the previous calculation of the density of
states.

In the one-instanton approximation, the determinants
and Jacobians are exactly the same as those in Eq. (3.12).
Consequently,

A. The energy integrals o'+ '

Let us first consider o.,',+' given in Eqs. (2.16). All
states below the Fermi energy contribute to this quantity.
We obtain the leading-order contribution of the averaged
product of two retarded Green's contribution if we
choose the bosonic fields in the preexponential [see Eq.
(2.23)] to be the saddle-point solution, i.e.,

G+(r, r')G+(r', r)

= —f [d4&][d@]s,~(r)s,*,(r')y(r')g(r)exp( —S) .

(4.2)

Iz(r&, r2,'E)= rrp(E) A —f ~y' '(r& —ro)~ ~y' '(r2 —ro)~ dro .

With A and p from Eqs. (3.7) and (3.13), one can show that, to leading order,

f A (E)p(E)dE =p(EF)

and

—f (x, —x2) ~y' '(r, —ro)~ ~p' '(r2 —ro}~ drodr, dr2=2l1

(4.3)

(4.4)

(4.5}

so that the energy integral contribution to the longitudi-
nal conductivity reads

cr' '(co)= i've l p(E—F) . (4.6)

This result confirms the previous statement that the
range of validity of the one-instanton approximation is
the localization regime which is characterized by a van-
ishing longitudinal dc conductivity and a finite dc polari-
zability y=i lim„ocr (co)/co We wou. ld like to stress
that this statement is equivalent to the criterion of the
finite return probability of localized states usually formu-
lated in terms of dc quantities (cf. Refs. 15 and 16), i.e.
there are only localized states at a given energy E, pro-
vided that

I

ior of the longitudinal conductivity can be expressed in
terms of the averaged product of two retarded Green's
functions at the same energy. As has been shown above,
o''+' cannot contain a term linear in co because, due to
translational and rotational invariance of S, the integral
I2 depends on (x, —x2) +(y, —yz) and z, —z2 only and
thus after spatial ir.tegration the corresponding contribu-
tion to o'+' vanishes. We want to illustrate this result
for the Hall conductivity as follows:

(4.7)

with uniform convergence in r, r'. In Sec. IVB we will
indeed confirm that G+6 has a (ice) ' singularity and
it is this fact which leads to o.„' '=o'+„'.

We have seen that the dominant low-frequency behav-

with ro=r&=r describing the transition from a given
point r via given intermediate positions r; back to the ini-
tial place r. The way in which the magnetic fields enters
into the calculation is that it distinguishes trajectories
with identical traces by their orientation. Howe ~er, for
N =2 this is not yet possible and only for X~ 3 will the
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orientation of the magnetic field manifest itself in the
relevant products of Green's functions. This is the neces-
sary condition for having a nonvanishing Hall conduc-
tivity and the leading contribution is indeed given by Eq.
(2.19).

The arguments which allow us to determine J from Eq.
(2.24) are only slightly more complicated than those
yielding 12. The first step of the calculation remains the
same as previously, i.e., the bosonic fields in the preex-
ponential are chosen to be the instanton solution

J(r„rz, rz;E)=i f [d+][d&P]y(r, )y(rz)s„(rz)s,*,(r3)y(r3)y(r, )exp( —S) . (4.8)

One pair of fermionic fields in the above preexponential has to come from zero modes, whereas, for the remaining pair,
only the choice of modes with I 1 yields a nonvanishing contribution to the functional integral. In analogy to Eq.
(3.12), the result for I3 reads

—so, 1 BS
I3(r&, r zr 3'E)=e ' det'—

2 BS, Bs

—1/2 BSdet'
By By

oo

X2~im f drp g -,
,
[y' '(r, —rp)q&' ' (rz —rp)qr' '(rz —rp)

m=1 I'

Xg' ' (r3 —rp)y' '(r3 —rp)y' ' (r, —rp) —(rz~r3) —(r,&-+rz)] (4.9)

Again, the prefactors may be compared to the density of states. From the fermionic integration we obtain the product
of all fermionic eigenvalues which do not have their corresponding eigenmodes in the preexponential. Therefore, A,~
occurs as a denominator in Eq. (4.9) because, in the determinant det B 5/By By, all nonzero eigenvalues are taken into
account, although there is a pair of fermionic m %0 modes in the preexponential.

Only a few terms of the above sum contribute to the Hall conductivity. This is due to the fact that the x,y depen-
dence of I3 is determined by contributions of the type

m m

Im[u' '(r, )u™(rz)u' '(rz)u' ' (r3)u' '(r3)u' ' (r&)]= sin[m(a& —az)]lu' '(r&)l lu' '(rz)l lu' '(r3)l
2l m!

(4.10)

where a, denotes the polar angle of r, . Since the sine functions sin(m P) are orthogonal for different positive integers m,
on the one hand, and the orientated area b, (r&, rz, r3) contains only terms proportional to sin(a; —a ) on the other hand,
only the m = 1 modes contribute to o' ' in Eq. (2.19), i.e.,

2 2
cr'„+'(cp)= f f f f f(E)b, (r„rz, r3)I3"(r&, rz, r3, E)dr& drz dr3 dE,

6m V

I3' (r, , rz, r3;E)= „,p(E)b(r, , rz, r3) f g ly (r; rp)l drp .
l XF' i=1

One can check by direct calculation that

1
3—f f f f b, (r„rz, r3) g ly' '(r; —rp)l drpdr~ drz dr3= zi'.

V i=1

(4.11)

(4.12)

In 2D, the fermionic m =1 eigenvalue is A,~"= lF.
l
/2 and,

after inserting Eq. (4.12) into Eq. (4.11), the Hall-
conductivity part a„' ' finally reads

CO
cry„+'(cp)= X2l n,

2

where n is the number of particles, i.e., n =j p(E)dE.
In 3D, we obtain, correspondingly,

ductivities have two contributions of equal magnitude,
one of which we calculated above. We present the expli-
cit calculation of o.„'

' in Sec. IV B.
Finally, we have to comment on the corrections to the

leading co dependence. Whereas above we have calculat-
ed the imaginary part of the longitudinal conductivity,
the real part is logarithmic and originates from tunneling
between two instantons

e coc7~+'(cp)=const X l Ql 3/leln .
3

(4.14)
1

cr (co)=c, Xicpp(EF)+czco ln (4.15)

We already stated in Eqs. (2.11) and (2.20) that the con- For B =0, Houghton et al. ' derived v =d + 1 in the hy-
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b, Reer (co)/Rec7 (co) ~ 0, Q=coEF/I 2 . (4.16)

drodynamic limit. For the lower tail of the LLL, Apel'
obtained v= 1 in 2D (d =2). Both approaches were
based on the optimal Auctuation method. Recently the
result of Houghton et al. were generalized for d =1 to
the limiting case of weak disorder using the method of su-
persymmetric functional integrals (see Ref. 19).

The leading-order corrections to the real part of the
Hall conductivity also come from o'+'. The relative
correction is proportional to co and to the cyclic com-
bination of all products of five Green's functions. If, for
convenience, we express this product in terms of two
pairs of superfields, we see that the instanton solutions of
both fields are involved in the preexponential which gives
rise to an additional factor A as compared to the leading
order. Another factor A comes from the additional
Jacobian due to the rotation between +& and %2. We
thus obtain a relative correction proportional to co A

which, in two dimensions, reads

We again see that the characteristic energy scale is deter-
mined by the disorder-induced broadening.

B. The Fermi-surface contributions cr'

In this section we want to prove explicitly that, in the
lower tail of the LLL Eq. (4.1) is valid. For this purpose
we explicitly calculate o.„' '. The 6 —6—terms in K'
are analytical in co and thus can only contribute to 0
in the order co", n ~2 [see Eq. (2.12)]. The leading term
(i.e., for co=0) is rotational invariant and does not con-
tribute to the Hall conductivity. Only higher-order terms
contribute and give rise to terms proportional to co",
n 3.

Consequently, we are just left with 6+6 . In the
functional-integral representation of the mixed two-
particle Green's function, two pairs of supervectors are
involved

6 (r, r')6 (r', r)= f [dC&, ][d@,][d@2][d@z]y,(r)g, (r')yz(r)g2(r)exp( —Sz),

S2= —i f 4[c73(E —Ho)+ ,'co+iran]4—dr+ —f (Ncr34) dr,
(4.17)

with

@=(4„%2},c73=
1 0

After performing the same steps as those following Eq. (3.4) the one-instanton solution of the action Sz can be
parametrized as follows:

T

S)
l

LPGAe
(r)=

sg ( 0

cosh(6/2) sinh(6/2)
sinh(6/2) cosh(6/2)

l+2
e

0 e 2lg

s„(r)
0 (4.18)

S~o= +(co/2+i')A cosh' . (4.19)

with s,&
given in Sec. III. The corresponding saddle-point

value of the action is
gS 3 0=H E —co/2 —i' ——

A,s
2 as asli 1j

BS
=Ho —E —~/2 —i q —A,s,&, (4.22)

The angles y„q&2, 8 parametrize SU(1, 1}and the invariant
measure of the group is

8 S2
2 BS2' 8$2

0 S2
=Ho —E+co/2+i' —A.s,~

.
8+28+2

dQ=sinh8 dB dy, dy2 . (4.20)

Integrating over the angles thus yields

f exp( —Szo)d Q

=4m (co/2+i') '3 exp( —3 lsl/2) . (4.21)

The quadratic operators occurring in the saddle-point ap-
proximation are

As in the previous calculations of the DOS and of o.„'+',
the bosonic field s& has one negative mode. Besides the
zero modes corresponding to the exact invariances of Sz,
there are also almost zero modes. By the term almost
zero mode we refer to the mode~ which become zero
modes for a vanishing symmetry-breaking part and which
have eigenvalues proportional to +(co/2+i'). The addi-
tional almost zero modes compared to the calculation of
the DOS are due to the invariance (at co =g = 0) with
respect to rotation in functional space [see Eq. (4.17)]
parametrized by the three angles y„y2, 8 instead of just
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one angle y.
The functional integral in Eq. (4.16) is not more

difficult to perform than the one for the density of states.
First, note that the bosonic and fermionic modes corre-
sponding to +2 occur in pairs with the same eigenvalue
so that the determinants cancel each other exactly. From
the transformation of the bosonic zero modes to the an-
gles of SU(l, l), an additional Jacobian factor proportion-
al to A arises as compared to the integration over one

p(E)= lim f f ~G+(r, r';E)~ dr dr'
O+ aV (4.23)

Thus, we are able to deduce from Eqs. (2.11) and (2.12)

supervector only. Following this line of argument and
noting that the leading contribution to Eq. (4.16) comes
from the fermionic almost zero modes in the preexponen-
tial, we explicitly verify the validity of the %'ard identity,

f f (x —x') ~p' '(r —r0) ~

~p' '(r' —r0) ~
dr dr'

'(al)= . p(EF) f f ~g"'(r —r, )~' ~q"'(r' —r, )~'dr dr'
(4.24)

which completes the derivation of Eq. (4.1) for the longitudinal part.
Above, all Grassmann fields y„y&,g2, g2 have been chosen as m =0 modes. However, in this approximation the

two-particle Green s function from Eq. (4.16) is rotational invariant and cannot contribute to the Hall conductivity.
With the same arguments as those given in Sec. IV A, we deduce that either g„y, are m =0 modes and g2, y2 are m = 1

modes or vice versa. Since the almost zero modes corresponding to the two dift'erent pairs of fermionic fields have ei-
genvalues of equal modulus but opposite sign, the quantity 6+6 contributes to o' ' in the form

p(E)(rXr'), f ~y '(r —r0)~ ~y' (r' —r0)~ dr0 . (4.25)

As the last step of our derivation, we have to use the fact that, in the tails of the DOS n (E)=p(E)I /2~v~. From this
equality and a comparison of Eq. (4.24) with Eqs. (4.13) and (4.14), we finally get Eq. (4.1).

V. APPLICATIONS

As already mentioned in the Introduction, we want to
apply our results to two sets of experiments, the first of
which deals with magnetic-field-induced metal-insulator
(MI) transitions in 3D uncompensatedly doped semicon-
ductors. In these experiments the measured quantities
are the dc resistivities p„,p„which are defined by

p = lim
co~0

p —llm
co~0

o, (al)

o „(al)+o~ (co)

o „(al)
o „„(co)+o (al)

(5.1)

I3
const X

3/2

for 3D .

(5.2)

The finiteness of the Hall resistivity in localization re-
gimes has already been observed in the quantum Hall re-
gime of 2D systems. However, the present feature is

For the calculation of the dc resistivities it is necessary to
introduce the frequency limit since, in the lowest localiza-
tion region, both o.„„and o. , vanish and the conductivi-
ty tensor is not invertible. From Eqs. (4.1), (4.6), and
(4.13), we deduce that, in the cons~dered energy region,

p „ indeed diverges as co but the Hall resistivity
remains finite and equals

r2
'

fo 2D,

essentially dial'erent because, for any plateau correspond-
ing to o „=ve /h, v=1,2, 3, . . . , the above result is

trivial and we have p =cr ', whereas for the v=0 pla-
teau in 2D and the lowest localization regime in 3D it de-
pends essentially on the low-frequency asymptotics of
both o,„(co) and o'~, (al).

We conclude that, in degenerately doped semiconduc-
tors which exhibit metallical behavior at low magnetic
fields and where freezing out occurs in the limit B~~,
there is, in general, an intermediate region of magnetic-
field values where localization is the predominant efFect;
the localization and the freezing-out regime can be dis-
tinguished by the behavior of the Hall coefficient, which
varies only a little in the first case but diverges in the
latter.

The experiments of Hopkins et al. agree with the
above statements. In Ref. 1 we discussed the applicabili-
ty of our model to a system characterized by the parame-
ters given in Ref. 2,

c / 2E~ =a~ /l =G.2

and /=co, /E„, where Ez is the eft'ective donor binding
energy and az the efFective Bohr radius, and fo"."-" that
the disorder-induced broadening obeys

r, 10 (nas) y Es .

After using the Mott criterion for the critical doping con-
centration naz 0.02, we obtain I 3))E&, so that freez-
ing out can, at most, be a minor competitive efT'ect in
agreement with the conclusion of the authors of Ref. 2.

The second set of experiments for which our theory
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—o ~„(co;iilco, /2 —e~ ) (5.3)

between the Hall conductivity in the lower tail of the
LLL and the upper localization region of the LLL, i.e.,
for I (&c+ & Ac@, /2, c.+ =EI;—Ac@, /2. In the Appendix,
a proof will be given within the one-band model. Insert-
ing the Hall conductivity from Eqs. (2.4), (2.13), and
(4.1 1) yields

2

turned out to be useful are transmission measurements of
GaAs-Al Ga, „As heterostructures in microwave
waveguides (see Refs. 4 and 5). The measured quantity
was o~ (co) as a function of the magnetic field up to
magnetic-field values corresponding to a filling vector
v=2 of non-spin-resolved LL's. Obviously, we cannot
directly apply the results of Sec. IV to this case because
they have been obtained for the lower tail of the LLL
only. For higher localization regions, the situation is
more dificult due to the presence of extended states
below the Fermi energy. A direct application of the in-
stanton approximation is impossible as discussed in Ref.
11. However, assuming that, for the completely filled
LLL, the conductivities are the same as in the disorder-
free case —which is reasonable, provided that the overlap
to adjacent LL is negligible, i.e., fico, /I ))1—we can
formulate the following symmetry relation:

e 1
o~, (co;fico, /2+v. ~)=

1 M /6)

knowledge of the low-frequency asymptotics of the Kubo
conductivities in the lowest localization region enabled us
to invert the conductivity tensor, which is singular at
zero frequency. We thus obtained that in spite of a
diverging longitudinal resistivity the dc Hall resistivity
remained finite. This feature differs from the one that is
familiar from the quantum Hall regime of a 2D EG be-
cause we consider the lower tail of the LLL where all
states are localized and edge states do not exist.

For 2D systems there are many localization regions
where the instanton approximation is also valid. We
were able to derive a relation between the Hall conduc-
tivity below and above the LLL and thereby to study the
deformation of the Hall plateaus at low frequencies.

Both results could be related to recent experiment and
we found good qualitative agreement of the main
features. Nevertheless, the range of validity of our pre-
dictions is still rather restricted since we had to assume
that the Fermi energy is situated in a region where the
density of states is exponentially small. A considerable
effort and probably some additional ideas will be neces-
sary to obtain similar results for regions of larger density
of states.

APPENDIX

In this appendix we will show that the force-force
correlation

e 2c7, (co) =
1 co /co

(2 —v), (5.4)r y~(co) =Pf e'"' "'(F;F(t))dt,

e"
ry,c(b; )c=o4 (1—@co b) . (5.5)

where v =2~i n is the filling factor of the LL and 1 —v/2
gives the fraction of unoccupied states in the upper locali-
zation regime. Let b denote the magnetic field measured
from the center of the Hall plateau at zero frequency in T
and co=coX(10 GHz). Furthermore, we use that the
bandwidth I is related to the lifetime ~ and the corre-
sponding mobility at zero magnetic field p =e ~/rn,
m =0.067m, for GaAs

p=P, X(10 cm /Vs),

by I ~=2co, /it~. Inserting into Eq. (5.4) the density
n =2X10" cm as a typical experimental parameter
(cf. Ref. 5) we obtain, in the vicinity of the v= 2 plateau,

1 e BV . BV+i
V'Z m c)x By

which is related to the conductivity

o( )c=o/3f e' ' "'(j;j(t) )dt,
0

1J= ~—(Jx+'Jy) ~V2

by the identity

e n y~(co)
o(co)= +

pl co co~ ( co —co )

(Al)

(A2)

It is the square of the Hall conductivity which has to be
compared to the experimental results since the bolometer
signal in microwave transmission measurements is pro-
portional to o. . Instead of a plateau at co=0, the Hall
conductivity exhibits a finite slope, which increases with
the frequency and the mobility.

vanishes in the one-band model for complete filling of the
LL. Throughout the following proof, the potential is as-
sumed to have finite range so that the averages of expres-
sions containing the special derivatives of V exist. Since
the result is independent of the potential range, it is valid
also in the limit of a white-noise potential and we can
deduce from Eq. (A3) that

VI. CONCLUSIONS
a, (co) = t„cr(co) —o *(——co)]=I ~ e 1

1 co /co
(A4)

We have demonstrated that, in the lowest localized re-
gion, the Hall conductivity is proportional to co and to
the number of localized states per unit area. The

for the completely filled LLL and thus Eq. (5.3) is valid in
the upper localization regime. In analogy to Eq. (2.7), we
may express the force-force correlation in the form
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yF(co) = fdE f(E)Tr[F(6 —6+ )F+G: 6

F—G+ 6 +F+(6 —6+ )],
(A5)

where we have used the notation 6—=G+ (E—+co). Shift-
ing, as before, the energies by +~/2, the correlation can
again be decomposed into two contributions, the first of
which depends on states near the Fermi energy only and
thus vanishes with the DOS as Ez —+ ~. The second con-
tribution is the energy integral

yF+'(co)= f(E)Tr(FG+zzF+6+ &~6+ FG+&~—G+F G +FG zzG F+6:
&z FG—F+6: &zG )dE .

4~

(A6)

Note that, in the LLL, the involved Green's functions
read

6—
( Er, r') =+i f [d5][de]y(r)g(r')exp( —S),

(A7)
S=+& N c —V+ig 4d r .

The transformation V~IcV and 4&~Ic '~ N maps G —(E)

onto IcG —(as). Consequently, the energy integral (A6)
satisfies the scaling relation

7 F (Co) 7 F(ICCO) as EF~ Oc (A8)

already, before averaging. Consequently, for the com-
pletely filled LLL, y& is independent of the disorder
strength and thus vanishes.
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