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Glass transition in KBr1 KCN alloys

D. Walton
Physics Department, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L85JM1

(Received 1 April 1991)

It is shown that one can account for the temperature and frequency dependence of the dielectric
and quadrupolar relaxations in KBr& KCN with a single interaction energy between nearest
neighbors, and a model based on the theory for hierarchically constrained relaxation of Palmer et al.
[Phys. Rev. Lett. 53, 958 (1984)j. In particular, the small change in the glass transition temperature
with probe frequency can be accounted for. For 0.43 & x & 0.53, the interaction energy deduced
from fitting the data is 103 K. A Gaussian distribution of nearest neighbors has been assumed;
the width of the distribution, and the orientation of the ion in the unit cell, are left as adjustable
parameters.

INTRODUCTION

A clear distinction can be made between a glass and a
crystalline solid on the basis of their relaxational behav-
ior: A perfect crystal cannot display anelastic phenom-
ena; a glass, on the other hand, must, and the anelasticity
of a glass is present, at least in principle, at all tempera-
tures.

The glass transition is characterized by a slowing down
of the relaxation of structural elements of the system.
The system is considered frozen when the relaxation time
exceeds the observation time. Thus, unlike, say, the
liquid-solid transition, whether or not the system is con-
sidered to be frozen depends on the time scale of the
observation.

The change in T&, the perceived temperature of the
glass transition, with the characteristic measurement
time is usually very slow. An Arrhenius plot of the log-
arithm of this time against reciprocal temperature of-
ten yields very large activation energies and unphysically
large prefactors, indicating that cooperative phenomena
are involved. In addition, another relaxation process is
often apparent at lower temperatures and is referred to
as the beta relaxation. The relaxation process, which
takes place at temperatures near the glass transition, is
called the alpha relaxation. While the beta process does
not display the characteristic temperature and frequency
dependence of single Debye relaxation, the activation en-
ergies and prefactors derived for it are usually physically
reasonable.

The freezing of a system of anisotropic defects in a
crystalline matrix displays many of the features of the
glass transition. The presence of a crystalline lattice,
however, simplifies the situation. It will be shown that, as
a consequence, a model that accounts for many features
of the freezing process can be constructed.

The alloys of KCN with other alkali halides are ma-
terials in which the CN ions can enter an "orientational
glass phase" at certain concentrations and temperatures.
Of these, the I%Br-KCN has been the most studied, and
it will be to this system that we will devote most of our

attention. The CN ion has both an electric dipole mo-
ment (referred to here as the "dipole" ), and an elastic
moment, often referred to as an elastic quadrupole mo-
ment (which we will call the "quadrupole" ). An electric
quadrupole moment also exists but is usually neglected.
It is generally agreed that the elastic quadrupolar interac-
tions are responsible for a glassy phase at concentrations
z between about 0.2 and 0.6, This manifests itself by a
rapid slowing down of the quadrupolar relaxations as the
temperature is lowered.

At temperatures below the glass transition tempera-
ture the dipoles are still able to "Hip, " head to tail, »

leading to strong dielectric relaxation phenomena. The
dielectric relaxation peak is very broad in frequency. Its
temperature and frequency dependence are fitted very
well by a Gaussian distribution of energy barriers,
which neglects any interaction between the dipoles. Un-
fortunately, in order to obtain satisfactory agreement, a
temperature dependence of the mean and the width of
the distribution must be introduced ad. ItI, oc.

The barriers responsible for t, he dielectric relaxation
are provided by the elastic interaction between the CN
ions, i.e. , the quadrupoles. These barriers are established
when the quadrupoles freeze. Thus the quadrupolar re-
laxation plays the role of the alpha process, and the dipo-
lar relaxation that of the beta process.

In a recent letter a model for the relaxation, and freez-
ing of the quadrupoles was described. The dipole relax-
ation was not considered. It is the purpose of this paper
to develop that model further, and show that it not only
accounts for the quadrupolar freezing, but also results in
a set of energy barriers, which account for the dielectric
1'elaxat, 101'1 phenolTlell a.

As pointed out above, in order to obtain satisfactory
agreement with experiment, , previous models for the di-
electric relaxation found it necessary to make the mean
activation energy, and the width of the Gaussian distri-
bution, temperature dependent. The model for dielect, ric
relaxation introduced here is similar in that a CN ion
finds itself in a potential well that is produced by its in-
teraction with a Gaussian distribution of neighbors. It
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difkrs from them in that no temperature dependence of
the mean and width of the distribution is introduced. In-
stead, it is assumed that the depth of the potential well is
proportional to the fraction of nearest neighbors, which
are suitably oriented. This fraction is temperature de-
pendent and is calculated using the same interaction J
used to model the quadrupolar freezing.

The rapid slowing of structural relaxations, which is
a characteristic of glass transitions, can be explained by
the interactions between the defects: as the relaxation
time of one defect increases, it affects a neighbor, which
in turn influences another, and so on. But, if interactions
are important, and the interaction depends on the rela-
tive configuration of the molecules, it is the net number
of suitably oriented neighbors that controls the relax-
ation time. Now it is easy to see that if the temperature
is on the order of the interaction energy the net num-
ber of neighbors must be small for relaxation to occur
quickly. Therefore, those molecules locked in a particu-
lar configuration by large numbers of suitably oriented
neighbors must wait for some of the neighbors to relax
before they can themselves relax. The neighbors in turn
will have to wait until their neighbors relax, and so on.

Thus the relaxation process is hierarchical at these tem-
peratures. Because the distribution of molecules is non-
uniform, concentration gradients will connect regions of
high concentration to those of lower concentration, with
the result that relaxation of molecules with relatively few
neighbors can relax molecules further up the gradient,
and the hierarchies will consist of a series of decreasing
numbers of neighbors.

The relaxation time spectrum for a hierarchically re-
laxing system can be obtained using an approach based
on the theory of Palmer et a/. , PSAA. We will use the
PSAA theory in conjunction with the nearest, -neighbor
interactions to account for the quadrupolar freezing. We
will then show that the resulting distribution of barriers
accounts for the dielectric relaxation.

The relaxation of the quadrupoles is evident via their
broadening of acoustic phonons and in torsion pendu-
lum results. s The torsion pendulum results, reproduced
in Fig. 1, show two peaks in the temperature depen-
dence of the internal friction. The lower temperature sec-
ondary peak has been associated with dipole relaxation,
while the higher-temperature primary peak is due to the
quadrupoles. Ultrasonic results do not reveal the atten-
uation because the echoes are lost for the concentrations
of interest here, However, Brillouin data clearly show
a strong broadening, which is large enough to be easily
measured. The width of the phonon increases to a sharp
maximum at a temperature Tz, which is slightly lower
than that of the minimum in the velocity of sound, Figs. 2
and 3.

What is particularly interesting is how little the tem-
perature of the quadrupole peak, T&, changes for a change
in frequency of seven orders of magnitude: for z = Q.QT&

is 78 K from Brillouin data, whereas from the torsion
pendulum results Tz is 70 K. The dipole peak, on the
other hand, moves from about 70—38 K. The data from
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FIG. 1. The temperature dependence of the internal fric-
tion for a concentration of 0.53 determined by Knorr, Volk-
mann, and Loidl (Ref. 8). '1'he solid line was calculated, as
described in the text.

FIG. 2. The temperature dependence of the phonon width
determined by Hu, Walton, and Vanderwal (Ref. 11) for a. con-
centration of 0.5. The solid line was calculated a.s described
in the text,
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THEORY

Quadrupolar relaxation

The elastic properties are conveniently described in
terms of a complex elastic compliance S such that the
velocity v of a sound wave of frequency cu is determined
by the real part and its attenuation n by the imaginary
parts of S:

0.6 0.8 I.O 1.2 I.4
100/T(K )

1.6 I.8

FIG. 3. The reciprocal relaxation time deduced from the
data in Fig. assuming a. single relaxation process. The solid
line is calculated as described in the text.

In generals the compliance S measures the strain pro-
duced when a stress is applied. There is an instantaneous
response followed by a slower change, as the system re-
laxes.

If the system has a single relaxation time r,

S(i) = So+ bS[1 —e '/']. (2)

Ernst et a/. , reproduced in Fig. 4 also display the rela-
tively much larger shift in the temperature of the dipole
peak with frequency.

The purpose of this pa.per is t, o show tha, t a model
based on the theory of hierarchically const, rained relax-
ation of Palmer et ar. can account for the quadrupole
relaxation, and that the resulting distribution of barrier
heights accounts for the dielectric relaxation.

The quadrupolar results also show a. peak due to the
dipolar relaxation. However, no clear evidence is avail-
able for a quadrupole peak in the dielectric data. The
experimental situation is not clear in this regard, since
either the data does not extend to the temperature of
the peak, or it is for CN concentrations toward the low
end of the glass range. Therefore, in fitting the dielectric
data a possible quadrupolar peak will not be included.

The paper is organized as foljows, first the theory for
hierarchically constrained relaxation will be summarized.
Then the experimental results will be briefly described.
The analysis of the data in terms of the theory will be

In this expression So accounts for the instantaneous
strain, and the second term for the subsequent relaxation.

In the frequency domain Eq. (2) becomes

and using Eq. (3) and values for the change in sound
velocity and attenuation 7 can be calculated.

If there is a spectrum of relaxation times, Eq. (2) be-
comes

S(i) = So + ) bS„(1 —e '/'").

In the frequency domain, the Fourier transform yields

S(~) = So + ) bS„/(1 —i~7„).

It is, of course, possible to replace the sum by a. suitable
average, and recover the expression for a single relaxation
time.

0.02

) MHz

O.OO 40
T (K)

FIG. 4. The temperature dependence of the imaginary
part of the dielectric constant. The da, ta are from Ernst et
al. (Ref. 1) and the solid line is calculated as described in the
text.

1
S(~) = So + const x

1 —2' 7~~

Since the velocity of sound is proportional to the real
part, and the attenuation to the imaginary part, the con-
stant can be eliminated, and 7. , obtained, as described
above. If this is done with the data shown in Figs. 1 and
2 it is found that the relaxation of the CN exhibits Ar-
rhenius behavior at high temperatures, suggesting that
a single relaxation-time approximat, ion is valid. But at
lower temperatures, just above T&, it is found that the
temperature dependence of the relaxation time leads to
a high value for the activation energy and an unphysical
magnitude for the pre-exponential, suggesting that more
than one t N is involved. ' These results are shown in
Fig. 4.

Nuclear magnetic resonance has been used to obtain
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the relaxation time of the CN ion in NaCl-CN directly.
In this case the relaxation time Ti is just the average
discussed above. The results are strikingly similar to
those shown in Fig. 3, obtained from the Brillouin data,

All experimental results sample an average relaxation
time. In order to compute this average correctly the re-
laxation time spectrum must be obtained.

The relaxation-time spectrum

The PSAA theory postulates an assembly of N Ising
spins distributed over a number of levels such that each
spin in level n+1 is only free to change its state if p„spins
in level n attain one particular state of their 2" possible
ones. The relaxation times in the theory of Palmer et al.
are related by,

n+1 QPn

leading to

be left as an adjustable parameter. In order to simplify
the situation, only the following possibilities will be con-
sidered: the molecule could be oriented along one of the
six possible (110) directions, and, because the molecule
is not perfectly symmetrical, there may be an elastic in-
teraction when the CN flips head to tail, leading to 12
possible configurations. Thus p„spins have p"" possible
states where p can be ].2, corresponding to or ientat ion
along a (110) axis, eight, if the CN lies along a (ill) axis,
or six for a (100) orientation.

It is inconsistent to carry the relaxation process to CN
ions with no nearest neighbors, so the hierarchy must
end on an ion with one nearest neighbor. The first spins
to relax are those in level 1, which have eA'ectively one
nearest neighbor. Their relaxation time is r~. Next those
in level 2 relax, and their relaxation t, ime will be 72 ——

p"'ri, where pi is the average number of spins in level 1,
which must relax for one spin in level 2 to relax, etc.

Following the argument in PSAA outlined above,

and

and

S(~) = So+ ) bS„/(I —i~ro2+&=0"").

The PSAA model is abstract, and does not specify any
model for the levels of the system, except the requirement
that spins in one level constrain spins in the level imme-
diately above it. The CN ions constrain neighboring CN
ions via their elastic strain fields; so, for a simple model it
is logical to associate the levels with the number of near
neighbors. This means that a CN in say, level 6, with six
nearest neighbors cannot relax until p5 CN ions in leve1
5 with five nearest neighbors have relaxed. In turn this
implies that those spins with fewest neighbors relax first,
and those with most relax last.

It will be assumed that the relaxing ions are all in hi-
erarchies of nearest neighbors, such that the levels 1—n
are all occupied. This model is very much a first approx-
imation and, for instance, neglects any "gaps' in the hi-
erarchy, regions of uniform concentration, the fact that
hierarchies may end on a level higher than 1, and corre-
lations between hierarchies.

The PSAA theory implies that some short-range corre-
lation exists between the spiws, i.e. , that the temperature
is below some ordering temperature. At high tempera-
tures, the constraints must disappear, and a single relax-
ation time must be recovered.

The CN can take up various possible orientations in
the unit cell, and the Ising model is not, appropriate. In-
deed Michel and Rowe find that interacting ions are
not constrained to any particular orientation. Lewis and
Klein's molecular dynamics calculations, show t, hat in
the glass phase there is a preference for the (ill) direc-
tions on the average but also show substantial departures
from that orientation.

In the absence of any firm experimental evidence for a
particular orientation of the CN in the unit cell, this will

To proceed further, the dependence of p„on n is
required. The elastic strain fields from the neighbors
deepen the potential well in which the ion finds itself. As-
sume that when they are in one of the p available config-
urations they will make a positive contribution to the en-

ergy barrier, whereas one of the ot, her orient, ations leads
to a negative contribution. Therefore, enough neighbors
must take up one of their possible negative orientations
t, o cancel the efIect of the others. The simplest assump-
tion is that both positive and negative contributions have
an equal magnitude which will be equal to J, in which
case, if half the neighbors Hip they will cancel the eA'ect of
the other half, and p„= (n+ 1)/2 at T = 0. At finite T
some of the neighbors will have flipped via, thermal acti-
vation and this will reduce p,„, thus p„= (n+ 1)F(T)/2.
Also, the probability of an ion relaxing to that part, icular
configuration will be reduced by e ~, and

~ r e~lTIZ,":,'(k)FtT)l'-r» = r1~~

The simplest way to specify F(T) is with a mean-field
theory. However, here we are dealing with clusters in
which the concentration is manifestly nonuniform. It
may be anticipated that the degree of order will increase
as the number of nearest neighbors increases, i.e. , to-
wards the center of the cluster. Thus F(T) must also
be a function of the number of neighbors, and should be
written F(T, n) F(T, n) .can be estimated as follows.

The self consi stent fi-eld

Due to the fact that we have assumed that, the ions
are in hierarchies of nearest neighbors, an ion with n
neighbors will have n —1 of them in level n —1 (i.e. , with
n —1 neighbors), and one neighbor in level n+1. On
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as possible, namely 12. Lower values for p resulted in too
large a shift in the quadrupolar peak with frequency.

Choices for 7.(l) are constrained by the high-
temperature Brillouin results, and

7 (1) = 10~ ' + ~exp[(340 6 20 K)/T]. (20)

DISCUSSION

The agreement between theory and experiment shown
in Figs. 1—4 is not perfect, but considering the elemen-
tary nature of the theory employed and the small number
of adjustable parameters, it is far better than could be
expected. What are the major approximat, ions in the
treatment presented?

The most important of these is the assumption that all
the ions are in hierarchies in which the number of neigh-
bors change by one in each shell. An improvement would
be to consider a probability distribution for each shell of
neighbors in the hierarchy. This would not be diFicult to
incorporate into the analysis, but would complicate the
numerical computation,

The neglect of correlations between hierarchies is valid
when the relaxation time is long on the scale of some
characteristic experimental time. Unfortunately the
more interesting region is close to the glass transition
where this requirement is clearly not fulfilled. On the

The only remaining adjustable parameters are J and o.
,

and, of course, the ratio of the dipolar to the quadrupolar
coupling constant, but, the latter is simply a. scaling factor
and is of no interest in this calculation.

There are concentration differences between the sam-
ples used for the Brillouin experiments, the pendulum
results, and the dielectric measurements. Accordingly, 0
was allowed to change with concentration, but, since the
nearest-neighbor interactions would not be expected to
be temperature dependent, J was not. The value of J
that gave the best fit was 103 K.

First consider the torsion pendulum results shown in
Fig. 1. The points are the data, the solid line was calcu-
lated using the imaginary parts of Eq. (19) for the sec-
ondary peak at 38 K and Eq. (17) for the primary peak
at 70 K the value of cr was 2.0.

Next consider the Brillouin data for z = 0.5, shown in
Fig. 2. The solid line was calculated with o equal to 2.3.

The data in Fig. 3 are equivalent to those in Fig. 2, and
the solid line was obtained with the same parameters.

Finally, the dielectric relaxation data. of Ernst et al. '
for a quoted concentration of 0.7 were fitted, with the
results shown in Fig. 4. In this case the width u was
2.5. It appears that the concentrations quoted by Ernst
et al. correspond to values in the melt, and the actual
concentration would be less in the crystal. Thus the con-
centration was treated as an adjustable parameter and
was found to be 0.43. It may be noted, for instance, that
Volkmann et a/. find that the peak in the dielectric re-
laxation occurs at 40 K for x=0.5 and a frequency of 10
Hz; so, if for the same frequency the peak occurs at 34 K,
as it does in the data of Ernst et al. , the concentration
must be lower.

other hand the levels responsible for the correlations are
the ones with numbers less than the mean, and they are
not condensed, hence, no longer influencing the hierarchy
at these temperatures.

The self-consistent field approach used here to describe
the progressive freezing of the hierarchy neglects the ef-
fect of next-nearest neighbors. This probably means that
the freezing process takes place more gradually with tem-
perature than would otherwise be the case. This could
be responsible for the fact that, as shown in Fig. 1, the
experimental relaxat, ion tinie above the glass transition
clearly falls more quickly with temperature than the cal-
culated one.

One of the clear results of fitting the dat, a was that p
had to be equal to 12. Anything less yielded too large
a temperature change with frequency for the quadrupo-
lar relaxation peak. Another was that of the p possible
orientations of the CN; p —2 led to no interaction with
a neighbor, whereas one of the remaining possibilities
yielded a positive, and the other a negative interaction.
A model was also tried where only a positive interaction
was possible, and the remaining p —1 orientations yielded
no interaction but was not satisfactory.

A recent paper by Hessinger and Knorr quot, es r esults
for the decay of a frozen-in shear stress at various tem-
peratures. In principle, it should be possible to account
for their results with Eq. (5). However, on removing the
shear stress there is an instantaneous elastic recovery [due
to So in Eq. (5)]. This can be calculated from a knowl-
edge of the stress and values of So, but, unfortunately,
the stress was not quoted.

The analysis presented here is entirely devoted to the
time-dependent anelastic properties of glassy KBr-KCN
alloys. As stated in the Introduction, it is believed
that these are intimately connected with, and define,
the glassy state. There is a corresponding effect on So,
the elastic constant. This should, in principle, be com-
bined with the temperature dependence of So due to
translational-rotational coupling between the CN rota-
t, ional modes and the normal modes of the lattice. The
translational-rotational coupling has been explored in de-
tail by Michel, and the elastic constants of KBr-KCN
alloys are reviewed by Hochli, Knorr, and Loidl.

CONCLUSIONS

Using the theory for hierarchically constrained relax-
ation of Palmer et a/. , it has been possible to account
for the temperature and frequency dependence of both
the quadrupolar and dipolar relaxation of the CN ion in
KBr for concentrations in the glass-forming range.
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