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Thermodynamics of order in dilute fcc ternary alloys
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The present paper reports a thermodynamic study of fcc I 1&-ordered A3B alloys under a small addi-
tion of a third element C. The derivation is based on a virial expansion of the cluster-variation method.
A relation is established among the dimensionless energy parameter J=(J~c—J~c)/J» (J», J„c,and
J~c being, respectively, the effective pair interaction potential of pairs AB, AC, and BC), the
substitutional-site preference of the C element, and the order-disorder transition temperature T, . These
two variables are interrelated through the parameter J which can be eliminated, thus leading to a direct
relation between the site preference of the ternary element and the variation of T, .

I. INTRODUCTION

Numerous metallic binary alloys show substitutional
chemical ordering in their equilibrium phase diagrams.
Since the structural state of the alloy is of primary impor-
tance for some of its physical properties, the addition of a
third element can significantly infIuence the state of or-
der, thus modifying some of the physical properties of the
alloy. For example, the mechanical properties of Ni3A1
(y') can be improved by a small addition of a third ele-
ment, depending on where this element substitutes and
on the composition of the initial binary alloy. '

Generalized mean field approximations such as
Kikuchi's cluster variation method (CVM) can predict
with good accuracy the order-disorder transition lines for
ternary systems. Input parameters are the effective pair
interaction potentials, which can be experimentally de-
duced from diffuse scattering experiments for the three
kinds of constituent-element pair. These measurements
are generally a difBcult task, especially for ternary sys-
tems where a contrast variation method is required to ac-
cess the pair potentials. In most practical cases, the sys-
tem is ill-conditioned and only two pair correlation func-
tions can be determined with reasonable accuracy.

The goal of the present work is twofold
(i) Extract as much information as possible on the

effective pair interaction potentials from the sole charac-
teristic features of the phase diagram, such as the varia-
tion of the order-disorder transition temperature upon
adding a sma11 amount of a third element,

(ii) Connect directly these characteristic features in
bypassing the explicit use of the pair potentials. Such
correlations between characteristics that could be mea-
sured independently should be very useful for alloy
designing.

To discuss point (i), we refer to the recent studies by
Enomoto et al. and Wu et al. based upon the cluster
variation method in the tetrahedron approximation in
L, 12 alloys for the calculation of the site occupation prob-
ability of the third element. Their results suggest that a
single reduced energy parameter should be found which
governs both the added element preference for a substitu-
tional site and the variation of the order-disorder transi-

tion temperature T, as a function of the concentration c
Qf the added element. We shall demonstrate that this is
indeed the case in using a viral expansion of the CVM
tetrahedron approximation involving four independent
sublattices (space group Pmmm). Subsequent algebraic
derivation leads to a direct relation between the site
preference and dT, /dc [point (ii)]. Numerical examples
of the master equation dT, /dc versus site preference cal-
culated for L, 12 ordered alloys are finally given.

II. FORMALISM

The method used here is the cluster variation method
in the tetrahedron approximation (T-CVM); it is known
to provide a consistent binary phase diagram. The ther-
modynamical variables are the tetrahedron, pair, and
point probabilities. The CVM free energy functional as-
sociated with a phase of symmetry Pmmm in the fcc lat-
tice is

PE=2+ PE; T; + g 2T;(lnT; —1)—g P, (lng, —1)

+—,
' g U;(lnU; —1),

T; =1, —,
' yN;"T =C~, —'g~ cT =Cc, .(2)

where Ã," (N, ) is the fraction of A (C) in the ith
tetrahedron, and C~ (CC) is the total concentration of A
( C) in the alloy. For example, in the tetrahedron
configuration A ABC, X; =0.5 and X,- =0.2S.

Pair and point probabilities are partial sums of
tetrahedron probabilities and can therefore be written as

where T;, Y, , and U; are respectively the tetrahedron,
pair, and point probabilities. E; is the configurational en-

ergy of the ith configuration of the tetrahedron and P is
the Boltzmann factor. The index i runs over all possible
cluster configurations.

In the canonical ensemble (fixed concentrations), be-
sides the normalization constraint there are two addition-
al constraints on the tetrahedron probabilities:
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Y;= QNJ T
J

U;=gN, T
J

(3a)

(3b)

The elements of matrices N;. and N;. are positive in-

tegers, taking the value 0 or 1 whether the ith
configuration of the subcluster Y and U is or is not em-
bedded in the jth configuration of the tetrahedron. In the
Pmmm phase, there are six matrices N of dimension
9 X 81 and 4 matrices N of dimension 3 X 81; however,
in higher symmetry phases, owing to sublattice degenera-
cies both the number of independent matrices and the
dimensionality are reduced. For example, in the A1
phase, all the pairs belong to the same orbit, thus there is
only one N matrix of dimension 6X 15.

The expression for the free energy PF (1) together with
the constraints (2) form a Kuhn and Tucker set of equa-
tions which can be solved using the standard Newton-
Raphson iteration method. The three constraints require
the introduction of three Lagrange multipliers Ao
and A,c, respectively, for normalization and concentration
constraints. From these definitions, A, ~ and A, & are
equivalent to the chemical potentials A and C, and A,o
represents the grand canonical free energy.

Then, minimizing the free energy (1) while keeping the
constraints (2) is equivalent to minimizing the following
expression:

yV=PF+Pa, '1 —g T, +Pa„C,—. yN, .'T,.

where

Y =gN;T;=gN;T;, U =gN;T;,

a; (P; and y; ) is the number of C atoms embedded in the
ith configuration of the tetrahedron (of pairs and points),
and c is a short notation for the concentration CC.

Here, T;, Y;, U; take nonzero positive values, even on
the binary side AB of the ternary system ABC. Since the
number of C atoms in a tetrahedron is necessarily larger
or equal to the number of C atoms in any of its embedded
subcluster, we have the inequalities a; —P; ~ 0 and

a; —y; ~ 0 which ensure that the terms N.; never diverge
as c approaches zero.

The equilibrium expression can now be rewritten in
terms of the tilde variables as follows:

8;=2PE,. +2 ln T, —g N; in Y +g N; ln U
J J

—(PAO+N;"PA. ~+N; Pl c)

coming from the logarithms of vanishing probabilities
and from the Lagrange multiplier A,c. To overcome this

difhculty we first observe that vanishing cluster probabili-
ties decrease in the mean field limit C&~0 as C&', where
n; is the number of sites in the considered cluster occu-
pied by C atoms. We therefore define new probability
variables by

a. P. j/T;=T;c ', Y;=Y;c ', U;=U;c '

+I3~c Cc XN T, (4)
2a; —gP NJ, + ', gy N; . ln. c =—0.

J J

In general, the basic cluster probability set does not form
a basis as many configurations might be redundant and
therefore cannot be chosen as variables for minimization
purposes. This would be the case for a basic cluster
whose point symmetry does not match the lattice symme-
try, such as the double square in the square lattice; or the
case of a multiheaded cluster such as the tetrahedron-
octahedron in the fcc lattice. In the latter case, in addi-
tion to the normalization condition, constraints are in-
volved to take into account the overlapping between the
tetrahedron and the octahedron following regular shaped
triangles. However, the tetrahedron cluster is a simplex
and as long as we describe phases involving only one
tetrahedron, the probabilities can be chosen as the in-
dependent variables.

The equilibrium state is defined by the set of T s
fulfilling PF/dT, =O under the constraints (2). Let B be
the gradient of the free energy with respect to the T s;
taking into account pair and point probabilities
definitions (3a) and (3b), we finally obtain

8; =2PE;+21nT; —g N;ln Y + g NUlnU
J J

—(pA +NO;"I3A, ~+N; pi, c)=0 .

As such, this equation is not suitable for numerical calcu-
lations in the vicinity of the binary edge AB of the phase
diagram. Indeed, it contains diverging terms at Cc=0

At this stage, the only remaining diverging terms are A,c
and inc. But, as demonstrated in Appendix A, the pre-
factor of inc in the expression (7) is equal to the factor of
Pi.c which, in turn, diverges like —inc when approaching
the binary edge. Thus, we can introduce a nondivergent
chemical potential Xc defined by

I3Xc=J3zc+ inc,

which finally leads to the following equilibrium expres-
sion, equivalent to the previous one but with no diver-
gence at the binary edge:

B, =2PE, +2 ln T; —g NJ; ln Y + g NJ; ln U~

J J
—(f3', +No;"(3k, q+N; f3%,c)=0 .

Being interested in the behavior of the thermodynamic
quantities of the ternary ABC alloy near the binary edge,

AB, we can now expand the tilde variables in a Taylor
series with respect to both the concentration c and the
deviation Aa of the concentration of species A from its
reference binary value. For example, the tetrahedron
probabilities associated with a; =0 (also denoted T; for

short in the following), are expanded as
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aT
T, =7',"+ c

acl,a' T
+ C

ac

aT;
+ha

aha
a2T

I,p+2cha
ac aha

a' T.
+ha

aha

or using shorthand notation as

T =T' '+X T'"+—'X [T' ']X
7p Ip ip lp

where the vector X belongs to R and has (c, ha) for
components, and T';" accounts for the gradient of the

probability set T; with respect to these variables. The
0

second-order terms are represented by the symmetric ma-
trix of second derivatives [T,'. ']. In the same way, the
probabilities associated with the exponents a;= 1 and
a;=2 are respectively expanded as (T'; '+x T';") and

T; . The same expansion is carried out for the Lagrange(0)
'2

multipliers too. Equations (9) are then solved, expanding
in a cumulant series the logarithm function involving the
various probabilities. Setting each term to zero in the ex-
pansion, three kinds of minimization subproblems ap-
pear.

(i) The zeroth order ter-ms. The zeroth-order terms cor-
respond to c =0 and constitute a self-consistent system of
nonlinear equations involving only cluster probabilities
corresponding to configurations with no C atoms; that is
to say, cluster variables associated with exponents u;, p;,
and y, are equal to zero. At this stage the terms that are
calculated are the zeroth-order of the probabilities T, '

and the two Lagrange multipliers [)A,o and j3A, „(i.e., T '; ';
px"' px"')

(ii) The first-order terms. Having determined the
binary system variables, the first-order terms have to be
calculated. These terms split into two categories. The
first group refers to all the tetrahedron configurations in-
cluding one atom of C and also to the Lagrange multi-
plier f3XC associated with the constraint equation:
1=+;&,N; T;. The tetrahedron variables (pairs and

points) yielding the equality a; = 1 (P; = 1 and y, = 1) and
the Lagrange multiplier PXC constitute a coherent system
of nonlinear equations, just as the zero-order terms con-
stituted a coherent system which was the binary alloy
AB. Let us recall that the variables calculated are the—a,. =1
zeroth-order term of the Taylor expansion of T; ' and
PXc

The second group of variables determined at this stage
deals with the first-order of the Taylor expansion of the
probabilities associated with the exponent a;=0 (T,'")
and of the Lagrange multipliers [)Ao'" and [)A,'„". These
terms are the solution of a system of linear equations, the
right-hand side of which involves the first group of vari-
ables.

(iii) The upper order terms. Let io designate the order
considered in the expansion; then every Lagrange multi-
plier has been determined up to order io —l, as well as
the corresponding coefficients of the Taylor expansion of
variables T .', o; - (n; . The next variables to determine,

p

in a hierarchical order, are the zeroth order of tetrahed-
a,.

ron configurations T; which involves solving a non-
a,. —1

linear system of equations, the first order of T; ', the
cx- 2

second order of T; ' and so on, solving only a linear
system of equations whose left-hand side remains the
same. As described, the process can be pursued up to
io =4, but higher-order terms can still be determined not-
icing that there is no more "zeroth" order to compute.

In this study we mainly focus our attention on the
zeroth- and first-order terms. In the equilibrium phase
diagram, the second- and higher-order terms are partly
responsible for the orientation of the solubility lobe of the
ordered phase as well as the orientation of the tie-lines of
two-phase domains. However, their contribution makes
the formalism unclear and may mask the physical mean-
ing of equations in the problem we are considering.

In a first-neighbor pair-interaction (V) model Hamil-
tonian, a ternary alloy requires three effective pair in-
teraction energies (J) defined as follows:

V;;+ V - —2V,"
(10)

As observed in the above section, f3',O and ]3k, ~ contribute
to zero-order terms from factors [)A,o and PA, z that de-
pend only on J~~, in contrast to a11 their higher-order
terms, which depend on all three energy parameters. For
example, the first-order terms correspond to cluster prob-
abilities involving a unique C atom. Tetrahedra have
four such configurations for which the energy contribu-
tion can be easily calculated as shown in the following
table. It is convenient to introduce the notation
S =Jwc+ Jac and D =Jwc JBc:

ith configuration

AAAC
A ABC
ABBC
BBBC

Energy contribution E;
—3J~a—2J~c —Jac —2J~a—J~c —2Jac —2J~a

3Jsc

—3S/2 —3D /2—3S/2 —D /2 —Jgg—3S/2+ D /2 —J~~—3S/2+ 3D /2

It can easily be shown that the energy term E,- in the
expression (9) is 4N, for all tetrahedron . configurations
containing one unique C atom. Hence in the first-order
expansion, the equilibrium relation becomes

g,. =2pE,. —12N pS+2 lnT, —g Nj, lnYJ+ —,
' g NJ, lnUJ

J J

—(pAO+N; '[)A, „+N; pXC) .
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Relation (11) splits into two terms: the first one,
I3ic+12I3S, is constant when varying S, so that cluster

—n. = I
probabilities T; ' are unaffected by shifting S; the
second term depends explicitly on D irrespective of the
value of S. (This result doesn't depend on the CVM ap-
proximation and would have been obtained from a "per-
turbative" expansion of the density matrix. ) Therefore,
we obtain the important result that, at first order, the
thermodynamic state in the vicinity of the binary edge de
pends only on the energy parameter D =J~& —J~&. This
is easily understood since, indeed, D governs which site
will be preferentially occupied by the C atom. Let us
consider a simple example. Stating that the reference
state of the binary alloy is L 12A 3B, we first assume that
J~~ =1 and J~& = —1. Then, the tetrahedron with only
one C atom and having the lowest energy is A A AC. The
element C will thus occupy the sublattice defined by the B
atoms. Conversely, if we now assume that Jz& = —1 and

Jzz = 1, the tetrahedra with only one C atom and having
the lowest energy are AACB, ACAB, CAAB: the C
atom will occupy the sublattice defined by the A atoms.
Note that, in both cases, the term S =Jzz+ Jz& is con-
stant (and equal to zero in the chosen example).

We can thus define a dimensionless energy parameter
which governs the state of order: J= (J„c—J~c )/J~~.

The other energy parameter S, associated with the
clustering of C atoms, mainly governs the amplitude of
the higher order terms and also controls the validity
range of the virial expansion as discussed in Appendix B.

We have now to study the long-range order parameter,
which describes how the C atoms distribute in the matrix,
and to examine how it depends on J and on the reference
state of the binary ( AB) alloy.

III. APPLICATION

A. Addition of a ternary element C
in an L 12 ordered phase A 3B

The L 12 structure consists of two different symmetry
orbits, one being formed by the vertices of the unit cube
(a), the other one by the face centers of the cube (b). The
long-range order (LRO) parameter associated with the
atomic species i is defined as the difference of the propor-
tions a,. and b; of element i between these two orbits:
g; =a; b; together wit—h g,.g; =0. Since on a tetrahed-
ron one point is a cube vertex and belongs to the first or-
bit and the other three belong to the second orbit, the
LRO parameter associated with C, g, is bounded by the
inequalities —4c/3 ~ g, ~ 4c. Thus, g, tends toward zero
when c approaches zero. Since we are interested in small
c atomic fractions, we can expand g, to first order:
g, =cog, /Bc=pc. The slope g indicates which of the
two point orbits the C atoms will preferentially occupy.
g depends only on three parameters: the dimensionless
binary temperature kT/J~~, the binary alloy concentra-
tion Cz, and the dimensionless ternary energy ratio J.

1. The eQect ofJ
We have computed g versus J for several compositions

of the binary alloy and several temperatures. All ex-

2
kT

18 — A1

1.6

1.4

1.2

0.8
0.1 0.2 0.3 0.4 0.5

FIG. 1. Computed binary ordering phase diagram within the
tetrahedron approximation.

dT( c4

c) C

kT=1.

CA=0.V

gkT=1.

0 1

FIG. 2. q, vs J for several values of temperature and refer-
ence binary-alloy composition both taken in the ordered domain
of the binary phase diagram.

plored compositions belong to the L 1z ordered domain of
the phase diagram as computed by Kikuchi using the
same thermodynamical approximation (Fig. 1). The re-
sults are given in Fig. 2. Three different behaviors of j
are observed depending on J values.

(i) If J ) 1, i) is positive; C atoms occupy the vertices of
the unit cube, irrespective of temperature and composi-
tion.

(ii) If J & —1, i) is negative; C atoms occupy the face
centers, irrespective of temperature and composition.

(iii) If
~
J~ 1, ri varies rapidly with J and depends on

temperature and composition.
These three behaviors correspond to the three kinds of

occupation behavior proposed by Wu et al. from a com-
parison of the energies for difFerent alloy configurations
in which C atoms occupy a or b sites. For the two first
classes where ~J~ ))1, the order parameter is almost
unaffected by the temperature and composition of the
binary alloy (as long as long-range order exists, of
course): the added element C substitutes exclusively on
one kind of site. The site preference is essentially
governed by a gain in the ordering energy. For ternary
alloys belonging to the third class where

~ J~ is small, en-
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tropy factors are competitive with energy terms and a
more careful analysis has to be performed.

j I s ~ I

2. E+ect of the temperature and the composition
of the binary alloy for small

~
J~ values

As shown on Fig. 2, the g curve is well approximated
by a shifted Fermi function (SFF): f (x)=1/[1+exp(x)]
or by a shifted hyperbolic tangent. By introducing anoth-
er variable

1.5--

0.5--
- cA =0.70

A=o.
—', +g(J)

Z(J) =—ln
4 4—ri( J)

which takes into account the boundary values of g, we
obtain almost straight lines (Fig. 3) which we defined as
Z(J)=(J —Jo)/hJ. Therefore, Jo is the center of sym-
metry of the function il(J) and b,J is the width. This sim-
ple form, which involves few parameters for the descrip-
tion of the slope of g( J), makes easier the description of
both the inhuence of temperature and concentration on
the occupation site preference. The values of Jo and hJ
are calculated by a least-squares fit of the function Z(J)
for each temperature and composition. J ranges from—2 to 3, this range being sufficient to reach the limiting
values of g.

As can be seen in Fig. 2, the temperature and the corn-
position play an important part only when

~
J~ ~ 1. This

corresponds to the cases where the entropy contribution
to the free energy has the same order of magnitude as the
energy term. The temperature broadens the SFF as well
as it is broadened when the composition deviates from
the stoichiometry A3B (Fig. 4). Both effects are related
to the lowering of the binary-alloy long-range order due
to either temperature or composition.

The center of symmetry Jo is affected by the tempera-
ture as well as the concentration. In order to have a
better understanding of the effects that the concentration
may cause, let us study the case kT =0. Then, the order
of the binary alloy is at its maximum and the SFF be-
comes a step function. Its width is zero and the position
of the step depends only on the concentration (Fig. 5).

(i) Jo =0 when the composition is equal to the

0 I, I
I 1 I

I
I I

I
I

I
I ~ ~

0 00 0 50 1 00 1 50 2 00
kT/J

FIG. 4. Width AJ of the SSF vs temperature for several com-
positions of the reference binary alloy.

stoichiometric composition 338.
(ii) Jo = 1 when the composition is understoichiometric

C„&0.75.
(iii) Jo = —1 when the composition is over-

stoichiometric Cz & 0.75.
Thus, at low temperatures three behaviors can be dis-

tinguished according to the concentration values. When
the temperature is raised and the concentration moves off
stoichiometry, Jo moves toward zero. As a matter of
fact, 6J can be considered as an energy scale controlling
the width of the distribution of the two sublattices' occu-
pation by the ternary element. In that sense, the term
Jo/b, J is more meaningful than Jo alone. Figure 6 shows
Jo/AJ as a function of the temperature for several values
of the concentration C&. When the temperature ap-
proaches T„ the ratio tends toward zero, whatever the
composition of the binary alloy.

B. Relation between the transition temperature
and site preference

If it is assumed that the deficiency of 2 and/or B
atoms in the y' alloy is compensated by the ternary ele-

I I
~ ~ ~ ~ I ~ I ~ 1 I ~

I
~ I ~ i ~ ~ 0

I a & ~ a I
I

' ' ' '
I

0.5 -CA =

0

0 cA

CA = 0.77

~ ~ ~ s i E ~ ~ ~ I
I I

-1 0 1

1.50 2.00

FIG. 3. Z vs J for the same cases as for Fig. 2.

FIG. 5. Position of the center of symmetry of the SSF, Jo, vs
temperature, for several compositioris of the reference binary al-
loy.



THERMODYNAMICS OF ORDER IN DILUTE fcc TERNARY ALLOYS 11 645

~1 —cA =0 10

C

C

CA = 0.77
-2

0

0.5 1.5 -10

FIG. 6. Ratio Jo/hJ vs temperature for several compositions
of the reference binary alloy.

ment C in order to maintain the stoichiometry, the site
preference of the ternary element is related to the y' solu-
bility lobe direction in the ternary phase diagram [9].
One can wonder if the site preference can be correlated to
other features of the ternary phase diagram; hence, we
try here to correlate the site preference to the evolution
of the order-disorder transition temperature when adding
a few percent of a ternary element to a binary alloy. We
have then to consider a domain where two phases (an or-
dered phase L lz and a disordered phase 2 1) coexist in
equilibrium. This domain is defined by both an upper
and a lower transition temperature, these two limits being
dependent on the ternary element concentration. The
change of a transition temperature when adding a ternary
element can be characterized by two derivatives with
respect to the concentration of the added element C:
(T, 'BT, /Bc)l, and (T, 'r)T, /dc)„, . The equilibrium'2
between the two phases implies that the (zeroth or first
order of the) Lagrange multipliers in both phases are
equal (since they are the grand-canonical free energy and
the chemical potentials). The equality
PX, +lncL i =/X, +inc„, enables us to calculate the

L12 2 Al

two partition coeKcients:

FIG. 7. Slopes of the phase boundaries (T, 'BT, /Bc)l l,'2'

T, '(BT, /Be)» and g, vs the energy parameter J, for the
binary congruent point.

where S~1 and SL, are the entropies associated respec-
2

tively with the phases L 12 and A1 at the binary
congruent point. The temperature being fixed here, EL1'

2

depends only on the energy ratio J; so do the derivatives
( T, 'dT, /Bc ) and g which have been plotted as functions
of J on Fig. 7. Choosing J as a curvilinear abscissa, we
can map the graph (T, 'BT, /Bc)=f(g) (Fig. 8) which
correlates the change of the transition temperature upon
adding a ternary element to j. The relation between
(T, 'BT, /Bc) and g is not one valued: if J=—1 or
J=1, the element C has exactly the same interaction
properties as one of the elements of the binary alloy.
This implies that the transition temperature remains un-
changed or, equivalently, that both derivatives vanish.
Large positive values of J can be achieved setting
J„c» J~&. In such a case since the atoms C substitute
preferentially on 8 sites, J~ & grows much larger than

3J„z and the congruent temperature must necessarily in-
3

crease. Reversing the argumentation for large negative
values of J, we find that the congruent temperature must
decrease. Therefore it is necessary that the curve at least
intercept the g axis three times.

L12 L1=K~ '=
CA1

„, =exp(13X, —I3X, ) .
L12

'2
(12)

It has been shown previously that the sum f3X, +12l3S is
constant. Since the term 12PS is the same in both phases,
the sum S does not appear in (12), which means that the
following results depend strictly on the energy ratio J
alone. Finally, it can be shown (Appendix C) that the
two "logarithmic" derivatives of the temperature with
respect to c can be explicitly calculated at the congruent
point (binary alloy) from the following expression:

BT 3
C

Tc)c 2—

-2

I

PXXA (Ni Fe)Cr
hLLQ (Ni Fe)Mo

(Ni Fe)

BT L12

Tc Bc L1, S~ 1
—SL1

BT

T~ BC

-3

C

C

SA1 SL1
(13) FIG. 8. Slopes of the phase boundaries (T, 'BT, /Bc)L, l,2'

(T, 'BT, /Be)» vs q, for the binary congruent point.
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C. Experimental con6rmation

Long-range order parameters and transition ternpera-
ture can be measured using x-ray diffraction. However,
measuring the two independent parameters that charac-
terize an L 12 phase in a ternary alloy requires the use of
synchrotron radiation' . To our knowledge, both transi-
tion temperatures and long-range order parameters in a
ternary alloy with a small amount of added element have
been measured on only three alloys up to now:
(Ni3Fe)Cr, (Ni3Fe)Mo and (Ni3Fe)Mn. ' ' . The results
are shown on Fig. 8 together with the graph
( T, 'a T, /ac ) =f(g). The data provided by the
diffraction experiments are represented using rectangles
the size of which estimates the accuracy of measure-
ments. The agreement seems quite correct, but these re-
sults have to be confirmed for other alloys.

IV. DISCUSSION

Two theoretical studies have been recently devoted to
the substitutional behavior of a ternary addition in Ni-
Al-X (y') alloys or in prototypic L lz compounds using
the Tetrahedron CVM.

Enomoto and Harada studied eleven ternary addi-
tions, using phenomenological Lennard-Jones pair poten-
tials. They classified the substitutional behavior of the
eleven elements in three types corresponding to
J~;z —JA~ =0 (preferential substitution on Ni sites);
Jz;x»J~~ (almost entire substitution on Al sites); J
having intermediate values, for which the substitution is
highly dependent on the bulk composition of y'.

Our calculations give more general and accurate state-
rnents: given the effective pair interaction potentials, the
bulk composition of y', and temperature, any substitu-
tional behavior may be precisely predicted. The inAuence
of deviations from stoichiornetry in the bulk y' and of
temperature can thus be readily seen. From our results,
there is generally no preferential substitution on Ni sites
when J=0. This tendency appears for clearly negative
values of J, and the added element is entirely substituted
for Ni sites when J (—1.

Enomoto and Harada have also investigated a relation
between the substitutional behavior of Ni3A1 and the evo-
lution of the order-disorder transformation temperature
from metastable y' to y. They concluded that this tem-
perature is raised by the addition of elements which are
almost entirely substituted for Al sites and is decreased
by the addition of the other elements. From this con-
clusion, one could suppose that any addition which is not
essentially substituted on Al sites may be used as a means
of decreasing the ordering energy of the alloy. However,
our results show that it is necessary to have a closer look
at such an addition. Figure 7 shows that the transforma-
tion temperature might remain almost unchanged for ad-
ditions which are entirely substituted on Ni sites
(J & —1). Recent studies' ' have related intrinsic brit-
tleness of grain boundaries in L 12 ordered alloys to the
magnitude of the ordering tendency: Ni3A1 is brittle,
Cu3Au is ductile. The effect of alloying on the ductility
of L12 compounds may thus be related to an evolution of
the ordering energy. From this point of view, it is possi-

ble to improve the ductility of Ni3A1 by alloying with ad-
ditions which cause the order-disorder transformation
temperature to decrease. From our results, the elements
which have a strong tendency to be substituted for Ni
sites independently of the bulk composition of y' are not
suitable, as opposed to what would be suggested in the
study of Enomoto and Harada. On the other hand, the
ternary additions such that J~;~=JA~ would be good
candidates to improve the ductility.

The site preference of ternary additions in an A38 alloy
with the L 12 structure was also recently studied by Wu
et aI. , by comparing the energies of different alloy
configurations in which the addition substitutes on one
sublattice or the other. Three types of occupation behav-
ior have been recognized depending on the relative
strength of the pair interactions of the alloy. These types
of occupational behavior are in agreement with our re-
sults. The site occupation has been studied as a function
of temperature and alloy composition and the model indi-
cates that, under some conditions, the site preference can
change with alloy composition and temperature. Our re-
sults are again in agreement with this conclusion and can
be used to determine values of the different parameters
for which such a behavior is predicted.

V. CGNCI. USION

The mathematic scheme we followed consisted of a
virial expansion of the tetrahedron cluster variation
method framework. This expansion enabled us to calcu-
late the thermodynamic quantities of a phase consisting
of a small amount of ternary element C added to a binary
AB alloy. We limited ourselves to the zero- and first-
order terms of the expansion in order to fully understand
what were the influences of each term. Considering a
L 1z phase as the reference state of the binary alloy, we
have then shown that a single dimensionless parameter
J=(J&c—Jzc)/Jzz governs the behavior of both the
site occupation g of the ternary element and the variation
of the order-disorder transition temperature upon adding
the ternary element ( T, 'a T, /ac ). The function
r)=f (J) can be considered as a shifted Fermi function
whose center of symmetry and width depend on the pre-
cise reference state of the binary alloy. In agreement
with the ground-state analysis of Wu et al. we have
found that at low temperature the behavior of the site
preference g can be split into three categories. Basically,
if

~
J~ & 1 the site preference is an intrinsic property of the

three elements A, B, C and does not depend on the tem-
perature nor on the binary alloy composition, whereas if

~
J~ ~ 1 the lowering of the long-range order of the binary

alloy (either due to the temperature or the binary alloy
composition) influences the site preference r). Consider-
ing then J as a curvilinear abscissa, we have found that
the two accessible quantities g and (T, aT, /ac) were
correlated, thus removing the explicit energy dependence.
When comparing the relations found to the available ex-
perimental results, we find they are satisfied by the exper-
imental data within the experimental accuracy.

The virial expansion presented in this study is not
dependent on the tetrahedron cluster variation method
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and could be applied to other more accurate CVM's like
the tetrahedron-octahedron CVM or to clusters involving
long-range interactions which would be relevant when
studying a phase stability upon adding a ternary element
to a binary alloy. This method could also be applied to
study the direction of extension of the y-y' phase boun-
daries. Finally, since the site preference of ternary addi-
tions may have some influence on the thermodynamic
and kinetics of defects such as an antiphase boundary,
further calculations are under way studying a possible re-
lation between site preference and segregation of a ter-
nary element at an antiphase boundary.
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APPENDIX A

gN; T; =g N Y; = g NU U, =Cc, (Al)

The purpose of the following calculations is to show
that the factor of the term inc in the expression (7) is
equal to X;, thus allowing the divergent logarithm inc to
be removed from expression (7) upon defining a nondiver-
gent chemical potential of C.

The concentration constraint with respect to C [expres-
sion (2)] can also be expressed for any kind of tetrahedron
subcluster.

2a; —g NJ.;P~+ —,
' g N.; y

J J

=8N —2+N N +—'gN N =N
J

J J
(A4)

The expression (A4) shows that the factor of inc in ex-
pression (7) is N;, which is what we wanted to assert.

APPENDIX 8

To define the validity range of the first-order expansion
we developed, we may consider the variation of many
physical quantities. Here, we choose to quantify the
effect of the second-order expansion and of the energy pa-
rameter S upon the long-range order parameter g, . At
this level of approximation, g„which is now written

ai. ai.
g + c+ Aa c,

Bc Bha

depends explicitly on the following parameters: (i) the di-
mensionless energies: [PJ„~, J =(J„c—Jzc)/Jzz,
X= (J~c +J~c ) /J~~ ]; (ii) the binary reference concen-
tration C„;(iii) the expansion variables (c, ha ).

It is not within the scope of this appendix to review the
properties of g, with respect to this set of parameters.
To reduce the description of the problem, we first assign
the parameters involved in points (ii) and (iii) by studying
the ( 238), ,C, compound (i.e., b,a = —

—,'c). To precise-
ly determine the validity range of the approximation, we
introduce the variable

where N (NU ) is the concentration of C in the ith pair

(point). Since the clusters are considered nondegenerate,
the concentration of C in a cluster is equal to the number
of atoms C included in the subcluster. Thus, we have the
following equalities:

4N; =a;, 2Nr =]3;, N~ =y; . (A2)

N; T
J

(A3a)

gNU U; = g NU g N,)~T&

Replacing the tetrahedron probabilities with the expres-
sions (3a) and (3b) we obtain

QNr Y;= QNr gN&"T
l l

a

4 Bha

Qc

C

which measures the relative magnitude of the first
neglected term in the Taylor series of g, .

In Figure 9, we have mapped, in the space parameter
x =J~c/J~~; y =J„c/J„z, a typical contour plot of a,
at a medium temperature PJ~~ = 1.60. The limiting
values of x and y were chosen selecting materials that
present an order-disorder transformation in a tempera-
ture domain [700 C, 1500'C]. We recall that, within the
tetrahedron CVM framework, the critical temperature
for ordering is of order kT/J„~=2 (J~~ )0) while the
critical temperature for demixing is of order
10 (Jzz & 0). It can be proven that a, functionally
behaves as

+NUN, JU T~ . (A3b)
~"lc 3 ~'9c

exp( —3X) (J)——
(J)

Bc 4 Bha

q, (J)

Comparing (Al) with (A3) we have

QNrN = gN N =N
I l

and thus, summing the contribution of the six pairs and
four points we obtain

thus the constant-a, regions corresponds to strips aligned
in the direction of X (first diagonal) in Fig. 9. It must
also be noticed that the variation of a, with J (second di-
agonal) is much more marked than its variation with X,
such that g, is essentially governed by J. The corrective
term a, being a decreasing function of X within each
strip, it takes its maximum value for negative values of
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1.0

The effect of X might also be sensitive to the y' solubil-
ity lobe direction and to the tie-line y-y orientation. Up
to a second-order expansion, one may expect to access
such physical quantities, sketching for example the y'
solubility lobe through ellipses whose excentricity would
depend on J and X. We did not try to do it here, as we
were concerned that if the lobe intrudes too far into the
Gibb's triangle, higher orders are required. Furthermore,
as we work in the canonical space, such considerations
would help only at the binary congruent temperature.

APPENDIX C

We obtain for the derivative of the free energy PF.

dPF= Udf3+Pk„dC„+Pi, cdc, (Cl)

where U is the internal energy. As mentioned earlier, the
Lagrange multiplier PA, O represents the grand-canonical
free energy; that is, PAO=PF+C„Pk~+cPAc. Taking
the derivative of the previous expression for pl, o and re-
placing d PF from (Cl), we have:

D dPAO=UdP+C„dPA~+cdPAc . (C2)

c/J

FIG. 9. Contour map of a, (Appendix B) vs the dimension-
less energy parameters Jz&/J» and J&&/J», at kT = 1.60.

J~c+J~c that correspond to C atoms clustering.
The effect of the ternary concentration c, on the validi-

ty range, can be roughly estimated from. Fig. 9. For ex-
ample, we may decide to neglect higher-order terms as
long as the product a, c is less than 20%. We see that
for large values of J, corresponding to an asymptotical
value of g„ the expansion is always meaningfu11. For
small value of J, the inhuence of the corrective term in-
creases. In fact when J is close to Jo, g, a, becomes the
first nonzero term in the expansion series of g, .

Varying the binary reference concentration would
translate the strips along the J direction, while varying
the reference temperature mostly affects the amplitude of
the variation of o., along J.

Taking into account the fact that when c tends toward
zero PA, c behaves as inc, we can write

dpAO=Udp+C„dpi', „+dc . (C3)

L12
(+A 1 1 )deal (C4)

Finally, using the equilibrium equality P( U„&—
UL &

)
2

=Sg
~ SL ],we have

aT;
Te Bc L ), S„)—Sl. ) Tc

(C5)

The equilibrium between the two phases implies that the
I agrange multipliers in both phases are equal since they
are the grand-canonical free energy and the chemical po-
tentials. Furthermore, the concentration Cz at the
congruent point is the same in both phases. Thus

(U„,—Ul, )dp=dci, —dc„,=(1—Kl, ' )dcl,
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