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Binding energies of surface polarons outside polar-crystal surfaces are calculated by considering in-
teractions of electrons outside with both electronic and ionic polarizations of crystals quantum mechani-
cally. Our results show that quantum-mechanical modifications of image potentials due to electronic po-
larizations reduce polaron binding energies by 40—55% compared to those calculated with image poten-
tials due to electronic polarization approximated by their electrostatic limits; substitution of infinitely
high frequencies for the finite vibrational frequencies of electronic polarizations, however, changes the
calculated polaron binding energies by less than 10% for the wide-band materials considered.

I. INTRODUCTION

Surface-polaron states outside polar-crystal surfaces
have been extensively studied' ever since the work of
Sak' and of Evans and Mills. In most of these
works, ' ' ' however, image potentials acting upon elec-
trons due to electronic polarizations —which localize
electrons to surfaces and determine dominantly surface-
polaron binding energies —are approximated by their
classical electrostatic limits. The seemingly reasonable
argument for this is that the vibrational frequencies of
electronic polarizations are much higher than those of
ionic polarizations caused by the relative separations of
positive and negative ions when crystals vibrate in optical
modes. Recently, a number of papers ' have reported
on quantum-mechanical calculations of image potentials,
with the conclusions that quantum-mechanical correc-
tions to electrostatic image potentials are not negligible,
especially when the electrons are in the vicinities of crys-
tal surfaces. Evans and Mills pointed out that
quantum-mechanical nonlocal image potentials will
reduce surface-polaron binding energies by a factor of —,",
compared with those calculated with electrostatic image
potentials, though in their calculation they have neglect-
ed electronic polarizations by assuming that the high-
frequency dielectric constant e =1. In this paper, we re-
port a calculation of binding energies of surface polarons
outside polar-crystal surfaces with image potentials due
to both electronic and ionic polarizations treated quan-
tum mechanically to study how much the quantum-
mechanical corrections to the image potentials due to
electronic polarizations will change the polaron binding
energies.

The electronic polarization of the crystal considered is
approximated by point dipoles vibrating harmonically at
a single frequency; that is, we approximate the electronic
structures of the atoms in every Winger-Seitz (WS) cell by
a two-level system. It is a rather straightforward exercise

to refine the model by considering a many-level system
for the electronic structures of the atoms in every WS
cell; that is, we consider point dipoles vibrating at several
different frequencies if necessary. An electron outside the
polar-crystal surface interacts with both the electronic
and ionic polarization fields. The calculational technique
is mathematically equivalent to that for a polaron near a
polyatomic crystal surface with many optical vibrational
branches. "

II. THEORY

The surface-polaron system we considered consists of
an electron outside a polar semiconductor which occu-
pies space z &O. The Hamiltonian of surface polarons
where electrons couple with ionic polarizations, which
have a single branch of vibrational modes, has been de-
rived by many authors. ' ' ' In what follows, we out-
line briefly the derivation of the Harniltonian of our sys-
tem with emphasis on the treatment unique for the multi-
branch vibrational mode model.

In the Drude-Lorentz model, the point dipoles associ-
ated with the atoms in one WS cell due to the electronic
transition from ground to excited states, when an electric
field is applied to the cell in the two-level system approxi-
mation, satisfies the following equation

p(r, t)= co,p(r, t)+e E„—,(r, t)/m, ,

where co& is the electronic transition frequency between
ground and excited states and E~„(r,t) is the local elec-
tric field acting upon the dipole due to electric dipoles
from other cells. By introducing an effective relative dis-
placement of the electron u&(r, t ) =p(r, t )/ —e, Eq. (l)
can be rewritten as

m, ii, (r, t)= —m, co,u, (r, t) —eE„,(r, t) .

The relative displacement u2(r, t ) of the positive and neg-
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ative ions in one WS cell satisfies the following equa-
tion

2
2 2 2 2 ) i 2 2(co, —coT; )(co~—coT; ) ——,

' g (co; —coT; ) =0 .
np;

(9b)

pu2(r, t ) = —pco~u~(r, t ) +e *E]„(r,t ), (3)

p;u;(r, t ) = —p, co;u;(r, t )+e*E~„(r,t ), (4)

with the subindex i =1,2 referring to quantities of elec-
tronic and ionic polarizations, respectively,

where we have assumed that the polar semiconductor
consists of one pair of positive and negative ions per WS
cell. In Eq. (3), p is the reduced mass of the ion pair, co&

is the frequency associated with the short-range part of
the ionic interaction, and e * is the effective charge of the
ions. We rewrite Eqs. (2) and (3) as

e(co,j)=—1 (j=1,2), (10)

with co„and co,z (co„))co,z) originating from the elec-
tronic and ionic polarizations, respectively. The longitu-
dinal optical (LO) modes are given by the equation

e(co„)=0 (j=1,2) .

Substituting Eqs. (10) and (11) into (7), one finds that the
space distributions of the eigenmodes of the polarization
field are independent of the branch index j. To make the
eigenmodes orthogonal, we introduce the eigenfunction
S with

The surface optical (SO) modes are obtained from the
equation

m, (i =1)
p (i=2) and

—e (i =1)
(i =2) S)= and S = 0

0 2 .1. ' (12)

The total polarization field P(r, t) is given as the sum of
both electronic and ionic polarizations

Similar to the treatment of electronic spins when spin-
orbital interaction is neglected, the orthogonal eigen-
modes of the p-polarization field are given by

P(r, t)= g ne;*u;(r, t),
P~ (q, r) =Pr(q, z)e'~'~S (13)

with n the density of WS cells.
Because of the translational invariance along the inter-

face, we can introduce two-dimensional Fourier transfor-
mations along the x-y plane and work in (q, z) space,
where q is the two-dimensional in-plane wave vector.
The polarization field P(r, t ) can be decoupled in to an s-
polarized part and a p-polarized part. Since electrons do
not couple to the s-polarized part, we will consider only p
polarization in the following analysis. In the unretarded
limit, the eigenmodes of the polarization field can be ob-
tained from the classical electrostatics, with the p-
polarized eigenmodes determined by the following equa-
tions

'(co)P (q, z)
—

l

—'lq
2

X [ —P (q, z') i sgn(z z'—)P, (q, z')], —
(7)

'(co)e(co)P, (q, z )

=
—,
' J dz'e ' ' q[P, (q, z') i sgn(z —z')P (—q, z')],

where P and P, are the components of the p-polarization
field parallel and normal to q, respectively. sgn(z) is the
signum function. y(co) =e(co)—1 and the dielectric func-
tion e(co) is given by

(coLi co ) (coLp co )

coTi co ) (coT2 co )

with coL, and coT, (i = 1,2) determined by

where the subindex y indicates SO and LO modes with
the corresponding Pr(q, z) obtained from Eq. (7) and p is
the in-plane component of the positional vector of the
electron. The polarization field can be expanded with

P~, (q, r),

P(r, t)= g P (t)P&(q, z)e'~t'S~

= gP (r, t)S
J

(14)

e.P(r', t )

where e=eSO, So =(', ) and the dot in Eq. (15) means the
inner product between So and S . Quantizing the polar-
ization field, we obtain the Hamiltonian of the surface po-
laron in the systems we considered,

H„,~

= — V, + g A'co, a .a
2mPle jq

+ g [V~.(z)e'~'i'a . +H. c.],
Jq

where PJ(r, t) is the polarization field arriving from the
eigenmodes of branch j and p (t)=p' '&exp( ico t), —
with p'

Jq the amplitude of the polarization in mode
(y,j,q). The interaction energy between the electron and
polarization field is given by the sum of the interaction
energies between the electron and polarization fields of
the different branches and reads

and

(ne;*)

E

(9a)
where m, is the electron mass outside the surface (z )0),
Qqj creates a surface vibrational mode in branch j with
in-plane wave vector q and V~ (z ) is the interaction con-
stant between the electron and surface vibrational modes,
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Vq~. (z ) = —i 4~e A

dE
q~o

dco
sj

1/2

exp( —qz ), (17)

with Ao (Ao~oo ) the surface area of the crystal. The
electron —LO mode interaction vanishes when the elec-
tron is outside the semiconductor surface. The derivation
of H„,1 can be easily extended to cases where electrons in-
teract with polarization fields which have n branches of
vibrational modes by extending S. (j=0,1,2) to
Si (j=0, 1,2, . . . , n ), where

U, =exp —i g q pa a (22)

Uz —exp g (a
q&fq/ aq—Jfq J ) (23)

The polaron ground-state energy with the polaron in-
plane wave vector k~~=0 is given by minimizing the ex-
pectation value of H „over g (21) with respect to fq

S(n)
0 (18a)

If we suppose the electron is localized near z=z0, and
take &p(z) =6(z —zo) as a consequence, then the
potential-energy term in Eq. (24) becomes

with 1 in each of the n rows and

0

exp( —2u, zoq )
V,s.(zo) = —g a, fico, fd.q.

0 1+q
1s e

g, +1 4z0
(25)

S(")= 1J (j=1,2, . . . , n), (18b) with

0

2L1
2

COT1

If we set co=0 in Eq. (8), we have

(19)

for which the only nonvanishing entry is a 1 in the jth
row.

In order to retain the familiar surface-polaron theory,
where one considers a single branch of the vibrational
modes of the ionic polarization and approximates the
electronic polarization by an electrostatic image potential
when one lets coL, and coT, go to infinite [and so does the
frequency of the electronic transition co& in e(co), Eq. (8)],
we define the high-frequency dielectric constant of the
crystal by

dc
sj e ~ sj~sj

SJ
dco

the polar coupling constant of the surface mode co,

V,tr(zo) approaches the electrostatic image potential [the
last limit in Eq. (25)] when the electron is far away from
the surface (zo &)u, '=)/fi/2m, co, ). When the elec-
tron is in the near vicinity of the surface (zo~0), V,s(zo)
is finite, while the electrostatic image potential goes to
infinite. The effective potential associated with the vibra-
tional mode of branch j=1 in Eq. (25) is the image poten-
tial due to the electronic polarization. To show this, we
set cot

&
and coT, ~ oo in Eq. (25), but keep co„,/cor, =e„,

and we have

exp( —2u,jzoq )
V,s, (zo)= a, fico, j dq—

0 1+q
2

COL1

2 7

COT1

(20)
E 1 2

GO e
e +1 4z0

(26)

where e, =e(0) is the static dielectric constant of the
crystal.

For simplicity, we assume that the bottom of the con-
duction band of the crystal lies high above the vacuum
level, so the crystal surface represents an infinitely high
potential barrier. The ansatz of the polaron ground state
is taken as

When the electron has a spatial distribution perpendic-
ular to the surface, the potential-energy term in Eq. (24)
cannot in principle be approximated by a local one-
electron image potential. The polaron energy and
efFective potential of Eq. (24) must be calculated self-
consistently. We calculate the polaron ground-state ener-
gy E [Eq. (24)] variationally utilizing the function

q=q(z)U, U, ~0), (21)
y(z)=2P ~ ze (27)

where ~0) is the vacuum state of the surface-polarization
fields, cp(z) is the trail wave function of the electron dis-
tribution perpendicular to the surface, and U1 and U2 are
the Lee-Low-Pines unitary transformations often used in
surface-polaron theory with

where P is the variational parameter. To make compar-
isons, we also calculate the polaron ground-state energy
by approximating the potential energy associated with
the vibrational mode of branch j= 1 in Eq. (24) by the lo-
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FIG. 1. Ground-state energies of surface polarons outside a
polar-crystal surface calculated with the nonlocal image poten-
tials and with the image potential due to the electronic polariza-
tion approximated by its electrostatic limit. The calculated
ground-state energies are denoted, respectively, as Eg and Eg
(left scale). Also given is the polar coupling constant a, ~

be-

tween the electron and surface-polarization field of branch j= 1

(right scale). The results are given as functions of cuL&/coL2 with

other parameters taken as those of a ZnO crystal (see Table I).

cal potential V,fr &(z) [Eq. (26)]. That is, we calculate

9, +V,~l(z) p)2m,

1(yl V (z)ly& I

q +j q /2me j
(28)

If we set coL& and coT& ~ but keep coL&/coT&=e, Eg
2 2

goes to the polaron ground-state energy calculated in the
literature' ' ' with the assumption that the image poten-
tial due to the electronic polarization is approximated by
its electrostatic limit. The numerical results are given in
the next section.

III. RESULTS AND DISCUSSIONS

The ground-state energy E of the surface polaron with
the electron outside the semiconductor surface calculated
with the wave functions given by Eqs. (21) and (27) is

plotted as a function of coL, /cot2 in Fig. 1 (left scale) with
other parameters taken as those of a ZnO surface (see
Table I). Also plotted in Fig. 1 (left scale) is the ground-
state energy Eg calculated with the image potential due
to the electronic polarization approximated by a local po-
tential.

Two points are worth noticing from the numerical
results in Fig. 1. (i) The polaron binding energy
(E& = Eg —) calculated with the nonlocal image potentials
is much less than that (E& = Eg )—calculated with an ap-
proximated local image potential due to the electronic
polarization, even in the limit co„,—+ 00. (ii) If we assume
that AcoT& is about the same order of magnitude of the
crystal band gap, for the Zno surface we have
~I&/coLz =—100. From Fig. 1 we see that substitution of
an infinitely high frequency for the finite vibrational fre-
quency of the electronic polarization changes the polaron
binding energy by less than 5% (see the line of Eg in Fig.
1), while the polaron binding energy is overestimated by
40% for the calculation which approximates the nonlocal
image potential due to electronic polarization by its elec-
trostatic limit (compare the lines of E and E in Fig. 1).
In Table I we list polaron binding energies calculated for
a number of polar-crystal surfaces (i) with nonlocal image
potentials and A'cur& taken as the crystal band gap, (ii)
with nonlocal image potentials and Sieur&~ ~, and (iii)
with image potentials due to electronic polarizations ap-
proximated by their electrostatic limits and A'coT& —+~.
The calculated binding energies are denoted, respectively,
for the three cases by E, E' ', and E ' '. Comparing the
results in the last three columns of Table I, except for
InSb which will be discussed later, we find that the substi-
tution of an infinitely high frequency for the finite vibra-
tional frequencies of the electronic polarizations changes
the binding energies of the surface polarons by less than
10%, while the approximation of the nonlocal quantum-
mechanical electronic potentials due to the electronic po-
larizations by their electrostatic image potentials overes-
timates the binding energies of the surface polarons by
40 —55%%uo. The efFects of quantum-mechanical correc-
tions of image potentials due to electronic polarizations
on binding energies of surface polarons outside polar
crystals are not negligible.

The calculations also show that if one approximates
finite vibrational frequencies of electronic polarizations

TABLE I. Binding energies of surface polarons calculated for a number of polar-crystal surfaces (i) with nonlocal image potentials
and Ace» taken as the crystal band gap, (ii) with nonlocal image potentials and Ace»~ ~, and (iii) with image potentials due to elec-
tronic polarizations approximated by their electrostatic limits and %co»~ ~. The calculated binding energies are denoted, respec-
tively, for the three cases by Eg, Eg ', and E g

'. The polar coupling constants a, &, between the electrons and surface-polarization
fields of branch j= 1, are calculated with AcoT& taken as the band gaps of the semiconductors which are taken from Ref. 18. The other
experimental parameters used in the calculations are taken from Ref. 19. The energy unit is in eV.

Polar
crystal

ZnQ
CdS
CdTe
GaAs
InSb

s

8.59
8.58

10.31
12.35
17.90

4.0
5.86
6.90

10.48
15.70

3.70
2.40
1.44
1.35
0.18

0.0720
0.0368
0.0212
0.0368
0.0239

0.915
1.240
1.628
1.694
4.503

0.2769
0.2936
0.3081
0.3512
0.3234

E&0)
b

0.2860
0.3096
0.3335
0.3827
0.4278

E (0)
b

0.4080
0.4675
0.5072
0.5927
0.6655
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by infinitely high frequencies, the effects of nonlocal im-
age potentials on polaron binding energies can be de-
scribed by introducing a multiplying factor 0, into elec-
trostatic image potentials due to electronic polarizations;
that is, one takes the image potentials due to electronic
polarizations in the form

Ioo

V,s, (z) = —a

For the trial wave function y(z) we used [Eqs. (21) and
(27)] a equals —', and is independent of material parame-
ters.

The Lee-Low-Pines unitary transformation method we
used in the present paper applies to cases where the polar
coupling constants of electrons a, are assumed to be less
than 2.5. The binding energies of the surface polarons
are determined dominantly by the polarizations of branch
j= 1 for the semiconductors we considered. In Table I
we listed polar coupling constants a, &

of the semiconduc-
tor surfaces calculated with AcoT, taken as the band gaps

of the semiconductors. Except for InSb, the polar cou-
pling constant 0;„ofthe wide-gap semiconductor is about
the order of magnitude of one and decreases as coI, in-
creases (see Fig. 1), satisfying the condition for the appli-
cation of the Lee-Low-Pines unitary transformation
method. For the narrow-gap semiconductor, such as
InSb considered in our paper, the polar coupling constant
a, I is much larger than 2.5 (see Table I). The binding en-

ergy calculated with Lee-Low-Pines unitary transforma-
tion method becomes unreliable. We included the results
of InsB in Table I only to indicate that more complicated
calculations, which apply to the whole range of coupling
strengths, are needed to investigate the problem proposed
in our paper. The calculations are now being carried out
in our group.
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