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Energetics of misfit- and threading-dislocation arrays in heteroepitaxial films
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A theory relating the separation of misfit dislocations to lattice mismatch and film thickness in
heteroepitaxial thin films is presented. From this, the energy as a function of dislocation spacing is cal-
culated and is shown to include an attractive and repulsive region. The dislocation-formation energy
and Peierls barrier to network ordering are shown to be estimable on the basis of measured dispersions
in dislocation spacings. The spacing is predicted to be more uniform as the mismatch increases. Ther-
modynamic functions, such as the compressibility of the dislocation network, can be calculated from the
energy —dislocation-spacing relationship. A formula relating the equilibrium dislocation spacing to film

thickness, mismatch, and misfit-dislocation character is also derived. Finally, the density of threading
dislocations is calculated both at the heterojunction and at the film surface, by assuming a threading-
dislocation reaction process. The results are shown to be in good agreement with the experimental data
for Si, Ge& /Si, InSb/GaAs, and In„Ga& As/GaAs structures.

I. INTRODUCTION

One of the principal limitations to progress in the ap-
plication of semiconductor heterojunctions in state-of-
the-art devices is control of the threading-dislocation
density in the layers. This is especially important for
films grown epitaxially on lattice-mismatched substrates.
Improved methods for reducing the density of threading
dislocations in the film are waiting for the development of
a comprehensive fundamental model for the formation
and alignment of such dislocations. Theoretical studies
have approached the problem of developing a relation-
ship between the critical thickness at which dislocations
form and the bulk lattice mismatch in two ways. The
first involves balancing the force required to form an ar-
ray of noninter acting dislocations against the strain-
induced stresses in the film. ' The second method mini-
mizes the total energy which is a sum of the energy of
noninteracting dislocations and the lattice strain ener-
gy. ' These theories appear to produce conflicting re-
sults. However, a recent work by Willis, Jain, and Bul-
lough reconciled these approaches, showing them to
produce similar results, while, at the same time, including
the possibility of dislocation interactions. It is clear from
the fact that ordered dislocation arrays are produced that
the interaction energy of dislocations in a misfit array
must be significant. This was clearly demonstrated in re-
cent results in which 60'-type misfit dislocations in a
Si Ge& /Si heterojunction were pushed apart by new
dislocations entering between preexisting ones.

In this paper we present an alternate derivation of the
energy minimization formalism which includes the dislo-
cation interaction energies. It results in an explicit rela-

tionship giving the equilibrium dislocation separation D
as a function of the film thickness h and the bulk lattice
mismatch for any character of dislocation. The result is
shown to yield a critical thickness which is qualitatively
identical to that of Matthews and Blakeslee but is based
on the more straightforward energy minimization ap-
proach. Thus we confirm the qualitative similarity of the
two previously reported approaches. We then proceed to
use the formalism developed to calculate the excess ener-

gy available for driving dislocation formation or ordering
as a function of array spacing. We estimate the allowed
variations in dislocation separation in a net, and calculate
the rate of introduction of threading dislocations into the
film as misfit dislocations are added to remove remnant
strain.

II. MODEL

In this section we derive a relationship among total en-
ergy, lattice misfit, and misfit-dislocation spacing. The
derivation is based on a uniform network of dislocations
with an average spacing D in a film of thickness h. Multi-
layer films are planned to be dealt with in future papers.
The spacing is assumed to be the same in the two orthog-
onal directions of the lattice defined by the misfit-
dislocation lines. Local deviations from uniformity are
considered in Sec. III B. The dislocations are further as-
sumed to be a single type; for example, all 60' type or all
pure edge type. The coordinate system used in the fol-
lowing derivation is defined in Fig. 1.

It is convenient to consider a unit of surface area (in
which the energies are calcu1ated) to be a square of side
D. Thus the unit surface area always contains a length of

1154 1991 The American Physical Society



ENERGETICS OF MISFIT- AND THREADING-DISLOCATION. . . 1155

bx g

b =a/2 [10'1](111)
f(D)=f„——

D
(4)

(001)

= ~ [«0] For a fractional misfit f (D), the strain energy per unit
area in the film is given by

E, =296 l f (D)]

FIG. 1. A schematic diagram giving the definition of the
dislocation line direction g and Burgers vector b with respect to
the interfacial plane as well as the angles referenced in the text.
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where Ed is the energy of the two dislocations in the area
D and includes interactions between dislocations in adja-
cent unit cells. The energy associated with the intersec-
tion of the two orthogonal dislocations in the unit cell is
ignored in this treatment. For pure edge-type disloca-
tions this is a reasonable assumption. However, the in-
teraction energy between 60' dislocations with orthogonal
line directions may be more important. The interactions
among 60'-type dislocations are discussed in Ref. 7.

The fractional misfit between the film and substrate lat-
tices, with bulk lattice constants a& and a„respectively,
is defined as

2la~ —a,
aI+a, a

For the current analysis the misfit is a variable which de-
pends on the spacing D and Burgers vector b of misfit
dislocations in the interface. The contribution to misfit
relief perpendicular to the dislocation lines is proportion-
al to the projected edge component b cosP of b in the
plane of the interface as viewed along the dislocation line.
The fractional misfit relieved is b cosP/D and P is defined
as shown in Fig. 1. The total misfit as a function of dislo-
cation spacing is then given by

dislocation line 2D. The choice of boundaries is such
that they are high-symmetry lines in the interface and the
area represents a unit cell of the surface. Furthermore,
the amount of dislocation line need not be calculated in a
fixed area, which simplifies development of the subse-
quent results. The total energy of the system for a square
substrate of side L, is given by the energy per cell E,
multiplied by the number of cells n =L, /D squared, or

LiE
Etot

D

The equilibrium dislocation spacing is found by minimiz-
ing E, /D with respect to D. For a two-dimensional pla-
nar misfit-dislocation net with a uniform spacing D, E, is
related to the strain energy E, and the dislocation net en-
ergy per unit-cell area by

pb (1—vcos 9) aLL ln4'(1 —v) b

The interaction energy for two parallel dislocations of ar-
bitrary character is

9) D ~b 'sing
L ln

2m(1 —v) L 2n(1 —v)
(7)

where 0 and 4 are defined in Fig. 1. The total dislocation
energy is then given by Ed =2E, +E, . From Eqs. (6) and
(7) taking the length of the dislocations to be D,

D
pb 2 ar

(1—vcos 0)ln +sinOcos+
2vr 1 —v

where r is the effective distance to which the strain field
extends and o, is a correction term of order unity which
accounts for the core energy of the dislocation. For pure
edge dislocations, 4'=90. A range of values of a from 1

to 4 have been used previously. We have followed Dixon
and Goodhew by selecting o.=3.

When the dislocations are separated by a large distance
D))h, the strain field is assumed to terminate at the
nearest film surface, dislocation interactions are
insignificant, and r =h. The assumption of a cutoff in
strain field at a distance h is reasonable if the shear
moduli of the film and substrate are nearly equal. The
image force introduced by a dislocation array of opposite
type located outside the surface by a distance h nearly
eliminates the strain field of the interfacial dislocations
far into the substrate. The strain field will include a con-
tribution from the film and a contribution from the sub-
state. Thus the value of p should be a weighted average
of the film and substrate values. For the model presented
here the strain field deep in the substrate is assumed to be

where p is the shear modulus and v is the Poisson ratio of
the film. This formula accounts for the deformation of
the film normal to the interface, and assumes that all of
the strain energy occurs in the film. A small distortion in
the substrate atom positions also occurs which is general-
ly much less than in the film. For roughly equal shear
moduli in the film and substrate, the strain energy in the
substrate is less than the strain energy in the film, to first
order, by the ratio of h/t. Here, t is the substrate thick-
ness. Thus for thin single layer films the assumption of
no elastic energy in the substrate is valid.

The energy of a dislocation line per unit length is found
by summation of the self-energies and interaction ener-
gies of dislocations at a separation of D and with length
L. The self-energy per length L for any type of disloca-
tion is
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eliminated by the image forces at the nearby surface.
When the shear moduli of the film and substrate are
significantly different the strain field does not cancel and
extends to the farthest boundary of the crystal. The cal-
culation to estimate the error is analogous to solving
Poisson's equation for a charge at the interface between
two materials of different dielectric constant. The error
enters only logarithmically and is ignored in this treat-
ment.

When D is less than h the strain field interaction dom-
inates the dislocation energy and the crystal dimension
term drops out of the resulting energy expression. Equa-
tion (8) remains unchanged with r =D. For a dislocation
net the interaction energy per unit length is doubled by
interaction with dislocations in both adjacent unit cells.
However, only half of this energy is distributed to each
dislocation in the unit cell with the other half going to
the dislocation with which the interaction occurs. Thus
the energy per unit length of a dislocation in a regular ar-
ray of spacing D «h is given bypb', oD

(1—vcos 0)ln + sinO cos%'
D 2'(1 —v) b

by multiplying both sides of these equations by 2/D be-
cause a length of dislocation 2D is contained in an area
D . This dislocation line energy term can be combined
with Eq. (5) to yield the total strain-related energy of the
bilayer,

E, 1+v b=2phf (D) + (1—vcos 0)lnD2 1 —v AD (1 —v) b

+ sinO cos%

(10)

where r =h for h «D and r =D for D «h. The equilib-
rium dislocation spacing is found by minimizing this en-
ergy per unit area with respect to D using
d(E, /D )/dD =0. Differentiating Eq. (10),

d(E, /D ) 1+vD =4phb cosP f (D)
dD 1 —v

(1—v cos 0)lnp~ q or
rr(1 —v)

Because there are two orthogonal dislocation nets present
in the sample the total amount of dislocation energy is
doubled [see Eq. (2)]. Equation (8) and the corresponding
expression (9) are in units of energy per length D rather
than in energy per unit area D . The units are corrected

I

+ sinO cos%

+ pb (1—vcos 0) D dr
~(1—v) r dD

Setting this equation to zero and solving for h yields

h= b (1 —vcos 0)ln(arlb)+singcos+ —(Dlr)drldD
4~(1+v)cosP f(D)

D (h)
b cosp

b,a /a —
gp /h

where

b

4~(1+v)cosQ

(13)

(14)

For D~ co, r =h, and f (D) =kala, Eq. (12) is quali-
tatively identical to that of Matthews and Blakeslee' for
the critical thickness at which strain relief occurs but
represents an equilibrium strain relief condition. The ma-
jor differences between Eq. (12) and Matthews and
Blakeslee's Eq. (5) in Ref. 1 are a factor of 2 due to the
differentiation of [f(D)] and the terms involving
singcos%' and (Dlr)drldD. The former results from
dislocation interactions while the latter is due to the
effective cutoff of the strain field at the nearest crystal
boundary. To this point we have verified the results of
Willis, Jain, and Bullough showing that the result of
Matthews and Blakeslee' is qualitatively identical to
that obtained by Frank and van der Merwe ' using a to-
tal energy minimization and including dislocation in-
teractions.

A more useful result is obtained by solving the energy
minimization for D(h). Substituting for f (D) from Eqs.
(3) and (4),

I

is a constant and

p =(1—vcos 0)ln +singcosq' ——cxr D dr
b r dD

(15)

Note that Eq. (13) can be rewritten as

D
D(h)=

1 —h, /h
(16)

where h, =gp/(ha/a) is the equilibrium critical thick-
ness for the onset of strain relief [from Eq. (12) with r =h
and f (D) = b,a /a]. For h —+ ~ Eq. (16) yields
D =b cosP/(ha/a), as it should. When h is
small, D(h) diverges at the critical thickness. Note that
p is either (1—v cos 0)ln(ah /b)+sing cosqI or
( 1 —v cos 0)ln( aD /b) +sing cosV —1 depending on the
value of r. When h «D, r =h and p is increasing with h.
A maximum in p occurs in the range where h -D above
which p decreases to in[a cosP(ba/a) ]+sing cos% —1 at
large h. In general p will lie in the range of 1 —7 with
smaller values for higher misfit systems. Variations in p
thus represent minor, slowly varying corrections to the
dislocation spacing.

The expression for D(h) can be used to calculate the
rate at which misfit dislocations are introduced into the
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film as a function of h. In a region of wafer surface of di-
mension L there will be n =L/D dislocations. The rate
of addition of dislocations in a length of surface L as the
film thickness changes is given by d ( n IL ) Idh
=dD '/dh = D—dD/dh. Differentiating Eq. (13)
with respect to h yields

dD ( 1/h )dp /dh —p /h=b cos
( b,a la —

gp /h )
(17)

For h ))h, =gp/(ha/a), dpjdh =0. Substituting from
dD/dh =D d(n/L) jdh,

d (n/L) bgp cosP
dh D ( h b,a /a —

gp )
(18)

d (n IL)
dh

g(p —1)
b cosg[h —gp/(b, a/a) ]

(20)

It should be noted that these formulas are for an equilib-
rium dislocation spacing. Variations from equilibrium
are considered in the next section.

III. DISCUSSION

The following assumes a heterojunction grown on a
(001) surface of a diamond or zinc-blende semiconductor.
It does not account for the possibility of misfit disloca-
tions extending out of the plane of the interface. This
could be driven, for example, by attraction to the surface
due to image forces or by large difFerences in shear
modulus across the interface. The interaction between
dislocations will depend on their Burgers vectors and line
directions. When the majority of dislocations are of the
60 type, a large number of possible interactions result.
Hence the following analysis is valid for locally homo-
geneous regions of the dislocation net.

A. Nonequilibrium dislocation spacing

As strained layer epitaxy begins with h & h, there is no
physical solution of Eq. (16) and the total energy of the
system is increased by adding misfit dislocation at any
spacing. Several possibilities exist for misfit relief as the
layer growth proceeds beyond h =h, . When the misfit is
small and growth is two dimensional, 60'-type disloca-
tions are introduced by extension of existing threading
dislocations, ' by operation of a threading-dislocation
source, or by expansion of loops by glide on [111] planes
between the heterointerface and the surface. When the
misfit is large and growth is three dimensional, perfect
edge dislocations may be formed at the island perimeters.
These glide along the interface to form the misfit net-
work. An intermediate case must occur if the edge dislo-
cation propagation process has only partially relieved the
ultimate misfit (D)D„)when coalescence occurs. In

The second term in the parentheses is small for h ))h, .
Assuming that D b-cosPI(ha ja),

d(n IL) gp
dh h ~b cosP

near the end of the strain relief process. When h ((D,
dp/dh =h ', and

this case the remainder of the strain relief is carried out
by 60'-type dislocations as in the low-strain case. In gen-
eral, some pure edge-type dislocations and some 60 dislo-
cations which are non-strain-relieving are observed. The
model presented in Sec. II is applicable to regions of the
interface which are relatively homogeneous in dislocation
type. The introduction of, for example, edge-type dislo-
cations into a 60 -type dislocation net will introduce local
perturbations in the net.

We examine first the case where growth is two dimen-
sional and strain relief is almost entirely by 60 -type dislo-
cations. This is the case for the In Ga, As/GaAs and
Ge„Si& „/Si heterostructures. When h )h„therrno-
dynamics favors the introduction of dislocations to re-
lieve strain but a kinetic barrier for formation and/or
propagation of the dislocations remains. ' '" When h rises
sufficiently above h„preexisting threading dislocations
can be displaced to produce misfit-dislocation segments. '

Because the dislocation segments are present in the film,
only the energy to extend the dislocation through the
film, no formation energy, is required. The energy for
such dislocation extension can be estimated from Eq. (10)
using the initial thickness of films at which threading-
dislocation extension is observed.

Experimental values for dislocations spacing as a func-
tion of misfit are available for the In„Ga& As/CxaAs
system for x =0.10, 0.15, 0.20, and 0.25. We have es-
timated the critical thicknesses as a function of misfit
based on these data. The procedure was as follows. The
best fit was obtained to the data using Eq. (16) with D
calculated based on bulk lattice parameters. The value of
h, was allowed to vary as a fitting parameter. The calcu-
lated curve was found to lie below the observed disloca-
tion spacings. This is due to the material being in a meta-
stable excess strain state, ' D )b cosP j(b,a ja). The
fit value of h, was compared with values calculated from
Eq. (12). Critical thicknesses, fitted to experimental
values of D (h) for two orthogonal directions in the inter-
face, and calculated values are presented in Table I. The
calculated values of h, are in good agreement with the
fitted values for most of the experimental data points
especially in the case of the [110] direction. These criti-
cal thicknesses correspond to strain energies of 0.65 and
0.82 eV/atom assuming an atomic density of -3X10'
atoms cm and give a measure of the excess energy re-
quired to drive threading-dislocation extension.

Dislocation generation from operation of a point
source produces misfit dislocations which must force
themselves between those generated in previous cycles of
the source. An example of the spreading of preexisting
misfit dislocations during the introduction of a new dislo-
cation is shown in Fig. 2. As for the threading-
dislocation extension case discussed above, dislocations
forcing their way between existing segments require a net
excess strain energy to drive their formation. However,
for the dislocation to squeeze into the network this driv-
ing force must also be sufhcient to overcome forces resist-
ing spreading of the network. This is shown schernatical-
ly in Fig. 3. The preexisting dislocations move apart un-
.til the available excess strain energy plus the energy
gained by reduction of repulsive interactions is less than
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TABLE I. Estimated values for critical thickness for the In Ga& As/GaAs system based on experi-
mental data from Ref. 7.

In
fraction Misfit

Aa /a
h, ([110])

(nm)

Experimental
estimates

h, ([110])
(nm)

Calculated from
Eq. (12)

h,
( )

0.10
0.15
0.20
0.25

0.007
0.010
0.014
0.017

45
35
14
11

50
40
19
15

36.5
22.3
15.7
11.7

the Peierls barrier for motion of the outermost disloca-
tion. To force a dislocation into a preexisting net, the
strain energy must be sufficient to drive dislocation line
creation [from Eq. (9)] and to create it in a network of
spacing equal to that at which spreading stops. This
means that the film must be thicker to introduce disloca-
tions into a network by forcing them between preexisting
segments than would be needed for creating isolated seg-

' "" " h"- W%WW'"'iy'i

h ihhg!!
).1

Q:::Th

ments. Clearly, this can only happen when dislocation
nucleation is slow. When the network spreads as a dislo-
cation is introduced we refer to it as being in compres-
sion, since the expansion stops before it would if the
Peierls barrier was zero. When the network could add
dislocations without spreading the preexisting net but is
limited by the dislocation nucleation rate, we refer to the
network as being in tension.

The energy of a uniform network as a function of D
may be calculated from Eq. (10). Representative curves
of E,(D)/D are plotted in Fig. 4. The plots clearly
resemble the interaction between particles in a lattice.
The attractive portion of the curves results from strain
relief while the repulsive portion combines the strain field
repulsion of the dislocations with strain over-relief. As
the mismatch between the materials increases [Fig. 4(a)]
the energy minimum becomes sharper and the minimum
energy becomes greater. A similar behavior is found as
the thickness of the film increases, as shown in Fig. 4(b).
When D =D and h )D, f (D)=0 and E, does not
depend on h. Hence all E,(D, h) curves pass through a
common point at E,(D, h )D„).Note that for
sufficiently thin films there is little difference in network
energy as the network expands (there is little strain ener-
gy to relieve) and a wide range of dislocation spacings
may exist with little penalty in total system energy.

If the energy barrier to network ordering is constant,
the dispersion in dislocation spacings will be smaller in

Threading
Dislocation
Segment

FIG. 2. Two transmission electron micrographs obtained by
digitization of video images from Ref. 6. The micrographs
show a propagating misfit-threading-dislocation unit at a
strained Gep 2Sip g/Si heterojunction forcing itself between two
preexisting segments of misfit dislocation. The dislocation line
segments in the micrographs are shown schematically in the in-
sets. In (a), a misfit dislocation generated by motion of a thread-
ing dislocation has interacted with two orthogonal dislocations
in passing and has begun to repel a parallel segment. (b), taken
1.2 sec later, shows the parallel segment continuing to move
away from the new misfit dislocation due to the strain field in-
teractions. The scale marks are accurate to approximately
+10%.

FIG. 3. A schematic diagram showing the forces controlling
expansion of a dislocation network as a new dislocation is intro-
duced from a remote point source between preexisting misfit
dislocations of the same type. The strain field results in a force
F, repelling surrounding dislocations while the Peierls energy
barrier results in a force F~ which opposes dislocation motion.
Expansion of the network continues until F, =F .
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more strongly mismatched systems or in thicker films.
However, as the number of dislocations which must be
displaced to produce ordering increases the energy bar-
rier is likely to increase. Although Figs. 4(a) and 4(b) are
calculated for an infinite, well-ordered dislocation net the
primary energy terms will be relatively local. Hence the
illustrated behavior is probably correct to order of mag-
nitude even for very small groups of dislocations. The
energy barrier to dislocation generation and ordering

must be less than the maximum value, from Fig. 4, cor-
responding to the largest or smallest observed spacings.

The explicit form of E (L)) in Eq. (10) makes it possible
to calculate thermodynamic properties of the network.
As an example we calculate the network compressibility.
Defining the pressures as —dE/d V, where V =D is the
network area, the compressibility v = [ —V (d E /
dV )] ' may be calculated by diff'erentiating Eq. (10)
twice with respect to D . This yields

b oP 8+C 1 + — +
b r dD r dD

2 (21)

where

1+vB =ph 1—

C= pb(1 —vcos i9)

4m ( 1 —v)cosP

(22)

this mismatch at large thickness is only 6.85b where b is
the Burgers vector. Since the actual spacing must be an
integral value, relatively large local fractional fluctuations
in D will be built into the network in order to achieve
nonintegral values of average D. This raises the energy of
the real network (analogous to zero-point vibrations in a
quantum oscillator). However, the majority of the ffuc-

are constants. The compressibility is positive and de-
creasing with decreasing D at small spacings. This pro-
vides a quantitative prediction of the amount by which
the network is more resistant to a given amount of
compression than to the same amount of extension. If
the entropy of the dislocation network is estimated, free
energies can be determined and other thermodynamic
quantities such as the equilibrium fluctuations in net
spacing can be determined.

In heavily mismatched materials more efficient strain
relief is possible as pure edge-type dislocations form
along the perimeter of three-dimensional islands (pure
edge-type dislocations relieve twice as much strain as
60'-type dislocations). Strain relief generally occurs for
very thin layers prior to island coalescence. The intro-
duction of dislocations from the film edge results in a net-
work in tension. The dislocations are only added when
an excess strain energy sufficient to drive their formation
at the film edge is available. This energy is expected to be
very low since the dislocation can be formed during the
addition of adatoms to the island. ' ' Thus the disloca-
tion network in these materials can be expected to have
nearly perfect spacing at island coalescence [the E(D)
curve exhibits a sharp minimum] and to be in relatively
uniform tension.

The formation of a pure edge-type dislocation network
has been observed for the InSb/GaAs system for which
the bulk lattice mismatch is 14.6%.' A network within
precoalescence islands of 30 nm height was observed to
be well ordered and at nearly the spacing required for
complete strain relief, as shown in Fig. 5. Furthermore,
the dislocation spacing is nearly perfectly uniform to the
edge of the islands even though the height of the island is
changing rapidly there. The final dislocation spacing for
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FICi. 5. Cross-sectional transmission electron micrograph
showing a lattice image of a 13-nm-high InSb island on a GaAs
surface. The zone axis of the image is {110)and fringes in the
image are {111)planes. The bright points along the heterojunc-
tion indicate the presence of misfit dislocations. The disloca-
tions are pure edge type with an average spacing of one every
seven {111)planes.

tuations in D will occur due to misalignment of the net-
works in adjacent islands upon coalescence. The effects
of island coalescence on the network are planned to be
considered in a separate publication.

To complete this section, we consider the factors deter-
mining the kinetic barrier to misfit relief. In all cases,
dislocation motion can be thermally activated. Thus
growth of mismatched systems at elevated temperatures
increases the rate of strain relief and decreases the rem-
nant strain. A detailed theory relating this temperature
dependence to remnant strain has been developed by
Dodson and Tsao and may be found in Refs. 10 and 11.
When strain relief occurs by loop nucleation, the pres-
ence of stress concentrators such as steps and other de-
fects reduces the energy barrier substantially. Thus
growth of smoother surfaces and interfaces on relatively
well oriented substrates may increase the thickness at
which strain relief would occur by loop expansion.

B. Density of misfit dislocations with film thickness

L represents the average separation of the threading
dislocations when the loop ceases to expand and is as-
sumed to be much larger than D and much smaller than
the wafer dimension. Clearly, the fewer pinning points in
the crystal available to halt loop expansion the fewer
threading dislocations will be introduced. The density of
threading dislocations in a fixed unit of area will scale
roughly as the square of the pinning site density halting
loop expansion. It is assumed in the following treatment
that the pinning site density is constant and loops expand
to a fixed size independent of threading-dislocation densi-
ty. An alternate assumption would be that the loop di-
mension scales with threading-dislocation density, which
may be more accurate at high dislocation densities near
the interface.

The rate of addition of threading dislocations decreases
as film thickness increases. However, in the absence of a
mechanism for eliminating threading dislocations the to-
tal population of threading dislocations in the film would
always increase. From transmission electron microscopy
evidence it is clear that the density of these dislocations
decreases rapidly with distance from the heterointer-
face. ' For this to occur it is necessary that threading
dislocations react to be eliminated. This is equivalent, for
threading dislocations propagating to the surface, to re-
quiring that dislocation trace steps on the surface be el-
iminated by reaction. A dislocation loop originating at
the heterojunction but ceasing to expand prior to reach-
ing the surface would lead to threading dislocations ap-
pearing to terminate in the film. This could happen ei-
ther spontaneously or due to a reaction with another
loop. The order of the process of terminating threading-
dislocation propagation is given by the linear density of
dislocations involved in the termination. If the order of
the process for terminating the propagation of threading
dislocations is n, the rate of elimination of threading
dislocations per unit length d (N /L)/dh will be approx-
imately

d(N+ /L)
dh h b cosP

(24)

Following the initial strain relief achieved through
sources requiring low energies to operate, the relief pro-
cess is thought to proceed through the formation of dislo-
cation loops. These typically include a segment of misfit
dislocation, a surface trace, and two threading segments
if the loop does not reach the sample perimeter. The
misfit segments must fit into the existing network and are
likely to encounter some obstacle to extension before
reaching the edge of the crystal. Hence the number of
threading dislocations introduced by addition of a seg-
ment of misfit dislocation is roughly 2. Assuming this to
be the case, the density of threading dislocations in the
film can be estimated as a function of thickness from Eq.
(19).

The rate of addition of misfit dislocations per unit
length (orthogonal to the added dislocation lines) at large
thickness is inversely proportional to h . The rate of ad-
dition of threading dislocations per "unit length" I is
twice the rate of addition of misfit dislocations or

d (N /L)
dh

N,=R
L

(25)

d(N, /L)
dh h b cosP

—R
L

(26)

Near the heterojunction little interaction of threading-
dislocation segments has occurred and few are eliminat-
ed. There can be no elimination of threading dislocations
very near the interface as this would also necessarily
eliminate the strain relieving dislocation. Thus the rela-
tive recombination probability R decreases to zero near
the interface. Equation (26) with R =0 is exactly soluble
and yields

where X, is the total number of threading dislocations
available to interact and R is the probability per unit film
thickness for this elimination. The net rate of change of
threading-dislocation density at the film surface is thus
d (N, /L)dh =d(N+ /L)/dh —d (N /L)/dh, or com-
bining Eqs. (24) and (25), for h ))h,
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FIG. 6. Threading-dislocation densities at the heterojunction
where no dislocation reaction has occurred and at the film sur-
face calculated by solution of Eq. (26) assuming a second-order
dislocation recombination process, n =2.

FIG. 7. Shows the calculated strain relieved (which is pro-
portional in this model to the threading-dislocation density at
the heterojunction) and the experimentally observed values
from Ref. 15 for a Sio,Geo, /Si(001) structure.

N(h) 2'(1 —h, /h)
L h, b cosP

(27)

at the interface. This threading-dislocation density al-
ways increases as the film grows.

When h ))h, the rate of addition of dislocations be-
comes nearly zero. In this limit, for finite R, Eq. (26)
reduces to d (N, /L)/dh = —R (N, /L)", yielding

1V, =[R(h —h )(n —1)]' "
L C

for n ) 1, at the film surface. When n = 1,

(28)

N(h)
L

=e (29)

The threading-dislocation density at the film surface
initially rises as dislocations are formed but then de-
creases as the rate of threading-dislocation removal be-
comes greater than the rate of dislocation introduction.
The dislocation distributions at the surface and near the
heterojunction are plotted in Fig. 6 assuming n =2. The
distribution between these two limits will fall between the
plotted curves and will decrease according to Eq. (28) at
large h. The progression of curves from the surface limit
to the heterojunction limit (R =0) depends on the way in
which R changes with distance from the interface and
may be affected by changes in I. There are undoubtedly
a large number of mechanisms by which threading dislo-
cations can interact and cease to propagate as the film
grows. The exponent of N, in Eq. (25) depends on the or-
der of the interaction while R is an empirical constant
which accounts for all of the reactive mechanisms. Thus
both R and the exponent X, will be difficult to calculate a
priori without a detailed understanding of the mecha-
nisms by which threading dislocations are eliminated.
However, by fitting experimental data it should be possi-
ble to determine both R and the exponent n. With infor-
mation concerning R and n, a dominant mechanism of
threading-dislocation formation and removal could be de-
duced.

Two variables of strain relief are easily observed in
mismatched systems, the total strain relieved (by measur-
ing the film lattice parameter in the interface plane), and
the etch-pit density at the surface giving the number of
threading dislocations reaching the surface. The latter is
probably composed of a set of dislocations propagating
from the substrate of essentially fixed quantity plus a
number of threading dislocations introduced during
strain relief. Hence it should be possible to estimate
N(h) from the etch-pit density after subtracting a con-
stant number of intrinsic defects propagating out of the
substrate. The number of threading dislocations at the
interface will be proportional to the misfit relieved and
increases according to Eq. (27) at large film thicknesses.

Based on the misfit relieved N(h)/L at the interface
can be estimated. To provide the proper asymptotic be-
havior, the value of 2'/(h, b cosP) in Eq. (27) must
equal 1/D, which is calculable for a given system. The
remaining parameter R is determined by fitting the solu-
tion of Eq. (26) to N(h) at the surface estimated from
etch-pit densities. We have carried out half of this pro-
cess for Geo &Sio &

for which values of fractional misfit re-
lieved are available. ' The result is shown in Fig. 7. The
fit is excellent at large values of h but deviates at lower
values for which Eq. (26) is not valid, L is probably not
constant, and D is far from D . To determine the
recombination mechanism for threading dislocations it
will be necessary to have measurements of strain relieved
and etch-pit density in a single set of films.

IV. CONCLUSIONS

The energy minimization formalism originally pro-
posed by van der Merwe for calculating strain relief in
lattice-mismatched heteroepitaxial systems has been ex-
tended to include dislocation interactions. From this the
energy as a function of dislocation spacing has been cal-.
culated and shown to include an attractive and repulsive
region. This permits estimations of the dislocation for-
mation energy and Peierls barrier to network ordering
from measured dispersions in dislocation spacings. It
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further explains why the dislocation network is better or-
dered in highly mismatched systems than in weakly
mismatched heterostructures. It has been shown that
thermodynamic functions such as the compressibility of
the dislocation network can be calculated from the
energy —dislocation-spacing relationship. A formula re-
lating the equilibrium dislocation spacing to film thick-
ness, mismatch, and misfit-dislocation character is also
calculated. Finally, the density of threading dislocations
is calculated both at the heterojunction and at the film
surface assuming a threading-dislocation reaction pro-
cess. The interface threading-dislocation behavior is

shown to be in good agreement with the fractional strain
relieved in Si„Ge& /Si structures.
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