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Photovoltaic effect in quantum adiabatic transport as a way to pump electrons
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We study the photovoltaic effect due to gate-voltage modulations in an asymmetric constriction. Tak-
ing a simple system as an example, we show that, under certain conditions, an integer amount of elec-
trons per absorbed photon or per cycle can be transmitted. The interaction with the modulation occurs

mainly in some resonant points along the constriction.

With the help of modern semiconductor heterostruc-
ture fabrication techniques, low-dimensional nanostruc-
ture devices can be realized, that consist of a two-
dimensional electron gas (2DEG) in which an electrostat-
ically induced geometry is defined. The electron trans-
port through such a device shows a wealth of interesting
phenomena, reflecting its quantum coherent nature.!
This is due to the fact that the typical lengths of these
geometries are of the order of the Fermi wavelength A,
whereas the inelastic length /; in pure materials can
exceed Ap by several orders of magnitude. Lateral
confinement on a small length scale induces one-
dimensional transport channels (subbands). Scattering
between transport channels is almost completely
suppressed, if the geometry is slowly varying in the trans-
port direction. We then enter the regime of quantum adi-
abatic transport.? Each transport channel (with index n)
is described by an effective one-dimensional potential
U,(x). The electron motion can be treated in a semiclas-
sical approximation. Depending on the position of the
Fermi energy with respect to the maximum of U, along
the device, the channel is closed or open. If it is open, it
contributes to the conductance the unit e?/h. A well-
known manifestation of these principles is the conduc-
tance quantization in a narrow constriction.

The device itself is connected to electron reservoirs* by
perfectly conducting leads. The reservoirs act as source
and sink for electrons. At zero temperature, electrons
with energies up to the Fermi level are injected into the
leads. Usually, electron transport is achieved by applying
a bias voltage, i.e., by keeping the electron reservoirs at a
different chemical potential. However, it has been shown
that transport can also be obtained with the help of a
time-dependent gate-voltage or a time-dependent magnet-
ic flux.>"® It turns out that a controllable electron
current of the order of one electron per cycle or per flux
quantum can be realized without an applied bias voltage
in these so-called electron pumps.

In this paper we consider a single, asymmetric con-
striction, to which a gate-voltage modulation is applied.
We discuss the possibility for this system to show the
photovoltaic effect. This effect occurs, e.g., in a homo-
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geneous bulk solid® and in small metallic constrictions,'°

as the appearance of a direct current under uniform il-
lumination. A necessary condition for this effect is the
absence of a spatial symmetry, leading to an asymmetry
of the elementary electronic processes. A device like the
photodiode, for instance, is based on the same principle.

In the case of a modulated constriction, inelastic ab-
sorption and emission may induce intersubband scatter-
ing and hence destroy adiabaticity. This scattering takes
place mainly in resonance points, where the level spacing
between the subbands involved equals the modulation fre-
quency o and the velocities in both subbands are equal.!!
If there is no mirror symmetry with respect to a plane
perpendicular to the transport direction of the constric-
tion, these electronic processes are noninvariant under
spatial inversion within the one-dimensional transport
channels. As a result, they predominantly occur in one
particular resonant point, and a frequency-dependent net
current of the order of a few electrons per cycle can be
realized without an applied bias voltage.

A time-dependent modulation in general can give rise
to a wealth of inelastic and elastic transitions, leading to
a variety of transport phenomena. Without going into
details, we will focus on the possibility of controllable
electron transport in the system considered above. We
will present the conditions under which a fixed amount of
electrons transmitted per cycle and per absorbed photon
can be realized.

Consider the geometry depicted in Fig. 1. In the adia-
batic limit d /R <<1,% where d is the local width of the
constriction and R the local radius of curvature, the nth
transport channel is described by the effective potential
U,(x), shown in Fig. 2. If all the open transport chan-
nels are transmitted with unity probability, the adiabatic
wave function at energy E in subband » can be written in
the WKB approximation as

RS

VY, p(x)= (1)

with the classical action

S,p(x)= [ dx'k,g(x"),
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FIG. 1. 2DEG with an asymmetric constriction, character-
ized by a local width d and a local radius of curvature R. To
the gate dc voltage V, a small additional modulation V(z) can

be added. The gates are modulated with a relative phase shift of
, such that the constriction is only shifted.

defined with the help of the local momentum
k,g(x")=V2m[E—U,(x)] .

The adiabatic limit is valid on the adiabatic length V'dR ;
outside this region, geometrically induced mixing of
transport channels becomes important.

We consider a gate-voltage modulation which shifts
the constriction by an amount 8d, without changing the
width d. This can be obtained by applying a modulation
to both gates of opposite sign. The effect of this is de-
scribed by a time-dependent matrix element!!
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FIG. 2. Set of independent one-dimensional effective poten-
tials U,(x) as a function of x for the asymmetric constriction of
Fig. 1. The asymmetry gives rise to a different subband splitting
AE,, right and left to the maximum. One saddle point is situ-
ated at x;.

will occur.

It is instructive to study the effect of the time-
dependent matrix element (2) perturbatively in first or-
der.!! The solution of the time-dependent Schrodinger
equation is written as

Y, (x,t)=e EFa,(x,0)¥,g(x) .

In first order, the amplitude a,(x,?) then satisfies the
semiclassical equation

A, (x)cos(et) . (2)
. . .0 (1) i knE(x) d
This matrix element accounts for possible scattering pro- 157 %n (x,0)=— Py m ox
cesses from channel n’ into n. If the lateral confinement
of the constriction is modeled as an infinite square well, k =(x)
9 Kne (1
we have +-a——— a, '(x,t)
x m
)
A, (x)=—2 " 7:13811 = —4nn'Eg(x)%‘—i— (3) A (x)cosl t)M
m pi(x)cos(@ Y, () @)
which is valid if 8d /d <<1. The ground-state energy in
the well is E,(x), m is the effective mass of the electron. .
Since the perturbation merely shifts the constriction Its solution reads
peri(?dically back and forth, the only allowed transitions a,(,”(x,t)= A’Eil)(x,w)eiwt_i_ A'("_l)(x’ —w)e ", (5)
are intersubband processes between even and odd states
in the constriction. No intrasubband processes (n=n") where
J
) A,i(x")
—iw (x) , . x!’ Ll g ”" ” n
A},})(x,w)=—i%e TaE fjmdx exp 1f_wdx [kig(x")—kup _olx")] K p(x") (6)

and the traversal time

I ,_m
T,,E(x)—f‘wdx k()

This describes inelastic scattering from an incoming
transport channel i into an outgoing channel » by an in-

[

elastic first-order process involving a quantum . The
probability for intersubband scattering can be obtained
by performing the integral over x' in Eq. (6) in a saddle-
point approximation. The saddle-point condition reads
kig(x,)—k,g_,(x,)=0. This means that the main con-
tribution for scattering from subband i into n originates
from the point x,, where the velocities in both subbands



11 508

are equal. The matrix element (3) at the saddle point is
given by A,;(x,)= —4w(ni/|n*—i?|)(8d /d). We find
2 2

ni , 7

oo [ 2
trav d

where 7,.,, is the time needed to cross the constriction.
We will go beyond perturbation theory in the applied
modulation by taking the neighborhood of the saddle
point into account via a linearization around x;.

The asymmetric constriction in Fig. 1 can be charac-
terized by the fact that the typical subband splitting right
and left to the constriction is different: AE, ,7AE, .
We operate at frequencies AEy, ;~w<AEg,,, such
that the inelastic intersubband transitions occur only left
to the constriction. In the remaining part of this paper
we assume that the scattering occurs only between the
two lowest subbands » =1,2. All the other subbands are
completely closed. The time-dependent Schrodinger
equation can be written as the coupled set:

| 40, 0)]>

|n2—i?|

—1 82

0
—W =
5 1(x,8) Im a2

3 +U,(x)

\I,l(x, t)

+A12(x)cos(ﬁ)t )\Ilz(x; t) ’

-1 3

. 0 _
i—W,(x,t)= 2m ax?

ar + U,(x)

\Pz(x, t)

+ Ay (x)cos(wt )W (x,1) ,

which we solve by a wave function of the form

W (x,t)=e Fa (x)

Xexp éfj dx'[klE(x')+k2E+m(x')] )

—i(E+w)
Wy(x,t)=e “a,(x)

X exp éfj dx'[kig(x")tkyp i (x")]

These wave functions are taken at different energies E
and E+w, to allow for inelastic transitions between
them. Substituting (9) into (8), using the semiclassical ap-
proximation and linearizing around the saddle point x;
we find

2iksjia,(y)=~Bsya1(y)+mAu(xs ay(y)
; (10)
2iks2;a2(y)=Bxya2(y)+mAzl(xs Jai(y),

where y =x —x, k, is the momentum at the saddle point
and B,=mw/V'dR. This equation describes a level-
crossing problem, as one encounters, e.g., in the context
of Zener tunneling.'? By studying the asymptotic behav-
ior of the solution a, and a,, we find the transition proba-
bilities P, and P,; for intersubband processes under ab-
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sorption and emission, respectively, of a quantum w:
PL(@)=P, (0)=P(w)=le " * (11)

with a,=m?2A%(x,)/2k,B,. Note that a first-order expan-
sion in A? yields the result (7). The fact that P, =P, is
due to the fact that the Hamiltonian is invariant under
time reversal.

We can calculate the current through the constriction
by subtracting the current from right to left I, from the
corresponding current I,,, taking!!

Ilrzidede’f,(E)[l—f,(E’)]T,ff(E’,E) . (12)

The current which flows through the constriction is
characterized by a scattering probability T/ E',E) for a
particle with energy E in subband i, transmitted from left
to right into subband n with energy E’. The Fermi fac-
tors f, and f; indicate the reservoirs, right and left to the
constriction, respectively, that are in thermal equilibri-
um. Due to time reversibility, the scattering probabilities
satisfy

TNE',E)=T/I(E,E")
and the total current reads

=£ ’ — ’ rl ’
I Wdede[f,(E) fAENITME,E). (13)

Suppose the lowest subband is completely transmitted,
whereas the second subband is closed. Neglecting the
dependence of P(w) on E, we perform the integration
over energy in Eq. (13). We find the total current,
pumped through the constriction by the modulation

} . (14)

It is worthwhile to emphasize that the exponent in (14)
can be made arbitrarily small. If o >>1/7,,, which may
well be the case, only slight shifts, 8d /d <<1, cause the
probability P(w) to be almost unity. If P(w)=1, the
current is

I=—4wP(w)
m

2
6d

d

e
=——wl—exp
T

— 32
9 TOTray

I=—20o=—2e/T, (15)
o

where T is the period of the modulation. The fact that
two electrons are transmitted per cycle is due to the two-
fold spin degeneracy of the subband. The net electron-
current flows from right to left, since the resonant point
is situated left to the constriction. When a photon is ab-
sorbed in this resonant point, it produces an electron-hole
pair. There are two possibilities: (i) the electron moves
from left to right in the second subband and the hole
from right to left in the first subband or (ii) the electron
moves from right to left in the second subband and the
hole from left to right in the first subband. If both sub-
bands are open, these processes compensate one another.
If the upper subband is closed, the electron in process (i)
is reflected at the constriction and does not contribute to
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the current. As a result, one electron per two absorbed
photons is transmitted from right to left in this case. The
importance of the asymmetry is clear from the discussion
above: a second saddle point right to the constriction
would provide an opportunity for electrons, transmitted
from left to right to compensate the effect. In general we
always expect a net current if the Hamiltonian is nonin-
variant under the transformation x — —x.

In a real experiment, both intersubband and intrasub-
band processes will occur, since perfect parity for lateral
confinement will not be realized. However, at frequencies
exceeding 1/7,,, in an adiabatic constriction, the proba-
bility for intrasubband processes is exponentially small.
Another complication will be that transitions between
subbands with higher indices n > 2 will occur. As long as
only the lowest subband is transmitted, these transitions
will not change the effect qualitatively. In a typical con-
striction,® the subband splitting is about 1.3 meV, leading
to frequencies needed to see the photovoltaic effect that
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are of the order of 10'2 Hz. We can scale down these fre-
quencies by increasing the system size.

In conclusion we discussed the possibility of finding the
photovoltaic effect in a modulated constriction without
mirror symmetry. If the modulation only shifts the con-
striction back and forth without changing its width, in-
elastic intrasubband processes are induced at resonant
points near the constriction. Due to the asymmetry of
the constriction the transitions preferably occur in one of
these resonant points, resulting in a controllable net
current through the device, which is two electrons per cy-
cle under appropriate limiting conditions.
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