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Modal analysis of transport through quantum point contacts using realistic potentials
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We have studied conduction through quantum point contacts using a coupled-mode analysis and real-
istic potentials. Disorder causes transport to be strongly nonadiabatic with rapid intermode scattering.
The conductance can remain well quantized because of the predominantly forward nature of the scatter-
ing. Resonances in the channel lead to strong indirect backscattering that cannot be described by the
Born approximation. This degrades quantization in point contacts and reduces the mobility of narrow

wires.

The observation of the quantized conductance of a nar-
row constriction or ‘“‘quantum point contact” formed in a
two-dimensional electron gas "22DEG) stimulated a rap-
id growth in the study of electron transport in quasi-one-
dimensional systems.® Much of the modeling of such de-
vices has used the recursive Green’s-function technique.*
This is a powerful method but gives little direct insight.
The quantization of electrons into transverse modes leads
naturally to an analogy with electromagnetic waveguides,
and transport can be viewed in terms of the local trans-
verse modes. This gives a much more physical picture,
and has been extensively used near the adiabatic limit
where intermode scattering is weak.’ However, recent
numerical calculations® have shown that the ionized
donors in a heterostructure make an important random
contribution to the potential in electron waveguides. The
nature of transport in such potentials is expected to be
nonadiabatic.” It is important to gain a physical insight
into the scattering mechanisms of real quasi-one-
dimensional structures.

We have analyzed electron transport in realistic models
of point contacts in terms of local transverse modes
without making the adiabatic approximation: the full in-
termode coupling is retained. Our model includes the
guiding potential from patterned gates and the random
potential from ionized donors. We find that the random
contribution to the potential makes transport strongly
nonadiabatic, even in samples that show well-quantized
conductance. Scattering is predominantly forward be-
cause the random potential is slowly varying: an electron
changes mode but keeps going in the same direction,
preserving the conductance. A major cause of poor
quantization is indirect backscattering that occurs
through resonances trapped in bulges in the channel.

For the modal analysis, take coordinates so that
current flows along x, with transverse confinement in y.
At each value of x, solve the transverse Schrodinger
equation in y to find the eigenfunctions 0,,(y;x ) and ener-
gies €,(x). The dependence on x arises because the trans-
verse potential varies along the length of the structure.
The full wave function at energy E is then expanded in
terms of these transverse eigenfunctions (modes),

“

V(x,p)=3 {c, (x)exp[ik,(x)x ]

+c, (x)exp[ —ik,(x)x]}¢,(y;x) , (1)

where ¢7(x) is the amplitude of the electrons traveling
forwards (+) or backwards (—) in the n™ transverse
mode. The propagation constants

k,(x)=1"2m[E —¢,(x)]/#

may be real or imaginary, corresponding to propagating
or evanescent modes. A transverse mode energy €,(x) in-
creases when the point contact narrows, and may reach a
point where €,(x)=E. At this point k,(x) falls to zero,
the mode is cut off, and the electron is reflected unless it
can tunnel through the narrow region. There are n,,(x)
propagating modes at each cross section, of which n;,
are “conducting” modes that are never cut off and propa-
gate through the whole system.

We have developed a method for determining the
modal occupancy in a numerically stable and efficient
manner.® Substituting Eq. (1) and the potential profile
into the two-dimensional Schrodinger equation leads to a
coupling between the transverse modes that is omitted
from the adiabatic approximation. The resulting equa-
tions form a two-point boundary-value problem with
each mode contributing two equations. The two ex-
ponential growth classes of the solution can be integrated
without numerical instability to provide the amplitudes
cf(x) throughout the system. The results are expressed
in terms of ¢ and r matrices, defined as usual for propaga-
ting modes by
ko(x) "% ef(x)
tyi(x)= (2)

ki (x=0) | ¢'(x=0)

and

N BTG I ) 3)
T (x=0) | ¢f(x=0)
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where x =0 is the left-hand edge of the system. Then
|t,;(x)|? is the probability that flux input in mode j is
traveling forward in mode k at x, and similarly |rkj(x)|2
is the probability that flux input in mode j is traveling
backward in mode k at x. The dimensionless conduc-
tance [in units of (2e2/k) ] is given in terms of the overall
t matrix by G=Tr(¢t7t). The t matrix reduces to the
identity in an adiabatic system, and there is perfect
quantization with G=n_; .

We have applied this method to transport through the
central regions of quantum point contacts defined by split
gates, using realistic potentials. These potentials were
determined self-consistently by Nixon, Davies, and
Baranger’ using a semiclassical Thomas-Fermi approxi-
mation. They include the ionized donors in the n-doped
layer of the heterostructure, which produce a random po-
tential with long-ranged fluctuations that deform the
smooth potential from the gate alone. Parameters of the
structure were taken from Timp et al.° The gates are
600 nm long with a 300-nm gap between them; we
modeled these long point contacts so that we could dis-
tinguish events within the channel from those at the en-
trance and exit. Ten modes are retained throughout the
calculation, whether they are propagating or evanescent.
Ideal leads are attached to the system by extending the
potential profile at the left and right edges out to infinity.
Our conductances agree within a few percent with those
of Nixon, Davies, and Baranger,7 who used the recursive
Green’s-function method.

A well-quantized device with G=1 [curve B in Fig.
2(b) of Ref. 7] is illustrated in Fig. 1. The density of elec-
trons shows fluctuations caused by the random potential.
The number of propagating modes n,,(x) in Fig. 1(b) has
a minimum n_;, =1, consistent with the conductance.
To study the transport we define

a (x)=3 lt;(x)*, ag (x)=3 |ryx)|*. 4)
J J

Then ajf(x) is the probability of occupancy of the for-
ward (+) or backward (—) mode k at x along the con-
striction, irrespective of the mode in which the electron
entered the system. If transport were adiabatic, each
a;" (x) would remain unity until cutoff at which point its
flux would be entirely reflected into a; (x). At first sight,
Fig. 1(b) for the forward occupancy a; (x) appears to
support this. However, there is forward scattering after
the narrowest part of the point contact, when higher
modes become available. The occupancies of the
backward-going modes a; (x), shown in Fig. 1(c), are
also inconsistent with the adiabatic approximation. In
particular there is substantial occupation of the lowest
mode, which should be empty.

To study the scattering further, we have analyzed the
flux in terms of the modes in which the electrons entered
the sample [Figs. 1(d) and 1(e)]. Define

2

rkj(x) > (5)

2
k k
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so that b ji(x) is the probability that flux input in mode j
is traveling forward (+) or backward (—) at x, irrespec-
tive of which mode it is in at x. Thus b ji(x) resolves the
flux into input modes, whereas a (x) resolves the flux
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FIG. 1. Point contact with well-quantized conductance
G =1. (a) Electron density with 4.2 X 10'* m~2 between levels of
gray; (b) forward and (c) backward flux resolved into modes at
x; (d) forward and (e) backward flux resolved into input modes;
(f) origins of flux in the lowest mode. The number of propaga-
ting modes at each cross section, n, (x). is superposed on (b)
and (d).
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into Jocal modes at x. The absence of scattering in the
adiabatic limit implies b,,i(x)=ani(x). This is clearly not
the case. In particular, electrons the enter in the lowest
mode make a tiny (=2%) contribution to the conduc-
tance. The origins of the flux in this mode, the only con-
ducting mode in this system, are shown in Fig. 1(f). Most
electrons that enter the sample in this mode are rapidly
scattered out, but are replaced by electrons that entered
in higher modes so that the total flux remains unity. The
fractions contributed by the different incident modes
remain constant only in the narrowest region of the con-
striction, where n,(x)=n_; . This is the sole region
where transport can be said to be adiabatic. Even this is
not true in a wider constriction with n; > 1, where we
have found scattering between the conducting modes in
other well-quantized samples. In contrast, we have also
studied a smooth potential with no randomness. In this
case the adiabatic approximation held to within a few
percent.

The results in Fig. 1 show that it is possible to have
well-quantized conductance even when scattering is
strong and the adiabatic approximation fails. Two condi-
tions must be met for quantization: the conducting
modes must be fully occupied when they reach the nar-
rowest part of the constriction, and they must not be
backscattered after this point. These conditions are
fulfilled in our system because forward scattering is dom-
inant, which in turn follows from the slowly varying na-
ture of the random potential in space. Forward scatter-
ing allows a “‘compensating” process to occur to the left
of the constriction. Figure 1(b) shows that all the
forward-going modes are fully occupied until they reach
cutoff. Electrons that scatter out of one of the conduct-
ing modes into a higher mode can therefore be exactly
balanced by electrons scattering via the inverse process.
This would not be true if backscattering were important,
because the backward-going modes are not fully occupied
and the two rates would not balance. Compensation was
suggested by Payne,'° who studied a channel whose
width changed with time. Pure forward scattering is also
analogous to a unitary change of basis, under which
Tr(t't) is invariant. !!

We have also studied a poor device to investigate the
breakdown of quantization. Figure 2 shows transport
through a point contact which is identical to that of
Fig. 1 except for a different random distribution of ion-
ized impurities [curve C in Fig. 2(b) of Ref. 7]. A slight
change in gate voltage from V,=—0.724 V (Figs. 2(b)
and 2(c)] to —0.720 V [Figs. 2(d) and 2(e)] leads to a de-
crease in conductance from G=1.71 to G=1.55,
whereas an increase would have been expected as the
channel becomes wider and deeper. The electron density
and n,,(x) show a bulge for 400 nm <x < 500 nm, to the
right of the narrowest region. Only a small excess densi-
ty appears in this bulge when ¥, =—0.724 V [Figs. 2(b)
and 2(c)], but a large density builds up at ¥V, =—0.720 V
[Figs. 2(d) and 2(e)], revealing a resonant state. Electrons
are forward scattered from one of the conducting modes
into the extra mode that propagates within the bulge.
They are reflected when this mode cuts off at the ends of
the bulge to form the resonance. Some electrons are “for-
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ward” scattered out of the resonance into the backward-
going conducting modes, giving an indirect backscatter-
ing process which lowers the conductance. Resonances
can instead raise the conductance if electrons enter the
resonance by tunneling rather than scattering.” These
in-channel resonances should be distinguished from that
seen in mode 3 of Fig. 1, which occurs when the mode is
reflected at cutoff and does not affect the conducting
states.

We have estimated some scattering lengths in this
structure analytically using the Born approximation and
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FIG. 2. Point contact with poorly quantized conductance.
(a) Electron density with 4.2X 10'* m~2 between levels of gray;
(b) forward and (c) backward flux at V,=—0.724 V, G=1.71,
with n,,(x) superposed on (b); (d) forward and (e) backward flux
at V,=—0.720 V, G=1.55, with n,(x) superposed on (d).
Note the resonance within the bulge between 400 and 500 nm
present in (d) and (e) but not in (b) and (c).
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screened ionized impurity potentials. An unconfined
2DEG has a transport mean free path of 3.1 um, while
the unweighted mean free path is only 22 nm. There is a
large difference because the random potential is slowly
varying. For a wire confined in a parabolic potential with
#iwy+1 meV, which roughly models the point contact,
the unweighted mean free path rises to 0.1 um because
scattering through very small angles is suppressed. Fig-
ure 1(f) shows that most electrons that enter the point
contact in mode 1 travel less than 100 nm before being
scattered out, in reasonable agreement. The transport
mean free path, which includes only backscattering, rises
to 10 um.

None of these length scales tells us the maximum
length of a point contact for good quantization, which ex-
periment’ and simulation’ agree to be about i um.
Moreover, the resonance in Fig. 2 makes it clear that the
Born approximation cannot accurately describe scatter-
ing in this quasi-one-dimensional system. The problem is
that successive scattering events are assumed to be in-
dependent, with no interference between them. It is
known from field theory'? that the assumption of in-
dependent scattering events fails in one dimension, and
we believe that the resonant backscattering process pro-
vides a clear physical demonstration of this. We suggest
that the maximum length of a point contact is set by the
correlation length of the random potential— the size of a
typical bulge—if resonances are indeed the dominant
backscattering mechanism. This is about 0.2 um for our
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potentials. This is in contrast to Glazman and Jonson, !*
who explain the breakdown of quantization entirely
within the Born approximation. Our results also cast
doubt on the prediction that electrons in narrow wires
should have an enhanced mobility,# since this too was
based on the Born approximation.

We have shown that the random potential in a real
quantum point contact leads to rapid intermode scatter-
ing. The adiabatic approximation fails badly, but con-
ductance can still be quantized subject to the less
stringent requirement of “compensated” scattering. Res-
onances can cause strong backscattering and lead to poor
quantization. They arise from the quasi-one-dimensional
nature of the system, and show that scattering cannot be
described within the Born approximation. The maximum
length of a point contact for good quantization is set by
the correlation length of the random potential if reso-
nances provide the dominant backscattering.
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