
PHYSICAL REVIEW 8 VOLUME 44, NUMBER 20 15 NOVEMBER 1991-II

Nonexponential corrections to the Zener tunneling rate
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In artificial structures, such as superlattices, arbitrary relationships between band-structure parame-
ters can be achieved, enforcing the need for a reinvestigation of the interband transition of a crystal elec-
tron originally studied by Zener. We report the existence of nonexponential corrections to the Zener
tunneling rate and demonstrate their importance in parameter regimes relevant for quantum-transport
properties of superlattices, such as Bloch oscillations. Oscillations in the I-Vcharacteristic of a superlat-
tice are predicted with periods determined by the band-structure parameters.

Recent advancement in microfabrication of superlat-
tices' has reached the regime where a direct observation
of the long-predicted Bloch oscillations should be possi-
ble. However, as we shall demonstrate in the following,
interband transitions, which can be the dominant break-
down mechanism for the oscillations, can occur in super-
lattices with a substantially altered rate in comparison to
the generic situation in semiconductors. Zener tunnel-
ing was originally contemplated in the context of bulk
insulators, which, as we show, in the present context are
characterized by their large bandwidths compared to
their energy gaps. In superlattices small bandwidths
occur and we shall therefore reconsider the Zener tunnel-
ing theory in order to be able to deal with arbitrary band-
widths. As the present analysis reveals, in addition to the
breakdown feature of the interband transition rate, oscil-
latory behavior will occur as a function of the applied
field. This feature of the interband transition rate is man-
ifested both in transport and optical properties of super-
lattices. Furthermore, the finite-bandwidth effect we
shall discuss is relevant to Bloch oscillations in crystals,
Josephson and normal junctions, and has implications
both for the dynamics of an electron in a metallic ring
driven by a changing magnetic Aux and interband transi-
tions in an optical band structure.

The energy eigenvalues of extended electron states in a
crystal form energy bands separated by energy gaps.
When an external electric force is applied to the electron,
it gives rise to coupling between the energy bands and
causes interband transitions. The occurrence of Bloch
oscillations corresponds to the neglect of such interband
transitions corresponding to treating the band index as a
conserved quantity. The interband transition rate was
first calculated more than half a century ago by Zener,
who viewed the transition as tunneling through the gap
region, and the phenomenon has since been referred to as
Zener tunneling. The Zener tunneling rate has subse-
quently been calculated using quite differing methods.
Although the results differ in details depending on as-
sumed band structure, the Zener tunneling probability is
essentially of the form exp( Fo/F), where F is—the ap-

plied force and Fo a combination of the energy gap, lat-
tice constant, and the effective mass of the electron, as
standard textbook results show. In this Brief Report, we
demonstrate that the interband transition rate exhibits
oscillatory behavior as a function of the inverse field
strength 1/F, with periods determined by the lattice con-
stant, energy gap, and bandwidth, when proper account
of a finite bandwidth is taken.

The Hamiltonian of an electron in a crystal experienc-
ing an applied electric force F is

g2 Q2
+U(x) Fx . —

2m Bx

Here, m is the free-electron mass and U(x ) is the periodic
potential with periodicity d. A one-dimensional crystal is
considered here, in accordance with assuming the applied
electric field along a reciprocal-lattice vector. Assuming
that the electron at some initial time (taken to be at time
t =0) is in a given Bloch state, we ask for the probability
that the electron is to be found in a different band after
one Block period T, T=h /Fd. The corresponding tran-
sition amplitude from band n' to band n in one Bloch
period is given by

f dt X„„.[k(t)]

X exp — dt' c„k t' —c.„.k t'

corresponding to the Houston expansion. Here,
X„„,(k)= i fdx u„'(k, x)(B/Bk)u—„.(k, x) is the force-
induced interband coupling, with u„(k,x ) being the spa-
tially periodic part of the Bloch function, and E„(k ) the
corresponding energy eigenvalue. The temporal relation
between the crystal momentum and the force is
k ( t ) =Ft /fi. For weak applied force F, the crystal
momentum of the electron changes slowly, and Eq. (2)
for the transition amplitude is the corresponding adiabat-
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ic expression. One expects that in the case of a strong
force F, the adiabatic expansion is not valid for consider-
ing the long-time behavior. A study of the dynamics of
an electron in this case can be found elsewhere.

For an arbitrary periodic potential v(x ), the integral in
Eq. (2) is intractable, but we shall, by treating exactly a
relevant model Hamiltonian, be able to obtain the general
behavior of the transition amplitude. We consider, there-
fore, a two-band model that contains the essential physics
and permits the integration in Eq. (2) to be performed.
The two-band model is described by the Hamiltonian

X [ Wn( n, p n,p+I+ pn+I n, p )
n =1,2p= —oo

+(s„Fdp )a—„pa„p ]

+FX g (al a2 +a2 a, p),

where the first term describes the hopping of the elect."on
in the presence of the applied field and the second term
describes the interband coupling. In the above site repre-
sentation, the two-band model corresponds to two orbit-
als at each site. For the orbitals n = 1 and 2,
W„=(—1)"W/4 are the hopping constants correspond-
ing to tunneling between neighboring sites (labeled by in-
teger p), and s„=(—I )"s are the on-site energies. The
force-induced coupling between the two orbitals is FX
and is for convenience chosen at the same site. Within
this model, dispersion relations for the bands n =1,2 are

iX—J dk exp [2Ekd+ Wsin(kd)]
0 Fd

(4)

The transition amplitude 3 for the chosen model can be
expressed in terms of a known function, viz, the Anger
function J (z), ' 3 =( 2~iX/—d )e' "J,(z), where
v=2'/Fd and z = W/Fd. Despite the compact form, the
field dependence enters in a complicated fashion. In or-
der to make contact with known results and to systemati-
cally study corrections to the Zener expression, we first
consider the low-field limit where the voltage drop across
the unit cell is smaller than the bandwidth, Fd & O'. In
the low-field regime we obtain, by using the asymptotic
expansion of the Anger function, ', for the transition am-
plitude (from now on we drop the irrelevant phase factor)

2mX
& ( )

1+v/n

where J,(z) is the Bessel function. If we further assume
that Fd/b, is not in far excess of (b, /W)'~ (a further re-
striction only in the limit where the energy gap
b. =2E —W, is much smaller than the bandwidth), we can
use the tangent approximation for the Bessel function, '

and obtain

simple harmonics E„(k ) =( —1)"[E+(W/2)cos(kd )] with
bandwidth 8' and the matrix elements X21=X12=X are
real. Therefore, according to Eq. (2), the interband tran-
sition amplitude in one Bloch period is

1/2
2+X Fd

2~5(1+2 W/b. )
'" P'

F~
1+ arccosh 1+ — 1+28' 8'

8'
1/2 i

(2+ b, /W )Fd . rr( W+ b, )
sinm8' Fd

(6)

Expression Eq. (6) is valid for arbitrary relationship be-
tween gap energy and bandwidth. The limiting cases that
we now discuss are appropriate for difI'erent cases of ma-
terial parameters.

In the commonly prevailing situation in semiconduc-
tors where the bandwidth is much larger than the band
gap, 8'& 6, we obtain

1/4m*
A =X&m.F exp

hA

2 m

3F

' 1/2

g3/2

2FX . mW
W Fd

(7)

where, to compare with Zener's result, we have rewritten
the first term in the transition amplitude in one Bloch
period in terms of the efFective mass m *=2' /Wd . The
first term is Zener s result, which is the contribution near
the energy gap to the integral of Eq. (2). It exhibits the
breakdown feature and is, at small fields, exponentially

I

small. The second term is the result of a proper account
of the finite time to complete the transition, and although
this time is very long in the limit of small applied force,
this term can be the dominant one. The amplitude of the
second term will not be linear in the applied force F for
general forms of force-induced interband coupling and
energy dispersion relations, but the powerlike and oscilla-
tory behavior remains. We note that the difFerence be-
tween the result obtained here and Zener's result vanishes
when the bandwidth 8'becomes large, as a consequence
of the arbitrary large energy difFerences enabling the
phase factor in Eq. (2) to render the finite-time restriction
irrelevant, that is, there will be no contribution away
from the gap region because of the fast oscillation of the
phase factor, and we are left with the first term in Eq. (7),
the stationary phase contribution. The second term of
Eq. (7) is seen to exhibit oscillatory behavior in the in-
verse field strength 1/F, with a period equal to 2d /W.

In the limit where the bandwidth is smaller than the
band gap, Fd & 8'& 6, a situation achievable in superlat-
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tices, we obtain

2mX

d

1/2
Fd

2~6
Q2

Fd R'
2

Fd
sin

W Fd

We note that the nonexponential term dominates in this
parameter regime, and the transition amplitude exhibits
oscillatory behavior in the inverse field strength 1/F,
with a period equal to 2d /A.

In the high-field limit where the bandwidth is small
compared to the voltage drop across the unit cell,
W&Fd, a situation achievable in superlattices, we note
from the series representation of the Anger function, '

that the transition amplitude exhibits oscillations in the
inverse field strength 1/F, with a period equal to
4d/(6+ W). For example, in the case where the energy
gap is of the same order of magnitude as the bandwidth,
only the lowest-order term in W/Fd need be retained and
we obtain for the transition amplitude

2m.X cos[m(A+ W)/2Fd ]
d D 1+(b.+ W)/2Fd )D 1 —(b, + W)/2Fd )

l(p, 2I U(r ) 1,0) I',
P= Qo

(10)

where U(t) is the evolution operator corresponding to the
Hamiltonian given in Eq (3). .The intraband propagator
can be expressed in terms of the Bessel function"

where I denotes the gamma function. We note that the
breakdown feature of the transition amplitude is absent
in this limit.

The original point of view of Zener, that the interband
transition can be viewed as tunneling in real space, is
heuristic as it introduces a space-dependent band struc-
ture. Such an approach is incapable of treating the effect
of the finite-time restriction on the interband transition.
In the following we shall therefore calculate the inter-
band transition rate assuming the initial state to be not a
Bloch state but rather the complementary, a state where
the particle at the initial time is localized on one of the
lower orbitals. For such a localized initial state the inter-
band transition probability can be found by using the fact
that the Hamiltonian Eq. (3) is an exactly solvable one if
the last, interband, term is absent. The transition proba-
bility from a definite orbital 1 site (chosen to be p =0) to
an arbitrary orbital 2 site in time span t is

(p, n
l
Uo(t)ln', p') =5„„.[(—1)"i]~ ~ exp i (p —p')t —

(
—1)" t J~ ~

—sin
Fd
2A

(12)

and is apart from a phase factor periodic in time with the Bloch period. In the following we shall calculate the inter-
band transition probability assuming that we only need to take into consideration one interband hop. The transition
probability within one Bloch period, P( T), can then be given in terms of the Bessel function,

2

P(T)= m cos(ver)J (z)J (z) vrsin(ver) —[J (z)J (z)]2X a

P(T)=
d

exp

Again, using the tangent approximation for the Bessel function, we can obtain an explicit expression similar to Eq. (6).
For definiteness, we only state the result for the case where the bandwidth is larger than the energy gap, which in turn
is much larger than the voltage drop across the unit cell, W& 5 & Fd. The transition probability in this case is

2 1/2 1/2 1/2
Fd I* 4 rn* ~3/2 + Fd I* . 2 mW

(13)4~&S 3F 4 2g3/2 g2

The first term in Eq. (13) is the Zener result and the same
as we found for the Bloch state. The second, nonex-
ponential correction term is of a form similar to the one
we found for the Bloch state. However, the prefactor is
relatively larger by the order of magnitude ( W/b, ), as
the effective weight in the gap region diminishes for the
Bloch state compared to the localized initial state when
the bandwidth increases. The effect of the finite-time re-
striction is thus dependent on the initial state.

Regarding material parameters and the possibility of
observing the effects of the oscillatory behavior of the
transition rate, the following situation prevails. In semi-
conductors and insulators, the bandwidth is much larger
than the energy gap. In this case the interband transition
rate is close to the exponential form as follows from Eq.

(7), and the I Vcharacteristic -can exhibit the breakdown
feature, except for possible additional oscillations at low
fields. However, at low fields one has to take into ac-
count the inAuence of the environment such as phonons,
since the oscillatory behavior is sensitive to this inhuence.
Cienerally speaking, the neglect of inelastic-scattering
processes requires that the inelastic-scattering time is
larger than the Bloch period. This requirement, together
with the smallness of the oscillatory terms, makes their
observation difFicult in materials provided by nature.
However, owing to present fabrication technology, these
difhculties can be overcome using artificial structures.
For instance, in superlattices, the energy gap 5 and the
energy bandwidth W can be manufactured to be of the
same order of magnitude, say of the order of 10 meV for
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a superlattice constant d of order 10 nm, by tuning the
single-layer structural parameters. Therefore, the finite-
bandwidth e6'ect on the interband transition rate should
be observable in such systems at electric-field strengths of
the order of 10 V/cm. The conductance (per electron
unit cell) is given by

0.5--

0.4--

0.3--

(14)

where I' is the transition probability for the Bloch state,
P =

~
A

~
. The conductance due to interband transitions

will therefore exhibit the typical oscillatory behavior de-
picted in Fig. 1, and depending on the relative magnitude
of the two terms in Eq. (6), a variety of behaviors of the
conductance can occur.

In conclusion, we have shown that Zener's original
view regarding the interband transition as a tunneling
process through a forbidden gap region is only reliable in
the limit of large bandwidth, as a proper account of the
finite time to complete the transition leads to corrections
to the original Zener result, which has a di6'erent analytic
dependence on the field strength. The considered two-
band tight-binding model allowed us to perform a com-
plete analytical treatment of the interband transition, and
since the level-crossing problem is ubiquitous in physics
our analysis has implications for the wide range of phe-
nomena mentioned in the Introduction. In particular, we
note that the sophistication of today s fabrication tech-
niques makes it possible to construct superlattices with
arbitrary relationship between the band gap and band-
width. We have shown that in such a situation there can
be substantial corrections to the usual Zener tunneling
rate, and have derived the interband transition rate for
arbitrary relationships between the band gap and band-
width. In parameter regimes achievable in superlattices

0.2-

0.1

fy

/y
j~ l

iii~~"~AH
2 8 10

FIG. 1. The conductance [in units of e /h times the scale
factor ( 2'/ d) ] for a superlattice consisting of 100 unit cells
as a function of the voltage V (measured in volts), calculated ac-
cording to Eqs. (6) and (14). The dashed curve corresponds to
the values 6=10 meV and a ratio 5/S'=0. 1, and the solid
curve to 4=50 meV and a ratio 6/8'=0. 5.
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we predict oscillations in the I-V characteristic with
periods determined by the band-structure parameters and
inversely proportional to the field strength, thus allowing
for a simple experimental method to determine band-
structure parameters.

'Present address: Department of Physics, FM-15, University of
Washington, Seattle, WA 98195.

t Proceedings of the International Symposium on Nano Structur-e
Physics and Fabrication, edited by M. A. Reed and W. P.
Kirk (Academic, New York, 1989).

C. Zener, Proc. R. Soc. London Ser. A 145, 523 (1934).
W. V. Houston, Phys. Rev. 57, 184 (1940); L. V. Keldysh, Zh.

Eksp. Teor. Fiz. 33, 994 (1958) [Sov. Phys. JETP 6, 763
(1958)]; W. Z. Franz, Z. Naturforsch. 14A, 415 (1959); E. O.
Kane, J. Phys. Chem. Solids 12, 181 (1959); Cz. Eilenberger,
Z. Phys. 164, 59 (1961); L. Fritsche, Phys. Status Solidi 13,
467 (1966}.

4G. Schon and A. D. Zaikin, Phys. Rep. 198, 237 (1990).
5M. Biittiker, Y. Imry, and R. Landauer, Phys. Lett. 96A, 365

(1983).

sD. Lenstra and W. van Haeringen, in Coherence and Quantum
Optics VI, edited by J. H. Eberly, L. Mendel, and E. %'olf
(Plenum, New York, 1989).

7J. M. Ziman, Principles of the Theory ofSolids (Cambridge Uni-
versity Press, Cambridge, 1972); J. Callaway, Quantum
Theory of the Solid State (Academic, New York, 1976); S. V.
Vonsovsky and M. I. Katsnelson, Quantum Solid State Phys-
ics (Springer-Verlag, Berlin, 1989).

~J. B.Krieger and Cr. J. Iafrate, Phys. Rev. B 33, 5494 (1986}.
P. Ao, Phys. Rev. B 41, 3998 (1990).

tol. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (Academic, New York, 1980).
H. Fukuyama, R. A. Bari, and H. C. Fogedby, Phys. Rev. B
8, 5579 (1973).


