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Enhancement of thermal diffuse scattering by surface defects
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The effect of surface defects on thermal diffuse scattering has been studied from the viewpoint of low-

energy electron diffraction. It is concluded that thermal diffuse scattering can be enhanced significantly
in the presence of surface defects, such as vacancies, adatoms, and steps. This effect basically results
from surface imperfections that break up the periodic crystal ordering and lead to a deviation from the
momentum-conservation law for electron-phonon scattering. This enhanced diffuse scattering has the
largest effect at diffraction conditions under which the electron scatters out of phase between the top and

second layers of surface atoms.

I. INTRODUCTION

Inelastic scatterings of low-energy particles (electrons,
atoms, etc.) by surface excitations, including phonon
scattering, have been well studied in the past two de-
cades. For example, surface phonons are detected by us-
ing high-resolution electron-energy-loss spectroscopy, '
where the electron-impact energy is typically several eV
and is highly monochromatic to within a few meV. Since
the phonon energy is a few tens of meV, the energy-loss
peaks due to phonons can be easily identified. A similar
method is thermal atom scattering, ' where the primary
atom energy is of order 100 meV.

In low-energy electron diffraction (LEED), phonon
losses show up as a thermal diffuse intensity in the
diffraction pattern. Although the energy loss due to pho-
non excitations is negligibly small compared with the pri-
mary electron energy (-100 eV) in LEED, the thermal
diffuse scattering cannot be ignored. Thermal diffuse
scattering of LEED from a perfect surface was studied a
long time ago. The phonon contribution to the diffuse
LEED experimental data has also been discussed in
several recent papers.

On the other hand, LEED diffuse intensity can also
come from the elastic scattering of electrons from surface
defects such as steps, ' ' vacancies, ' ' ' and disor-
dered adsorbates. "' ' This contribution is indepen-
dent of the phonon-induced inelastic scattering due to
surface vibrations. In this paper, we consider the corn-
bined effects of phonons and surface defects (vacancies
and steps) on the diffuse intensity.

Experimentally, it has been observed that at higher
temperatures the angular profile of a LEED diffraction
peak shows broad wings extending throughout the Bril-
louin zone. ' ' ' This wing structure has been attribut-
ed to the one-phonon diffuse scatterings. Theoretically,
the thermal diffuse intensity may be expressed as '

e
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where 28 is the Debye-Wailer factor, S represents the
momentum transfer of the electron beam, and S~~ is its

+~Id =2m'. where m =0,+1,+2, (2)

Since the wavelength d is an integer of the atomic spac-
ing, i.e., Ghkd =2m'. , Eq. (2) can be generalized to
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FIG. 1. (a) A 10 atomic chain which represents the surface
of a rigid perfect crystal. {b) An atomic vibrational wave (trans-
verse) with a wave vector q deforms the surface elastically and
forms a sinusoidal grating of a period d =2~/q.

component parallel to the surface. Cx&k are two-
dimensional (2D) reciprocal-lattice vectors.

Equation (1) can be applied to surfaces which have
negligible surface defects. For defect-free surfaces, one
can present a simple picture to demonstrate the thermal
diffuse scattering due to the interaction of the electrons
with a vibrating surface. Figure 1 shows an atomic vibra-
tional wave propagating along the surface with wave vec-
tor q. This vibrational wave deforms the surface elasti-
cally and forms a sinusoidal grating which has a period
d =2m/q equal to the wavelength of the surface wave. As
an electron beam is scattered by this "vibrational wave
grating, " a constructive interference scattering can occur
under the conditions
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~
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where
q~~

denotes the phonon wave vector parallel to the
surface. Equation (3) refiects the origin of the thermal
diff'use scattering, which is due to the vibrational wave-
grating diffraction. It has been shown by Huber and by
Mckinney, Jones, and Webb that for defect-free surfaces,
the rigorous solution of the thermal diffuse intensity, Eq.
(1), is a superposition of various wave-grating diffractions
with different phonon wave vectors q~~.

However, the idea of the vibrational wave-grating
difFraction can only be correct under the condition that
the surface is reasonably perfect. For surfaces having
substantial defects, Eq. (3) may not exist. Under this cir-
curnstance, a necessary modification is required for the
conventional one-phonon scattering intensity, Eq. (1), be-
cause the thermal diffuse intensity can be significantly
diff'ered from that of a defect-free surface.

Figure 2 shows an example of a vibrational wave prop-
agating in a stepped surface. As an electron beam is
diffracted from the stepped surface of a rigid crystal,
there is an extra phase difference EQ=S~t, between the
electrons scattered from neighboring terraces which are
separated by a single atomic step. Here S~ represents the
momentum transfer perpendicular to the surface and t is
the single-atomic-step height. Similar to hP also exists as
an electron beam is scattered by the vibrational wave
which propagates in a surface containing vacancies or
adatoms. This extra phase difference hP must break up
the diffraction grating condition, Eq. (2'), except at
EQ=S~t=2mm (in-phase conditions). In other words,
the defected surface can destroy the periodicity of the vi-
brational wave grating, so that the difFraction law, Eq.
(3), no longer holds. This can cause a significant change
in the thermal difFuse intensity.
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For one-phonon scattering, m =+1, Eq. (2') becomes

S~~
—

GI,k=+2nld=+q. This, in general, can be ex-
pressed as the momentum conservation law for electron-
phonon scattering,

(3)

In this paper, we derive quantitatively the enhance-
ment of thermal diffuse scattering by surface defects. It
is shown that the thermal diffuse scattering manifests it-
self at the vicinity of the out-of-phase condition more ob-
viously than that at the in-phase condition. In Sec. II, we
outline the theoretical approach to this subject. We for-
mulate the thermal diffuse scattering from a surface hav-
ing random vacancies in Sec. III and a surface containing
random steps in Sec. IV. A brief summary is given in
Sec. V.

II. THEORKTICAI. APPROACH

The theoretical study of thermal difFuse scattering from
a perfect surface had been well developed. Following
Huber and Mckinney, Jones, and Webb, we make
several assumptions, which provide us with a simple
framework and an easier approach to the subject of the
thermal diffuse scattering.

(i) Only the kinematic calculation is used and multiple
scatterings will be ignored in this paper.

(ii) The nonpenetrating radiation is assumed so that
only the scattering from the topmost surface is taken into
consideration.

(iii) For simplicity, we only consider an isotropic De-
bye spectrum which gives a simple phonon dispersion re-
lation

co(q) =vq, (4)

where U and co are the velocity and angular frequency of
the vibrational wave, respectively.

(iv) We shall treat "classically" surface atomic vibra-
tions. A similar result can be obtained in the quantum-
mechanical scheme at higher temperatures.

In addition, we shall assume the surface defects do not
significantly change the thermal vibrations in the crystal.
The surface defects can aff'ect the surface phonon modes
but not the bulk modes. The major phonon relations de-
rived from the perfect crystal, such as the representation
of the normal modes, the orthogonal and completeness
relations, the harmonic hamiltonian, and so on, should
still hold approximately even in the presence of the sur-
face defects. This is because the surface defects contrib-
ute a lower-dimensional (2D) disordered perturbation
which is negligibly small compared to thermal vibrations
in a 3D bulk crystal. Our purpose is to demonstrate the
major scattering efFect by surface defects. The change of
the vibrations due to defect structures is a much more
complicated issue. However, it should not qualitatively
afFect the diffuse scattering intensity derived in this pa-
per.

The intensity of an electron beam diff'racted from a sur-
face can be written as

I(S)=lfol' & & expliS (r —r .)]),
m, m'

FIG. 2. (a) A rigid stepped surface with the single atomic
step height t. (b) An atomic vibrational wave propagates in the
stepped surface. Notice that the corresponding sinusoidal grat-
ing is shifted vertically by a step t in the neighboring terraces.

where f0 is the atomic form facter and ( ) represents the
thermal average. The surface atomic position is denoted
by r =R +u, where R is the position vector of a
rigid lattice point and u is the corresponding atomic vi-
brational amplitude. Following the well-known harmon-
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ic approximation, one can write

& exp[iS (u —u )])
=exp [

—
—,
'

& [S.(u —u ) ] ) ]

=e '~exp[&(s u )(S.u ))],
where 28'= & (S u ) ) =

& (S u ) ) is the Debye-Wailer
factor. After the Taylor expansion of
exp[ & (S u )(S.u ) ) ], Eq. (5) becomes
I(S)=gk oIk(S), where

&(S.u )(S u .))
I„(S)= if, i'e-'

X exp[iS (R —R )]

represents precisely the contribution of the k-phonon
scattering process. In this paper, we only take into ac-
count the one-pho non contribution corresponding to
k =1, and ignore all of the multiphonon scattering in
which k ~2.

For the zero-phonon process k =0, we have

Io(s)=ifoi e g exp[iS (R —R .)],
m, m'

which is the conventional diffraction intensity including
the major thermal vibrational effect at the Bragg peak;
the Debye-Wailer effect. Equation (7) can be rewritten as

Io(S)=lfol'e ' F(s),
where

F(S)= g exp[iS (R —R )]
m, m'

is the interference function of the rigid lattice.
For the one-phonon scattering process k = 1, we have

I,(S)=if, l'e ' y &(S.u )(S u .))
m, m'

X exp[iS.(R —R ~ )],

Io=Io(s) s =o
II ak

is an effective way of showing the importance of the
thermal diffuse scattering because it excludes the
inhuence of the Debye-Wailer factor e and simply de-
scribed a linear relationship with the temperature T, i.e.,

R = ~S k~T dq~ dq
I, (S) F(S+q~~)

Io q~'+ qll'
(12)

Equations (10) and (11) were applied to the perfect sur-
faces in the previous studies. ' It is a very important
feature in these two equations that the one-phonon
scattering intensity contains the interference function

F(s+q~~), which mainly depends on the rigid surface mor-
phology. This allows us to extend the study to imperfect
surfaces which can have various forms of the interference
function. It will be shown in the following that a
significant difference of the thermal diffuse scattering ex-
ists between a perfect surface and an imperfect one.

A. Thermal diffuse scattering
from a defect-free surface

For a perfect surface, the interference function is given
by a sum of 5 functions which are located at the 2D
Bragg positions Ghk, i.e.,

T 2

then given by

k~T
I$(s) ~ ifoi e

2~ (2n. ) MU

F(S+qii)
X f dpi f dqii

ql'+qll

where q~ is the phonon wave vector perpendicular to the
surface and M is the mass of one atom. Experimentally,
the ratio of the thermal diffuse intensity I

&
(S) to the peak

intensity

which contains the major thermal scattering efFect in the
diffuse intensity. This is the main issue of the present
work.

After expanding u classically as a series of normal
modes of the harmonic-oscillatory waves

1
u = —g u„exp( —

iq~~. R ),

one obtains from Eq. (9)

F(s)= X&(s~~
—&~k) .

h, k

Correspondingly, Eq. (11)becomes

k~r
I$(s) ~ ifoi e

2m

f

�2~(S~~
X dq d qll 2 2q, +qll

(13)

I,(S)=—ifoi e g & iS u„~ i )F(S+qii), (10)
P qll

where p denotes an additional index labeling the various
modes having the same qll, u„represents the vibration-

II' s

al amplitude of the mode (p, q~~), and N is the total num-
ber of atoms in the crystal. Equation (10) is further
simpified by applying the equipartition law to the thermal
energy and the Debye dispersion relation, Eq. (4). A
basic formula for the one-phonon scattering intensity is

The 5 functions in Eq. (13) show that only those vibra-
tional modes satisfying Sll

—Cx„k+qll=0, i.e., obeying the
momentum conservation law, can contribute to the
diffuse intensity at the 2D reciprocal space position Sll, as
shown in Fig. 3. This is the basis of the statement that
the thermal diffuse scattering from a perfect surface is
due to the vibrational wave-grating diffraction, as demon-
strated in the introduction. The calculation of Eq. (13)
can be carried out easily, ' which gives Eq. (1), the con-
ventional one-phonon thermal diffuse intensity.
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(00) (hk)

FIG. 3. A vector diagram in the 2D reciprocal space shows
the one-phonon scattering from a defect-free-surface. Only
those phonon modes such as q&, q2, and q3, which obey the
momentum conservation law Sll

—Azk =+qll, can contribute to
the diA'use intensity of the electron beam at the 2D position Sll,
where Gzk are the 2D Bragg vectors.

FIG. 4. A vector diagram shows the one-phonon scattering
from an imperfect surface which has broadened the Bragg rods
in the 2D reciprocal space. All of those phonon modes, such as
q&, q2, and q3, which project onto the inside of the Bragg rods of
a diameter o, ~S~~

—
Grqk+q~~( ~o, can contribute to the difFuse

intensity at Sll.

B. Thermal difFuse scattering from imperfect surfaces

I,k~q„l -~, (14)

can contribute to the diffuse intensity at the position Sll,
where o. represents the size of the cross section of the
Bradd rods and is determined by the corresponding peak
width. Only when cr =0, can Eq. (3) be held.

The deviation from the simple conservation law of Eq.
(3) will in general lead to the increase of the thermal
diffuse intensity. As shown in Eq. (10), each phonon
mode contributes a scattering intensity proportional to
( (u„~ ) ) . According to the equipartition law of the

P~Vll

thermal energy and Eq. (4), ( (u„) ) ~q, where
"'~ll

q =q~ +qll . Therefore those modes with smaller q, i.e.,
the long-wavelength phonons, make a larger contribution
to the total diffuse intensity. For the defect-free surface,
the conservation law forbids any modes with q smaller

For imperfect surfaces, the interference function F(S)
is very often represented by a series of broadened Bragg
rods in the 20 reciprocal space. If the 5 functions in Eq.
(13) are replaced to represent the broadened rods, the
wave-grating diff'raction law, Eq. (3), will no longer be
applicable. As shown in Fig. 4, all of those vibrational
modes which project onto the vicinity of the broadened
Bragg rods, i.e., satisfying

F(S)= g exp[iS (R —R )]
m, rn'

+hk )
exp

0 2
(16)

where I is the average domain size and o. =2~/I. is the
Gaussian width proportional to the size of the broadened
Bragg rods. Inserting Eq. (16) into Eq. (11), we obtain
the di6'use intensity

k~T
(S) ~ ~f l2 2wS2

sured at the reciprocal-space position far away from the
Bragg peak. Therefore all those phonon modes of smaller
q, which are forbidden in a perfect surface but satisfy Eq.
(15), are allowed to contribute to the diffuse scattering.
The diffuse intensity must be enhanced by these long-
wavelength phonons.

The above interpretation qualitatively reveals the phys-
ical origin of the enhancement of the thermal scattering
by surface defects. The quantitative feature of this effect
should depend on the detail structure of the surface de-
fects. As one of the simple examples, let us consider a
surface having finite-size domains. Given the "Warren
approximation" for the domains, one expresses the in-
terference function of the surface as

However, for an imperfect surface, this restriction is lift-
ed because Eq. (3) no longer holds. Instead, Eq. (14) gives

q —
/ q// /

—
/ S// 0/gk /

cr

where ~S~~
—

Cxqk l
)o because the diffuse intensity is mea-

exp[ —
(S((

—Cx~k+q(() /o ]fX dq~ dqll
ql'+qll

where the integral has a closed-form solution which is
proportional to the Kummer function, i.e.,
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The Kummer function P is defined as

p ) y I (a+m)I (p) z

0 I (a)I (p+m) m!

where Px) is the gamma function. As is well known,
the Kummer function has an asymptotic form at large q:
P(1 —a/2;1; q /cr —)-(o/q) . T. hus the ratio of the
thermal diffuse intensity to the peak intensity is given by
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I, (S) o S k~TR=
Io
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FIG. 5. (a) The angular profiles of the electron beams
diffracted from an A A A stacking surface with randomly distri-
buted vacancies, where S&t =(2m —1)m, corresponding to the
out-of-phase diffraction conditions. Notice the substantial con-
stant background throughout the entire Brilliouin zones. (b)
The angular profiles from an ARAB stacking surface with ran-
domly distributed vacancies. Here S~t =(2m —1)m, which are
the out-of-phase conditions for the (00) beam, but are the in-

phase conditions for the (10) or (10) beams. This gives a back-
ground intensity which is not constant but is slowly varying
throughout the entire Brillouin zones.

Equation (17) shows quantitatively the enhanced
thermal diffuse scattering by the finite-size effect, where
the ratio R is linearly proportional to o with o =2m/L. .
The sma11er the surface domain size I., the stronger the
thermal diffuse scattering effect. Similar conclusion can
be drawn for a finite 2D harmonic lattice, where
R ~cr IS}—Cxhh I

+". More importantly, Eq. (17) indi-
cates that the enhancement of the thermal diffuse scatter-
ing is basically due to the broadening of the interference
function (Bragg peaks), which agrees with our previous
qualitative interpretation. This broadening could be
caused by many different kinds of surface defects. In
Secs. III and IV, we will show quantitatively how point
defects and surface steps can affect the thermal diffuse in-
tensity.

F(S)=2n (1 n)[1 ——cos(S~t )]
2

+ [1 2n (1——n)[1 —cos(Sj t)]]2m'

aIII. THERMAL DIFFUSE SCA'I"I'ERING
FROM A SURFACE CONTAINING

RANDOMLY DISTRIBUTED VACANCIES
I

For a surface with the top layer containing randomly
distributed vacancies, Pimbly and Lu have given an exact
solution for the interference function

(19)XS(S„—Gh„),
which is a 5 function superimposed on a constant back-
ground. At the in-phase condition S~t =2m+, the back-
ground vanishes. At the out-of-phase condition
Sjt=(2m —1}n, the background has a maximum value
4n (1 n), as show—n in Fig. 5(a).

The calculation of the thermal diffuse intensity is car-
ried out in the following. The 5-function term in Eq. (19)
is inserted into Eq. (11},which turns out to be the con-
ventional thermal difFuse intensity I', (S) as is given by
Eq. (1). However, by inserting the background term in
Eq. (19) into Eq. (10), which is equivalent to Eq. (11), we
then obtain an additional constant intensity

+2n (1 n)f cos—(S~t —g) ]

(18)x 5(S~~
—Ghh ),

F(s)=[1+f 2f cos(S~t g}]n(——1 n)—
+ [(1 )2+ 2f2

a

where n is the vacancy concentration in the top layer and
fe'" is the relative atomic form factor between the first
and the second layer atoms. Equation (18) was originally
applied to the diffraction from a 2D adsorbed overlayer
with A A A stacking, where the adsorbed atoms can be
different from the substrate atoms. For the clean surface
we are interested in, i.e., a surface having vacancies, the
atoms in the first and second layer are identical.

A. Surface with A A A stacking

For the A A A stacking surface where f = 1, q=0, Eq.
(18) becomes

I foI e [2n (1—n)[1 —cos(S~t)]((s.u ) ) J .

Here, we have used the identity

—y (Is.u„, I')=((su )') .2

jM q))

Thus the one-phonon scattering intensity for the (00)
beam is given by

I,(S)=I', (S)+IfoI e [2n(1 —n)[1 —cos(Sjt)]
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I', (S) can manifest itself at the in-phase condition, where
the constant background intensity vanishes. Note that
the factor ( (Si u i ) ) is just the Debye-Wailer factor 2 W.
Combined with the background intensity in Eq. (19), the
ratio of the total background intensity to peak intensity is
given by

+foE exp i
S,r S„(a+b)

for the second layer .

Si t S (a+b)
fz= fo exp i

R ' for the in-phase condition

R o- R'+2n (1—n)[1 —cos(Sit)](1+((Siui) ) )

for the out-of-phase condition, (20)

The penetration factor c, (which is necessary when we cal-
culate the relative scattering amplitude of the atoms in-
side a unit cell), can be expressed as

where R ' is the conventional one-phonon contribution
E =exp (22)

S k~TR'~ (21)

where A,, is the mean free path of the electron beam and
is energy dependent.

It is concluded that due to the thermal diffuse scattering,
the background intensity can be increased by a factor of
1+((Siui ) ) at other than in-phase conditions. The
value of ( (S~u i ) ) can range froin 1 to 10
[Q(ui )-0.05t to 0. 10t, and Sit-2m to 10m]. Since
((Siui) ) =28'~ T, this effect may be observable at a
reasonably high temperature. However, this enhance-
ment can only occur when the surface contains vacancies.
If the vacancy concentration n =0, the background terms
due to vacancies, as shown in Eqs. (19) and (20), will van-
ish.

(a)
0 ~ ~

0 0 0
0 0 0

0 0 0
0 ~ e

0 0 0
e ~ 0

(b)

~ ~
0

~ ~
0

0 ~
0

~ e

a+b

v 0 0

B. Surface with ABAB stacking

~ ~ 0 ~ 0 0 ~ ~ ~

(a+b)/2

For ABAB stacking surface, as shown in Figs. 6(a) and
6(b), the first-layer atoms are displaced laterally along the
a+b (or a —b) direction with respect to the second layer.
Here a =ai and b =a j are two orthogonal unit vectors of
a square unit mesh. Therefore Eq. (18) cannot be directly
applied to the case of AB AB stacking.

Consider a one-dimensional model. As shown in Fig.
6(c), if we choose a unit cell consisting of A Bbiatom-s,
an ABAB stacking can be transformed into a quasi-
A A A stacking, where the erst layer has a different form
factor from that in the second layer. Under this model
(along the a+b direction), Eq. (18) can still be used ap-
proximately for the AB AB stacking surface in which the
relative form factor fe'"%1.

The unit cells in the first and the second layer are
chosen according to Fig. 6(c). The form factor relative to
the center of the unit cell is given by

Sit S(~.(a+b)
f, =foEexp i

Sit S(~ (a+b)
+fo exp i +

2

for the first layer

(c) a+b

d d cjcjq q 6

(a+b)/2

first-layer
unit cell

second-layer
unit cell

FIG. 6. (a) A top view of an ABAB stacking surface with a
square unit mesh, where a =a i and b =a j are two orthogonal
unit vectors. The solid dots and the open circles are the A
atoms (in the first layer) and the B atoms (in the second layer),
respectively. (b) The side view of the ABAB stacking surface
along the a+b direction. The figure demonstrates the atomic
steps with a single step height t. (a) and (b) show that the A
atoms in the first layer are displaced laterally with respect to the
B atoms in the second layer by a vector (a+b)/2. (c) If the bia-
tom A-B is chosen as a basis, the surface could be treated as a
quasi-A A A stacking surface where the A-B biatoms in the first
layer are displaced laterally with respect to the A-B biatoms in
the second layer by a vector of a+b which corresponds to the
lattice spacing in this direction. Note that the A-B biatoms in
the first layer have a different orientation from those in the
second layer, which will give a different scattering form factor.
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The relative form factor is then given by fe'"=f, /f 2.
Accordingly, the interference function for surfaces with
ABAB stacking can be obtained from Eq. (18), which is

where R' is again the conventional one-phonon scattering
contribution given by Eq. (21). The constants are given
by

F(Sll) =2n (1 —n)(1 —e) 1 —cos
Sll (a+b) 1 —A 1 —c

2 1+a

+ (1+s)'5(Sl, —6„„) (23a)

at Sj t =2m'. and

Sll (a+b)
F(S ) =2n (1—n)(1 —s) 1+ cos

II 2

2

+ (1—) 5(Sll —Cxh„) (23b)

S„(a+b)
X 1 —A cos

2

for the in-phase conditions and

I,(S)=I&(S)+~fo~ e 2n (1 n)(1 ——e)

S, (u, )

at Szt =(2m —1)n.
As shown in Fig. 5(b), the background intensity for

ABAB stacking is not a constant but slowly varies
throughout the Brillouin zone, which is different from
that for the A A A stacking surface shown in Fig. 5(a).
Recently, Kang et al. have proposed a random layer-
by-layer epitaxy model on fcc (100}substrates, which ex-
hibits a similar behavior as that shown in Fig. 5(b). Al-
though this model is more rigorous for the case of 2D
AB AB stacking, it does not provide a closed form for the
interference function when the penetration factor c is in-
cluded. Therefore, for the present purpose, we still use
Eq. (23).

By inserting Eqs. (23a) and (23b) into either Eq. (10) or
(11),we obtain the thermal diffuse intensity for the specu-
lar beam,

I&(S)=II (S)+
~f ~Oe 2n (1—n)(1 —c)

and B =(1+A)/2-0. 8. Usually, 0((1. For instance,
in the Pb(100) surface, A=0.004 (the mean free path
A,, —10 A at E -30 eV and the single-step height t =2.45
A). Therefore, at the in-phase condition the constant
background term in the ratio is practically very small
compared to that at the out-of-phase condition. Besides,
the constant B can differ from what we have estimated
from the Debye spectrum. It can be varied due to the
contributions from other phonon modes, expecially the
surface phonon modes. This would give a somewhat
larger value of B. Practically, B is in the range of
0.8 & B & 1 and can only be determined by experiment.

As a conclusion, Eq. (24), which describes the ABAB
stacking surface, is practically identical to Eq. (20)
describing the A A A stacking surface.

IV. THERMAL DIFFUSE SCATTERING
FROM A SURFACE WITH MULTILAYER OF STEPS

As an electron beam is diffracted from a surface con-
taining multilayers of randomly distributed steps, the an-
gular

profile

can be described approximately by a
Lorentzian function:

F(S)= 1
(25)

1+

where the Lorentzian width o.Lis a periodic oscillation
function of S~t. oL reaches a maximum at the out-of-
phase condition and equals zero at the in-phase condi-
tion. Correspondingly, the thermal diffuse intensity for
the (00) beam is given by

I, (S) ~ Ifol'e ' S'k~T

S„(a+b}
X 1+A cos S 2(u2)

1Xfdq fdqll - . , z.
1+ I Sll

—
&g,k I

(q +qll )

for the out-of-phase conditions. A is a constant given by

cos[qll (a+b)/2]
q& +qIIA= fdq, fdql,

dq dc
q j +qII

which is estimated to be -0.6. Experimentally,
S„«2m/a so that cos[Sll (a+b)/2]=1, i.e., the slow
change of the background intensity is negligible. Thus
the ratio of the background intensity to peak intensity is

f dq f dqll
1

1+ I Sll
—

&/gk I

(q, '+q, l')

2
OL

ln
I
s„—&/xk I

4ls,
l

—Ghk I

(26)

The integral in Eq. (26) has an asymptotic form at large

R'+Q[(2n —1) —1]S~ (u~ )
for the in-phase condition

R'+[(2n —1) —1](1+BSi(ui ))
for the out-of-phase condition,

(24}

The thermal diffuse intensity, Eq. (26), then becomes

4/s —a„„/I (s)~/f ] e Sk T ln
/s —a

(27)
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The ratio of I& to Io reduces to
2

OC
OLSk,

hk

4IS„—&hk I

(28)

The Lorentzian line shape produces a thermal diffuse in-
tensity which has a wing structure
—IS„—G„l- 1n(4 Si —Cxhk l/o', ). This is different from
Eqs. (1) and (17), where the wing structure has a form of
~S~~

—
Crt, k

'. On the other hand, Eq. (27) shows that for
the Lorentzian type of interference function, the thermal
diffuse intensity is proportional to the square of Lorentzi-
an width crl . This is similar to Eq. (17) even though the
interference function is different. The rougher the sur-
face, the broader the beam profile and the stronger the
thermal diffuse intensity. More importantly, the
Lorentzian width o L is a periodic oscillation function of
S~t, which gives the strongest thermal diffuse intensity as
Stt approaches (2m —l)m. , i.e., the out-of-phase condi-
tions. Qn the contrary, at the in-phase conditions, R is
very small and depends only on the instrumental
response. For instance, if the Lorentzian line shape at
the out-of-phase condition has a peak width which is
about 10 times broader than that at the in-phase condi-
tion, the corresponding thermal diffuse intensity should
be at least 100 higher than that at the in-phase condition.

V. SUMMARY

The effect of surface defects on thermal diffuse scatter-
ing has been studied from the viewpoint of a LEED ex-
periment in this paper. It is concluded that the surface
defects, such as vacancies, adatoms, and steps, can in-
crease the thermal diffuse intensity under non-in-phase
conditions. This effect is basically caused by the surface
imperfections which break up the periodic crystal order-
ing and lead to a deviation of the momentum conserva-
tion law. Recently, a phase containing a high density of
vacancies has been observed in the Pb(100) surface at an
elevated temperature. The energy-dependent background
intensities were measured at out-of-phase diffraction con-
ditions using the high-resolution low-energy electron
diffraction technique. These measured data have been de-
scribed very well by the equations derived in Sec. III and
therefore are consistent with our predictions.
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