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Structure and stability of some C6o isomers
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We have investigated the stability of the ideal C«molecule and of some isomers using a molecular-
dynamics quenching technique. The atomic forces used for the quench algorithm are obtained from a
minimal-orbital sp-basis tight-binding calculation with local charge neutrality placed on each site. The
isomers are derived from the ideal structure by introducing one or more tiling faults. As expected, the
most favorable structure is found to be the ideal C«molecule. The introduction of one tiling fault leads
to a change in the cohesive energy of about 0.02 eV per atom (1.3 eV per molecule) and the correspond-
ing value for the introduction of two faults, whether isolated or coupled, is found to be about twice this
value. These changes are extremely small in comparison with the absolute value of the cohesive energy,
with the fault energy equal to about one-fifth of the cohesive energy per atom of ideal C«(calculated to
be 6.94 eV). In addition, we find that an isomer containing a seven-membered ring has a fault energy of
about 2.7 eV. We conclude that the existence of these isomers is probable on energetic grounds although
the considerable deformation and consequent stress in the isomer containing a seven-membered ring
leads us to suggest that it would not be observed experimentally.

I. INTRODUCTION

About six years ago two groups of workers' indepen-
dently suggested the existence of a remarkable spherical
molecule composed of sixty carbon atoms. This C60
structure is unique in that it consists of a spherical ball of
sixty carbon atoms, with each carbon atom having the
same environment. The stress is thus evenly distributed
among the atoms. As the coordination of each atom is
three, the angles between the bonds are close to one hun-
dred and twenty degrees, and in the absence of dangling
bonds, the bonding is expected to be close to that in the
graphite structure, and consequently exceptionally stable.
Though not yet confirmed beyond doubt, the theoretical
and experimental studies which followed the first propo-
sals all point to its existence. We cite but a small sample
of these experimental, "and theoretical, ' ' studies.

Soon after the initial studies it was suggested that the
observed samples of sixty atom molecules contained a
range of structurally similar isomers. ' The ideal mole-
cule would be the most energetically stable though lying
close in energy to the others. These other isomers would
share most of the stabilizing characteristics of the ideal
C60 molecule, that is, threefold coordination, the close to
one hundred and twenty degree bond angles, and the ab-
sence of dangling bonds. These isomers can be thought
of as the ideal C60 molecule with one or more faults in the
atomic arrangement. ' Their existence was given extra
credibility by Stone and Wales' who noted that transi-
tions from one isomer to the other are thermally forbid-
den, thus once formed the isomers are likely to persist
rather than relax into the lower lying ideal C60 geometry.
However these isomers are too computationally demand-
ing for investigation by current state of the art ab initio--
methods, for which the upper limit at the time of writing

is perhaps represented by the remarkable calculations of
Fowler, Lazzeretti, and Zanisi' on the ideal C60 molecule
with fixed bond lengths. These isomers are accessible to
semiempirical methods.

In this paper we present a molecular dynamics tight-
binding (MDTB) study of some of these isomers. The sta-
bility, the bond lengths, and the binding energies of three
isomers are investigated by relaxing the atomic positions
in the ideal isomer structures until all of the atomic
forces are zero. We thus find three local energy minima
for the sixty carbon-atom molecules. The same pro-
cedure is repeated for the ideal C60 molecule to provide a
point of reference, and a check with previously published
data.

The tight-binding calculations are based on the formu-
lation due to Harrison, with a set of parameters recent-
ly optimized ' using a novel fitting technique. ' The
technique allows the fitting of a large number of bulk
properties so as to ensure a high degree of transferability
and has been extensively tested for silicon, on bulk and
cluster properties, ' and on ljqujd sjljcon and bulk
point defects. For silicon the tests showed that tight
binding, though inherently less accurate than ab initio
methods, can produce results which compare favorably
with the latter if care is taken to ensure transferability.
For carbon the properties fitted included the experimen-
tal values for the diamond lattice constant and bulk
modulus, the experimental lattice constant for graphite to
within a few tenths of an A, reproduction of the principal
features in the energy volume curves for five bulk lattices,
and the reproduction of the diamond and graphite band
structures up to the Fermi level.

The paper is laid out as follows: the isomers of C60 and
the notation used are described in Sec. II; the MDTB
model is described in Sec. III; the results of the calcula-
tions are presented in Sec. IV; and conclusions are drawn
in Sec. V.
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Il. THE C6o ISOMER MODEL

To describe the isomers we use the notation of Stone
and Wales' whereby each isomer is considered as the
ideal C6o molecule with one or more faults in the atomic
arrangement. The creation of a Stone and Wales fault is
shown schematically in Fig. 1 which represents a frag-
ment of the ideal C6O molecule. The fault requires that
the two atoms marked 2 and B are moved to the posi-
tions marked a and P. For this single fault the rearrange-
ment can be thought of as interchanging a pair of pentag-
onal tiles with a pair of hexagonal tiles, although this pic-
ture is less useful for more complicated isomers in which
the number of pentagonal and hexagonal tiles is not
preserved. The visualization of the isomers is simplified
by numbering the twelve pentagonal tiles of C60, as
shown in Fig. 2. Although we only show the front sur-
face of the molecule, the notation is identical to that used
by Stone and Wales' who show all of the pentagons.
Thus a simple fault introduced into the molecule will pro-
duce a (1,2) isomer, if the rotated atoms originally lay in
pentagons 1 and 2.

Using the above notation, the isomers we study are the
following: the (1,2) isomer, which contains a single fault
preserving the number of pentagonal and hexagonal tiles,
and which is expected to be the lowest lying of the iso-
mers; the (1,2)(7,8) isomer which contains two faults lying
on opposing faces and which also preserves the number
of pentagons and hexagons; and the (1,2)(2,3) isomer, in
which the two faults give rise to a seven-sided tile.

FIG. 2. The ideal C6& structure. Only those atoms lying on
the front surface are shown. Each pentagon is numbered for
purposes of identification.

EF

Eb,„„=gf (E—e, )n, (e)dE . (2)

Ecoh bond +Eprom +Erep

The first of these terms, the bond energy, Eb,„d, is formed
from the local densities of states, n, (E), and the diagonal
elements of the Hamiltonian, c.;, i being the site index
and o.' the orbital index,

III. THE MDTB MODEL

A more general overview of tight binding, and of relat-
ed techniques, can be found in the review article by
Finnis et aI. The total cohesive energy of a molecule is
given by the sum of the energy deriving from the forma-
tion of chemical bonds, the energy change associated
with the change in the orbital occupations relative to the
atomic values, and the nonorthogonality, electrostatic,
and exchange-correlation contributions:

The second term, the promotion energy E „,is formed
from the set of c; 's and the changes in the orbital occu-
pations, An; relative to the free atomic values,

Eprom =QEia~+ia (3)

The local densities of states n; (E), and hence the An; 's,
are found by occupying th- energy levels from the solu-
tion of the tight-binding Schrodinger equation. The
Hamiltonian matrix off-diagonal elements are construct-
ed, in the usual way, from the angle cosines for the in-
teratomic vectors, and the hopping integrals for pure sso. ,
spo. , ppo. , and pp~ bonding, each of which has a para-
metric form taken to vary as an inverse power of the in-
teratomic separation multiplied by a decaying exponen-
tial function. The less important three center terms are
ignored:

&Il' (r) = &lt (rQ)(rQIr) '

Xexpt2. 796[ —(r/2. 32) +(rQ/2. 32) ]I

(4)

FIG. 1. Schematic illustration of a single fault in the ideal

C6O structure. The relaxation of the surrounding atoms when
atoms A and 8 move to a and P is not shown.

The equilibrium neighbor separation in the diamond lat-
tice, ro, is equal to 1.55 A. Local charge neutrality is en-

forced on each site, such that each atom has four (+0.01)
valence electrons, by adjusting the on-site energies by
amounts proportional to the excess charge on the site.
The constant of proportionality is about two-fifths of an
electron volt per electron. This is done to provide a first
approximation to self-consistency and to ensure a
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reasonable charge distribution.
Finally the nonorthogonality, electrostatic, and

exchange-correlation contributions, collectively referred
to as the repulsive energy E„,are approximated by a
sum of pairwise interactions, V„(r; ), i.n which r;
denotes an interatomic separation,

rep g Vrep( ij )
i(j

Like the hopping integrals, the pair potential V„p(r;j)
also varies, as an inverse power of the interatomic separa-
tion, multiplied by a decaying exponential function:

V„p(r) = V„p(ro )(ro/r)'"'

Xexp[4. 455[ —(r/2. 32) +(ro/2. 32) ]] .

The pair potential coefficient V„(ro), is equal to 10.92
eV.

The atomic forces are found by summing the contribu-
tions from each atom, each of which is given by the ana-
lytic derivative of the individual energy terms, Eqs. (2),
(3), and (5), and can be evaluated given the previously cal-
culated energy levels and states,

f, =+5E„„/5r,
J

The relaxations are performed using a hybrid
molecular-dynamics quench scheme in which the kinetic
energy is slowly removed as the forces on the atoms in
motion gradually approach zero. A starting geometry is
input and then the atoms allowed to move according to
the forces acting on them, and their velocities at a given
moment. The velocity of an atom is approximated as the
product of the discrete time interval (5t) and the vector
displacement since the previous time step,
[r( t) r( t —5t)—]. The molecular-dynamics algorithm
which is due to Verlet is written out explicitly in Eq. (8):

IV. RKSUI.TS AND MSCUSSION

Not surprisingly the quench on the ideal unfaulted
geometry shows that C6o is highly stable, with a cohesive
energy per atom of 6.94 eV. The corresponding values,
calculated using the same parameters, for graphite and
diamond are 7.06 and 7.03 eV per atom. '

C6o is thus
predicted to be energetically extremely stable. For the
bond lengths we find values of 1.48 A for a pentagon side
and 1.43 A for all other bonds. This is consistent with
the values found in semiempirical Austin model 1 and
modified neglect of differential overlap (MNDO) calcula-
tions which are about 1.47 and 1.40 A. ' ' Nevertheless
these smaller values are probably closer to the actual
values, given that the tight-binding model is known to
overestimate the graphite lattice constant by a similar
amount. For the energy levels, the order and the degen-
eracies are in agreement with previous calculations.
For the highest-occupied-molecular-orbital —lowest-
unoccupied-molecular-orbital (HOMO-LUMO) energy
gap the calculations give a value of 1.7 eV, compared
with the value typically found of 7.5 eV. This discrepan-
cy is consistent with the model's description of the band
structure of graphite, which though good at energies
below the Fermi level, is rather poor at higher energies.
Thus it is unreasonable to expect a good value for the
highest-occupied-molecular-orbital —lowest-unoccupied-
molecular-orbital (HOMO-LUMO) energy gap. For the
bonding we find a large s to p promotion almost equal to
one electron per atom, corresponding to approximately
single occupancy of each of the sp basis orbitals, corre-
sponding to strong p bonding in agreement with previous
calculations.

For the (1,2) isomer, the quench also leads to a highly
stable structure having a cohesive energy per atom ex-
tremely close to the ideal value of 6.92 eV, the total ener-

gy change, or (1,2) fault energy, being about 1.3 eV. This
structure, illustrated in Fig. 3, is distorted from the per-
fect sphere, with changes in the bond lengths seen up to
three nearest-neighbor hops away from one of the two

r(t +5t) =r(t)+ [r(t) —r(t 5t )]+5 tF(t) —.

The kinetic energy of the evolving system is gradually re-
moved by inspecting, at each coordinate updating step,
the values of the forces and the corresponding veloci-
ties. If the x component of the force on atom i is posi-
tive, and the x component of the velocity is negative, the
force is acting to slow the atom down. In this case we
update the atoms x coordinate by adding on simply
5 tF (t), i.e., we have reduced the atoms' kinetic energy
systematically. If the force has the same sign as the ve-
locity component then we update the x coordinate as per
the Verlet equation. This is repeated for the other two
Cartesian coordinates, and for all atoms. In practice we
find that this method is effective not only for optimizing
geometries, as we are doing in this paper, but also for
finding stable minimal energy geometries the form of
which is not known beforehand.

FICx. 3. The output from a quench on a (1,2) isomer. Only
the front atoms are shown. The number of hexagons and penta-
gons has been preserved.
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FIG. 4. The output from a quench on a (1,2)(2,3) isomer.
The faults introduce a seven-sided polygon into the tiling, and a
considerable distortion of the originally spherical structure.

atoms originally moved. The pentagon sides vary from
1.44 to 1.51 A, a change of +0.03 A. All other bonds
vary from 1.39 to 1.49 A, a change of about +0.04 A.
A better way to look at the bond-length changes is to
divide up the bonds into single and double, and to insist
that the bonds far from the faulted region are unchanged.
This leads to one consistent arrangement for which the
double bonds are generally shorter than the single bonds
as would be expected. Thus single bonds vary from 1.45
to 1.51 A, a change of +0.03 A, and double bonds from
1.39 to 1.44 A, a change of +o 04 A. The average s to p
promotion is almost identical to the previous value of
0.79 electrons, and thus not significant. Unlike the ideal
C6O molecule the sites in the (1,2) isomer are not all iden-
tical, and consequently we see some variation in the value
from site to site, the variation being of the order of 0.01
electrons. The energy levels are seen to be singly degen-
erate and with smaller interlevel energy gaps than the
ideal molecule as expected.

As expected the (1,2)(7,8) isomer is comparable to the
(1,2) isomer in that the two faults behave as if the one
does not a6'ect the other, the bond deformations in the re-
gion of each fault being identical to those seen for the sin-
gle fault in the (1,2) isomer. Correspondingly, the
(1,2)(7,8) fault energy is equal to twice the (1,2) fault ener-
gy, the average s to p promotion is equal to 0.79 elec-
trons, and the bond lengths around the faults are compa-
rable to those seen around the single fault in the (1,2) iso-
mer. There are no degeneracies seen in the energy levels
though some are very close together.

Perhaps rather surprisingly, the (1,2) (2,3) isomer

behaves in many ways like the (1,2)(7,8) isomer, in that its
fault energy is extremely close at 2.7 eV, i.e., an increase
of only 0.1 eV over the (1,2)(7,8) fault energy, and the
average s to p promotion is equal to 0.78 electrons, i.e.,
almost identical to the previous three values. Structural-
ly though, this isomer is markedly distorted from ideal
C6O. For the bond lengths the sides of pentagons vary be-
tween 1.44 and 1.51 A, a change of about +0.03 A, the
seven-sided polygon sides between 1.41 and 1.51 A, and
the remaining bonds between 1.42 and 1.46 A. The mole-
cule is consequently severely distorted from the spherical
form as seen in Fig. 4 with no clear separation between
single and double bonds. For the energy levels we again
see no degeneracies, and a HOMO-LUMO gap of 0.9 eV.
Although as already stated the model does not reproduce
the absolute values of HOMO-LUMO energy gaps, the
reduction is consistent with other predictions.

V. CQNCLUSIQNS

In summary we have performed molecular-dynamics
quenches, within a tight-binding framework, to find the
energies of three simple isomers of the ideal C6O molecule,
and the associated bond lengths, and s to p promotions.
We find, as have many previous studies, that the ideal
molecule is stable, and that it lies extremely close in ener-

gy to the graphite and diamond lattice structures, al-
though we find it to be considerably closer than most
theoretical studies. We find that the cohesive energy per
atom for each of the isomers is very close to that for the
ideal. This is probably because the weakening of bonds
by the inclusion of a fault is very much localized to the
neighboring bonds. Thus dividing the total energy
change, which is not so small, by the number of atoms,
which is large, produces a small number. A more realis-
tic quantity is the fault energy, defined as the energy
di6'erence between the ideal C6o molecule and the faulted
molecule, or isomer. We find an energy of approximately
1.3 eV per fault introduced. An interesting result of our
calculations is that we find an isomer with a seven-sided
polygon to be comparable in energy to one containing
just five- and six-sided polygons. However, the distortion
of the bond lengths and the bond angles (see Fig. 4) is so
severe that we suggest that this isomer is unlikely to be
observed experimentally.
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