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Molecular-orbital theory for chemisorption: The case of H on normal metals
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An ab initio linear combination of atomic orbitals (LCAO) method is presented to calculate the
electronic properties of solids. This method is based on the following points: (i) The total solution
of the electronic system is obtained using an expansion of various physical parameters up to second
order in the overlap between the diAerent atomic orbitals; extensions to large-overlap cases are also
discussed. (ii) The total many-body Hamiltonian is reduced to a superposition of Hamiltonian bonds,
defined for each pair of atomic orbitals. (iii) The parameters for hopping between two orbitals are
related to the Bardeen tunneling currents between the same wave functions; these tunneling currents
play, in our approach, the same role as pseudopotentials in the free-electron theory of solids. (iv)
Many-body eKects are treated using a Slater-like approximation for the exchange and correlation
interaction. We show that a many-body Slater-like potential can be introduced within our LCAO
approach. Our method has been demonstrated by considering the simple molecules H2 and LiH. A

further application has been made for the chemisorption problem of a hydrogen monolayer adsorbed
on the Li(100) and Al(100) surfaces. Results are presented for the chemisorption energies, equilibrium
distance of the adsorbed layer, and the density of states. Good agreement is found with other
theoretical results and experiment. Our results indicate that the main mechanism for the hydrogen
adsorption on simple metals is associated with the lowering of the hydrogen a%nity level due to the
electrostatic interaction with the metal atoms.

I. INTRODUCTION

The tight-binding (TB) or linear combination of
atomic orbitals (LCAO) methods are receiving in-
creasing attention for the solution of various problems
in solid-state physics. They are also used in the analysis
of disordered solids, surfaces, or systems without three-
dimensional translational symmet, ry: In these cases, ex-
tended wave functions can be described by a linear com-
bination of the orbitals of constituent atoms. An obvious
advantage of this approach is its computational simplicity
tha. t a,llows calculations t,o be performed tha. t, would ot, h-
erwise be too time consuming when alternative methods
are used. Recently, for example, TB molecular dynamics
has been developed for diA'erent syst, ems, showing its
applicability to complex situat, ions wit, h great accuracy.

Solile theoret, ical eAort has sought, to put this localized
picture on a fundamental basis. In general, the TB
description developed in t.hese references is based on the
stationary properties of the self-consistent solutions of
the densit, y-functional theory.

A more semiempirical appl oach has been used ' to
rationalize the TB method from the physical and the
chemical trends of diA'erent materials. This approach is
deeply related to the Hiickel theory in molecular physics,
a method that has been extensively used in surface
physics. ~ In this field, some people have introduced
model Hamiltonians improving over the Hiickel approach
in order to obtain a better description of the chemisorp-
tion prob/em.

As regards this last field of chemisorption, it is

worth mentioning that a great deal of progress has
been achieved in it by means of elaborate numer-
ical calculations performed using the local-density
approximation. This approach has been successfully
applied to simple atoms chemisorbed on metal and semi-
conductor surfaces, but only in very simple cases has it
been possible to calculate the important physical prop-
erties of chemisorbed molecules. As in the case men-
tioned above of molecular dynamics, a TB method not
relying on phenomenological parameters for the interface
calculations would ofkr an alternat, ive approach to the
local-density-approximation (LDA) method in order to
analyze complicated chemisorbed molecules.

In spite of all the work mentioned above, there is still
a lack of a simple fundamental ayproach relating the TB
Hamiltonians to the basic properties of the constituent
atoms.

The aim of this work is, following Ref. 16 (hereafter
I) to fill this gap, presenting an ab initio discussion of
how to calculate the diA'erent parameters of a TB Hamil-
tonian using no adjustable parameter. This discussion
includes one-electron and many-electron eAects and is
applied to the case of atomic hydrogen chemisorbed on
normal-metal surfaces. The result, s obtained for this sys-
tem give strong support to the method presented here.

In Sec. II we discuss the general approach we follow to
obtain the TB Hamiltonian. Contact is made with molec-
ular physics to check the method, and a discussion about
how to calculate the many-body properties of a system
described with a TB Hamiltonian is also presented. '1his
is necessary in order to obtain reliable results for the elec-
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tronic properties of any system. In Sec. III we discuss the
case of H chemisorbed on normal metals. We have chosen
to analyze two cases: hydrogen on Al a.nd hydrogen on
Li. For Al there are accurate LDA results, and this
system will allow us to make a reliable comparison be-
tween the results calculated with our approach and with
LDA. The case of Li is also interesting because it is a
metal of low density presenting a diA'erent behavior with
respect to Al: as will be discussed in Sec. III, Al is a high
density metal, as hydrogen chemisorbs on without pene-
trating the surface, contrary to the case for Li. Finally,
in Sec. IV we present our conclusions and an evaluat, ion
of the method presented here.

II. GENERAL METHOD

properties of the system. The best way of analyzing this
point is by considering simple systems for which exact,
solutions can be obtained. We have chosen for the sake
of simplicity the molecules H2 and Lin. The results ob-
tained for these cases will illustrate clearly the points
under discussion.

Let us start by considering two atoms 1 and 2, with one
orbital per atom: for II2, we choose the 1s levels, while
for LiH we consider the 2s and the 1s wave functions,
respectively (for the LiH case, the Li 1s wave function
shall be introduced below but, for the time being, let us
keep the dicussion to this simplified level). In our LCAO
a.pproa. ch, those two wa.ve functions are used to calculate
the properties of our electronic system defined by the
following Hamiltonian:

The method we shall present in this paper is an ex-
tension of that initially developed in I. Our aim is to
find a solution of the general Hamiltonian of a solid or
an interface by using a linear combination of the orbita, ls

associated with the atomic constituents of the system.
In I we introduced some of the main ingredients of t, his
wol'k.

(i) The total solution of the electronic system was ob-
tained by expanding various physical pa.ra.meters up to
second order in the overlap S,&

between different orbit, als,
say g; and g&. Although t, his method was applied in I
to a physisorption problem, we sha. ll show below tha. t it
can also be adopted as well for other physical problems
of interest in solids, where chemical bonds are important.

(ii) The crystal Hamiltonian was reduced in I to a su-
perposition of bonds, defined by each pair of atomic or-
bitals. This will be shown below to be consistent with the
expansion up to second order in the overlap coeKcients.

(iii) The hopping parameters between two orbitals were
related to the Bardeen tunneling current between t, he
same wave functions. We shall extend this approach to a
more general case below. The advantage of proceeding in
this way is that the Bardeen tunneling current embodies
all the informat, ion associa, ted with the atomic core wave
functions. Thus, we can say that the Bardeen tunneling
currents play the same role as pseudopotentials in the
free-electron theory of solids.

In this section we shall not only discuss these points
in detail but also analyze how to include exchange and
correlation in this LCAO method. As before, we will not
use any adjustable parameter.

A. Overlap expansion aud molecules

AVe shall discuss here the validity of the overlap ex-
pansion as used in our method to calculate the electronic

where r; and r& refer to the elect, ron coordinates, and B.i
and H.~ are the coordinates of the nuclei having charges
Zl and Z2, respectively. Using the atomic orbitals, gl(r-
Kl) and @2(r —R2) in atoms 1 alld 2, we introduce the
orthogonal basis, $1 and p2, by means of the general
equation

(2)

where S;& is the overlay between wave functions i and j,
For a. two-level system, S )' can be exactly calculated
yielding the following equations:

(3a)
(3b)

where

S being the overlap between orbitals gl and @2, S =

Wave functions $1 and P2 are used to write the many-
body Hamiltonian in the following second-quantized
form:

H = (81D1 + F2772 ) + ) (E + I71771 + 6262 a)(c c2la + c2~ cia) + U1D1T7111 + U2D27n2$

+1~2+ ) [J711~7l2 ~ + (J J~)7ll~A2~] + (4)
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where the usual creation and anihilation .operators are
introduced (71; = c,. c; ).

In I it was noted that other terms,
like J c1 c2 c1 c2~ or J c1 c1 c2 c2~ have been
neglected in writing the Hamiltonian (4). It is worth
realizing that the order of magnitude of the contribution
of these terms to the total energy of the system is propor-
tional to J. ( c1 c2 Q( c2 c1 &, a. term going like

S ) sll'lce J~ ~ S alld ( cl~c2~ )~( c2 ~cl ~ )~ S.
This means that the main terms inept in Eq. (4) are pro-
portional to, or larger than, 9: this is consistent with
the overlap expansion that is going to be introduced
presently. We should stress here that t, his argume»t is

going to be used in the more general case, as a. guide to
select the main terms of the more general Hamilto»ia»
for a solid.

The diFerent terms of the Hamiltonian (4) are defined
in the usual way; for instance:

Z, Z2

I

- —R I)

S2
s, = s('+ (s!"—s,'") —S~,

o)
(

(o) + .o
)1 (Gb)

h(o) (U(o) + J(o))S
(Gc)

U. = U,"+ (U,"' —J(')) —~Sh;,
S2 e

(Gd)

J()+ (qJ() U() U())
s'2

2 1

—S(hl + h2), (6e)

(See I for further details. )
The overlap expansion is introduced here by using Eqs.

(3), and expanding the coefficients A and p up to second
order in S. This yields the following equations:

1
,'(r), P, (r') dr dr',

r —r'

1(r)~2(l), , 41(l )~2(l )dl dl'

(5b)

(5c)

J J J(o) J(0) + J(o)S2 (6f)

where the superscript (0) means that, Eqs. (5) have to be
used to calculate the different terms replacing P; by @,.
This procedure yields the following approximate Hamil-
tonian (up to second order in S):

2

) . (~i +
4 i~i, ~i + (~l J )iii — (+2 ~ )iii — ] +(~+ hliii —~ + ti2iii — )) iii

p 2

+ ) s2 + [s.—,
' —s, + (U2 —J )n.; —(U, —J )n, ~) —S(t+ hn, ~+ h2n2 n) I n2n

{0). {0).+ (5 + /1. 17ll cr + /l2n2 a)(cl~c2(r + c2~clv) + (il 7'lit 711) + U2 712l712t

+) [J(')71,.71-, .+ (J(') —J(')+ J(')s')n, .n,.]+ (7)

We should make clear that in these approximate equations, t and 6; are not the exact values but the ones given by
Eqs. (Gb) and (Gc).

In our approach to chemisorption we propose to introduce a further simplification related to the many-body terms
appearing in 7ll~ Blld 712 . In this step, the terms (S /4)(U1 J )ill ~nl&y, S/l1711 ~n2~, ol hlnl ~cl c2~ will
be replaced in a Hartree approximation: we can expect this approximation to be a reasonable one, since the main
many-body effects are associated with U1 7?11-7i,1~ or J{ )7?, 172.2. Therefore, ve make the following substitutions:

{0) {0)(U, —J ) 7'i. l 711

c'2 ~2
(U, —J )&77.1 ~)ril~+ (/, —J )nl ~&nl~&

(U, —J( )) ( 71, .)& 7',.&,{o) 0

—5 I?.16.1 l~/?1 & 7'?
1 —~ & 7I"&~ ~~I?17? 1 —o & 7? g(7 ) +Sl?1 & 7? 1 —a && 7? &o & 7 (8b)

I? 17l1 g C1 C2~ ' h1 &»1 ~ & Clo~2& + '1 '1 —& Clec2& + /?'1 & 7?1 & )& C1&C2& ) (8c)
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The last terna of each of these equations has to be in-
troduced in order not to change the total energy in per-
forming the Hartree approximation. Moreover, we have
also found that, with a, good approximation in the total
energy, we can neglect these cont, ributions if, at the same
time, we neglect the second term of each equation. This
amounts to making the follov ing replacements:

2

(Ui —J )ng ~ni~(o) (o)-

electrostatic potential created by the lo and 2o charges
upon the 1 —o orbital, due to t, he renormalization in the
2o. and lo. wave-function weights due to the creation of a
1-2 bond. In this paper, we shall study the total energy
of some chemisorption problems without analyzing the
induced interface dipole and the changes in work func-
tion and stick therefore to the ayproxima. tion given by
Eqs. (9).

Then, Hamiltonian (7) can be writ, ten as follows:

—Sh)Ai Ag

l~l i'Oy ~ Cg Co~

(9b)

Ay (7l, y ) c| c) (9c)

(V, —J( )) & iii, ) iii, , (9a)

(10)

H= ) Eing~+) E, n ~2+) T (c, c2~+c, ci~)

+U, nest nag + U, n~t n2)(o) (o)

~ ) [J(o);„;„+(J(o) J(o) + J(o)S );,, ;„]
Zl Z2+

d )

We should remark that in going from Eqs. (8) to Eqs.
(9) we still retain good accuracy in the calculation of
the total energy of the system. This approximation im-

plies, however, neglecting some terms [like (S /4)(UI
J ' )n, ~ & fly~ ), —Sh]~l, , ~ & 7l.~ ), and hyll]
x & c& cq )] that must be included if one is interested
in calculating with high accuracy the electrostatic po-
tential acting upon each orbital. For example, the term

bin~ ( c& c2 & is associated with the electrostatic
potential created by the 1-2 bond charge upon the 1 —o

orbital; the other two terms, (S /4)(U& —J( l)6, i
x & i&i ) and —Shini & ixq ) are related to the

I

where
g2s(o) + (

s(o) s(o) + (U(0) J(o)) & n

(U, ——J'") & 6, , )]—ST
(1 la.)

T =5+by (Ay ~ )+A~(tl~ (11b)
Equations (10) and (11) are the basis of our method for
calculating the total energy of molecules with only two
atomic orbitals.

For more orbitals and two atoms, Eqs. (10) and (11)
can be generalized as follows:

H= ) En; + ) T~(c, c~ +c c, )+) U, ngnl
4 &CT e, (i,j)

i,jgi, e

In this equation:
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(remember that in these equations, t and 6 should be
calculated up to second order in the corresponding over-
laps).

The addit, ional terms appearing in these equations with
respect to Eqs. (10) and (11) are contributions due to
other orbitals. Thus, p, I&, J, I ( AI ) yields the
Hartree contribution of the l orbital to the i level, while

hI;z ( nI~~ ) yields also the Hartree contribu-
tion of the l orbital to the ij hopping. AVe shall show
presently that the more general IIamiltonian (12) follows
from the total Hamiltonian by expanding the difkrent
interactions in t,he overlap coeNcients.

We apply now Eqs. (12) and (13) to the calculation of
the binding energies of the H~ and LiH molecules. Fig-
ures 1 and 2 show the results of a standard Hartree-Foclc
calculation using for H2 a, 1s level per atom, and for LiH
a Is, 2s configuration for Li and 18 level for H, In the
same figures we also show the results obtained with our
method for the same configurations. In the case of H2,
we find that our method (S'-expansion) understimates
grossly the binding energies (by 2 eV), although it
yields a good equilibrium distance. For LiH, the results
of our S -expansion method yield a, much better agree-
ment with a Hartree-Fock (HF) calculation: the differ-
ence in the binding energy is around 0.2 eV, and in the
equilibrium distance less than 0.2 a, .u. These results can
be understood because for H2, S can be as large as 0.7
at the equilibrium distance (see Fig. I), while for LiH
the 2s(Li)-Is(H) overlap is only 0.43 at the equilibrium
distance (see Fig. 3). Notice that even for Hq, our S2 ex-
pansion starts diverging froIn the HF results for S &0.4.
These results show that our Hamiltonian (12) is a. good
approximation to the actual problem if S ( 0.4.

2.0—

LiH MOLECULE

1.0—

(3
tY
LIJ

(3

0.0—
CQ

1 e0 I I r 1 I I I 1 I l I 'I I I I l I I I l I

2.0 2.5 '.0 3.5 4.0
DISTANCE (a.u.)

l I I I I I I I

4 5

N~e have investigated further which is the main rea, —

son for the inaccuracies in our S-'-expansion appioach.
To this end, it is convenient to consider the one-electron
Hamiltonian of two levels, as obtained from Eq. (4) by
neglecting many-body efI'ects. Then, we get the reduced
Hamiltonian (ZI ——Zq ——I)

FIG. 2. Binding energy for LiH calculated using (i) a stan-
dard HF calculation, (ii) our S expansion in all the terms of
the Hamiltonian.
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FIG. 1. Binding energy for Hq calculated using (i) a stan-
dard HF approximation, (ii) our S expansion in all the terms
of the Hamiltonian, (iii) as in (ii) except for the hopping term
that is calculated exactly. We also show the 1s-1s overlap (iv)
as a function of the H-H distance.

I"IG. 3. Hopping interaction between the H 1s and the Li
2s orbitals as calculated; with the exact Hamiltoniau; (ii) us-
ing our S expansion. We also show (iii) the overlap between
these t~vo orbitals as a function of the Li-H distance.
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) (&1nl)/ + S2n2e) + ) t(cy&C2/) + C2))clcr) +

(14)

where

s, = s, )+ 2[1 —(1 —S') ' "-](s( ' —s( )) —St, (15a)

AVe propose to solve the electronic part of this Hamilto-
nian by means of an electron basis defined by t, he atomic
orbitals @~(r—R, ) where n refers to the atomic orbital.
For the sake of simplicity, we shall write from now on
(i, n) = v, and introduce the Lowdin orthogonal basis:

(17)

(0) S (o) (o)
(1 —S'-) 2

(15b)
where S„„=(P„~ g„). Using this new basis, the
electronic part of IIamiltonian (14) can be written in a
second quantization language as follows:

(see I for further details). The main point to notice here is

that the exact value for t is given by t( ) —
2 (s& + s2 ),

the hopping as calculated in a S -expansion approach,
times (1 —S2) ~. This last, factor, (1 —S2), yields the
correction introduced upon the lowest approximation to
t by the wave-function overlap. It, is easy to check that
this factor is very large for S 0.7, the overlap appearing
at the equilibrium distance of H2.

In order to check that the hopping is the main factor in-
troducing the inaccuracies in our S -expansion approach,
we have calculated the total energy of H~ using Hamil-
tonian (10) and Eqs. (11) with t, h, , and h, calculated
exactly to all orders of S. In Fig. 1, we have also included
the H2 binding energy as calculated with this approxima-
tion: these results show a, very good agreement with the
HF calculations and confirm our comments about the in-
accuracies introduced by our S2-expansion method. Sim-
ilar results have been obtained for LiH; in Fig. 3 we only
show the 2s(Li)-ls(H) hopping; as in the case of H2, we

also find that our approximate calculation yields smaller
values for this hopping integral than the HF results.

To conclude this section, we should say that our results
show that our 9 -expansion method is a very accurate
approximation to the bond problem for not very large
overlaps, say, S (0.4. For higher overlaps Eqs. (12) and
(13) are, however, a good approximation if T, t, and h.

are calculated exactly up to all orders of S.

B. The total Hamiltonian as the superpositiou
of bouds

FF =) s„n„.+ ) t, „„(ct„.c„.+ ct.c„.)
P) t7 e, (p„,v)

w hei'e

vurcr pAu'

&up = Q2

k

(19b)

1
uA

(19c)

The first, step to simplify EIamiltonian (18) is to neglect
terms contributing to the tot, al energy that, are propor-
tional to S, where S is a. parameter measuring the over-
lap between diA'erent orbitals. This implies neglecting
all terms in the many-body part of the Hamiltonian that
have four difI'erent orbitals. In general, t,hese terms con-
tribute in S~, as

Let us now discuss how the total crystal Hamiltonian
can be written as a superposition of tlie bonds defined
for each pair of atomic orbitals, as in Eqs. (10) and (11).

Our starting point is the general many-body Hamilto-
n lail:

since

(20b)

a.nd

1+
2

c & ( c , cg & S .

Then, Hamiltonian (18) can be written as follows:

(20c)

FI = ) s,n„+ ) t„„+) h„„„A,p
VCF ()/, p)(//A, , e/

h.„,„n), (et c„,+ ct, c„,)

+ ~)/n)/tnl/$ + / [J)/))n)/l7n)c —p + ( J)/)) Jz, )/)))n)/Ixn))//]
I&) p jf I&) 0'

(21)
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where

I

h~~, „= 4 "„-(r)P,(r'), pi, (r')dr dr'

for A g v and p or o g 0', (22a)

(24a)

(24b)

hAV —0 for A= vor/l and 0'=0 (22b)
S„„for A g v and p, or o g cr', (24c)

hA, PP Pg(r)P), (r')P„(r), P„(r')dr dr', I

0 foI A —v and p, or cl: 0 (24d)

4„(r) Q„(r')dr dr',

(22c)
& up A up 2 &'u(JAu + Ap. (24e)

JV jL Q(, (r) Q (1 )dr dr
1

(22e)

Jx,vp, = 1
P„(r)Pq (r), P„(r')P„(r')dr dr'.

(22f)

In Eq. (21) the many-body terms depending on three
orbitals have been written lilie hg, „np I c, c„~ or
h&, „np c e&, while the terms depending only on
two orbitals go like U„n tn„t, J,„A,, n„or (J„„—
Jz ) p p jn v 0' n p 0' '

Apparently, the terms proportional to h~&, „go like 92,
and their contribution to the total energy like S; how-
ever, we shall show later that h&, „contributes to the

i

total energy with a terna proportional to S, if A and p
or v belong to the same atom.

Hamiltonian (21) can be furt, her simplified if we use
Eq. (17) and expand the matrix (S i )&„up to second
order in the overlap as follows:

4i —0i ——,) Si uWu + —,),Si ~s~ulu
A, V

Introducing this expresion in Eqs. (22) yields the fol-
lowing equations:

J„„—J(o1+ i S2 (2J(o) IJ(o) IJ(o))

Sul4(~u, up + ~p, eau )

—) (Su), htt,
q + S„ph,"t„~)

AQPV

(24g)

(0) (0) (0) 2J,„—J ,„= J,„ —J „„+ J„„S„„
+-,' ) J('„~(s„'„+s,";„)

AQPV

AgPP

(24h)

where the superscript (0) means t, hat Eqs. (22) have to
be used to calculate the different terms replacing P, by

@u. In Eqs. (24), J&&~ is equal to V&( . Notice that h&
if A and v or p belongs to the same atom, is of order S,
and therefore this term contributes to the total energy of
order S as commented above.

When Eqs. (24) are introduced in Hamiltonian (21)
and diAerent terms are rearranged, the following result
is obtained:

V(7 /4g V

) s(01 + ) S2 +U, n + J n„+ g J,~np — g J„~ np(0) (o) - (0)-
O''AgPV AQPV

+EJ„- n„+J„n„+ g J ~np — g J ~ np(o) {0)= (o) - x - (0) - i - ~(0)-

V, /.Lg P 0'
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The next approximation follows the line of the discussion given above in!!A, and replace the terms multiplying nv
and (e, e& + c„e„)by their mean values. This yields t, he following equations:

H = ) E„n„+ ) T,„(et e„+e'„e„)
V&C7 Vg

where
V&P g V &(7

S
+ g. ~ +~~V &~~ — &+~V) &~~& — &+ . ~

A
~~'& ' J

A

cr (0) X vP, (0) j (0) - (O) (o) - &,(o)

/Cg V O'', A/V, P ~g V, P

+U„&,„&+1„,&, &+(o) (o) (o) (o) - - ~, (o)

)A+V)&AC AQP, V

(27a)

IIpg ——) s(k)ek ei, (28)

and consider the metal as a, single system with many dif-

and
I

T~p: Cp&) + ) h& p~ ( n&~) ) —) /lp p ( n&~ 0
(27b)

This is the same Hamiltonian given for molecules in
Eqs. (12) and (18) above. These results show that our
basic Hamiltonian is given by the superposition of the
diferent Hamiltonians defined for each pair of atomic or-
bitals. One word of caution should be said here: strictly,
other orbita, ls modify a. single bond Ha.miltonian through
the new terms appearing in F and T„&. As it will be dis-
cussed below for some specific cases, these three orbital
interactions can play significant effects in the final solu-
tion of our problem. Let us stress, however, that formally,
the total Hamiltonian in our S -expansion approach can
be viewed as the superposition of the Hamiltonians for
a,ll the independent pairs, whether they are chemically
bonded or not.

Equations (26) and (27) define the electronic proper-
ties of a given system as a, function of the properties of
their atomic constituents. For the case of hydrogen or
any other adsorbate interacting with a metal surface, this
approach implies solving in a previous step the electronic
properties of the metal surface from the characteristics
of the metal atoms. Here we have followed a simpler ap-
proach, assuming that the metal surface properties are
known from independent calculations; in other words,
the aim of this analysis is to ayply our ab iuitio LCAO
approach to calculat, e the elect, ronic properties and ad-
sorption energies of some adsorbat, es on metal surfaces,
which we assume to be well described by k eigenfunc-
tions, &&'&k, and the corresponding eigenvectors, s(k), In
practice, these eigenfunctions a,re obta. ined by using a.n

appropriate tight-binding description of the metal band:
we have followed Papaconstant, opoulos and used for the
calculation of the metal structure the parameters given
in Ref. 18. Thus, we introduce the metal Hamiltonian

) g)qM (3o)

where g; is an atomic metal orbital. Introducing this
equation in Si, of Eq. (29), integrating in k, and ne-

glecting interferences between dIH'elent metal atoms, one
gets the following result:

(E„—s)n, (s)de —) S, T,

This equation yields the main difference between the ac-
tual approach and the one giving Eq. (27a): instead of
the term &S~ (EM —E ), E~~ being the metal atomic
level, one finds E~~ replaced by f snP(s)ds, n; (s)
being the local density of states on the metal atom.

The result obtained in Eq. (31) suggests a further gen-
eralization of Eq. (27a), replacing

ferent levels, int, eracting wit, h the adsorbate. Notice that
before, we assumed each atom to be well characterized
and the total system to be built up as the superposit. ion
of all the atoms; in the present case, we assume the metal
and the adsorbed atoms to be well characterized, and the
total system as the superposition of the met, al and the ad-
sorbate. M~e apply the approach developed previously to
this system, and define the llamiltonian as in Eqs. (26)
and ('27). We shall only consider the one-electron terms
as they are the only ones having soothe slight differences
with respect to t, he previous approach.

The important result we obtain in this one-electron
approach is that, due to the overlap with the k st, ates,
the n level is shifted by the following energy (see I):

bs =
4 ) S„[E —s(k)j —) Sk Ti,

k k

where Sk ——( Qk ~ g ) is the overlap between fk and
the atomic wave function g of an adatom, E the cor-
responding atomic level, and Tk t,he hopping element.
Comparing Eqs. (27a) and (29), we see that both equa-
tions yield similar results showing how overlaps modify
the effective one-electron level. Equation (29) can be
w 1'lt t,en in a local b as 1s de fl n In g
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(o) (o) - (o) - & (o) - x (0)-
i ~v + Uv 7lv —o + Jvp 7lu-o + 7 JVA»&&' g JVA

v'Ag pv Agpv )

(o) (o) - (o) - i - (o) - i ~(o)-+ U„7l„+J„,7lv + g J„~np — g J„~ n),
v'Agpv Agpv

Ch n, (s) ds'np(s')[(s —J('„) ( n„))—(s' —J„".' ( n. ))] (32)

where n„(s) and np(c') are the local densities of states
associated with the v and p, levels, respectively. In
this equation, we have eliminated the contributions
J „(n„) and J„„(»v ) to the Z and Z lev-(o) (o) I

els, respectively, because the electron hopping between
the v and p levels does not see those mean potent, ials
(see I). Using Eq. (30) we can replace (27a) by

which will be used below instead of Eq. (27a) given above.

In our approach to the chemisorption problem, z, can
represent the metal level as given by the tight-binding
parameters, ancl the correction terms

& P„&„S„"phd,p
a.nd —P &„5'pvTv„are ca.lcula. ted for t, he meta. l a.clsor-
bate coupling, with p, referring to the diH'erent adatoms.
Alterna. t, ively, c, ca.n represent, t, he ba.re ada, tom level;(o)

then, the correction terms are calculated for the metal-
adsorbate coupling, or the adatom-adatom interaction if
more than one atom is adsorbed on the metal surface.

C. Exchange and correlation

Hamiltonian (26) and Eqs. (27b), (32), and (33) define
our model for the chemisorption problem. This Hamil-
tonian is a many-body one, and many diAerent approx-
irnations are possible to obtain the total energy and the
electronic properties of the system. First of all, we dis-
cuss the Hartree-Fock approximation and, later on, we
show a better kind of approach which we have used to
introduce many-body eAects: this approach is equivalent,
within a, I CAO methocl, to the Xn method proposed by
Sla, ter for a free-electron-like system. -'

The many-body terms appearing in Hamiltonian (26)
are

where

)
V)P gv) O'

(o) (o) (o) (o)
vp vp z, vp + vp vp (34a)

In a. Hartree-Fock approximation, the diferent terms of
Eqs. (34) are decoupled in the following way:

(o)-U, n, )7l g P 7l
y (7l $ )+U (7l t. ) 7l $

—U (n y )(n j ) (35a)

.(o)-
t/ vp 7lvo'7lP o JV&»vu ( 7lP —O' ) +JVP ( 7lvo' )»& O

—JV& (»VO )( 7lP —Cr

(o)- (o) (o) (35b)

.-(o)-
+vp 7lvo»Iso (o) -(o) (o)»Vo' ( ~'/. LO ) +Jv ( lVO' ) lPO' Jv ( 7lVO' )( lPO'

(o)i -t nf n

vp (( Cvvcpz ) Cpvcvv +Cvvcp&y ( C~ c v) v—vC C Cpv )( C Cvv )) (35c)

(o) - - (o)Jv~ 7lvg 7lP O + Jv ( 7lv~ )( 7lP (36b)

where ( ) means the niean value in t, he ground st.ate.
The terms introducecl in (35a) and (35b) and the first
three terms of (35c) correspond to the typical Hartree
approximation, while the last three terms of Eq. (35c)
correspond to the exchange contribution associated wit, h

J» . From the point of view of the total energy, the-(o)

many-body terms yield the following HF contributions:

»vf7lv) ~ Uv (»uf )( l vg ) )
(o)- (o)

(o)- (o)Jup 7lvo»p~ ~ Jvp, (»va )( 7lpo.

(36c)

Hamiltonian (26) can be solved in a, HI" approximation
by using Eqs. (35), and the total energy can be calculated
by means of Eqs. (36). It is of interest for the discussion
presented below to reconsider the simple case of two lev-
els, pr and pq (Sec. II A). In a. HF approximation, the
restricted one-electron solut, ions of t, he HF Harniltonia, n
take the following general form:
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i
—n I T) yp 2T&

y2 ——n 1].) +P 2 (&,
x. = P-I T&+ 2 T&,
x~ = P-1 l.& +P 2 l &,

(37)

with eigenvalues F~, F~ = E$ F3, and Eq ——F3.
I'or this simple case, if we have only two electrons filling

the lowest level, say Fj ( F3..
'2(ny~ )=0,' )

&»2u &=P( Ci CZu )= nP

easy to find from Eq. (40b) t, hat J'" = J~t„; then, the
exchange term cancels out exactly the Hartree-term ap-
pearing in (35c), as it should, because the single electron
cannot, influence itself.

Equation (40c) is the basic equat, ion replacing the ex-
change off-diagonal contribution by a diagonal one. This
subst, itution will be used in our approximated Hamilto-
nian for calculating all the electronic properties. The
adequacy of this ansa, tz can be further explored by ana-
lyzing the exchange pair correlation function associated
with Eq. (40c). To this end, let us notice that

Then, the many-body terms can be calculated straight-
forwardly using Eqs. (35) and (36). Notice that n and P
should be calculated self-consistently, since the Hamilto-
nian depends on the wave-function ground state.

AVhat is of interest to comment here is that the term
J„, in (35c) yields the following contributions:

This equation suggests the introduction of the pair cor-
relation function g (v, p), by means of the equation

J,2 p niu + J,2 n »2u —J„n p —Jiz npc, cg~
(o) & - (o) 2 - (o) 2 - (o) -f

—J„nPc2 ciu+ J,~ n P (39a)-{o) -f - -(o) »
to the total Hamiltonian, and the following contribution:

& C„C))u && C~ueuu &=& ))uu & gu(V P)

because Eqs. (41) and (42) show that

) g (v, p)=l

(42)

(43)

J(o) 2P2 Jto) naPz 0

to the total energy. Equation (39b) shows that no con-

tribution to the total energy comes from the J,„n, 6,„
term, the reason being that one elect, ron cannot interact,
with itself. If we loolc at Eq. (39a) we find, however, that
the Jv@ n, v~A, &~ term yields a. nonzero contribution to tl1e
HF Hamilt, onian.

In the following we propose to introduce an alterna, —

tive to the HF approximation, similar to the Slater Xn
method, in order to a,void the problems a.ssocia, ted with
the previous discussion [basically, Eq. (39a) yields very
large negative values for the 1-2 hopping and too large
positive ShlAs ln the encl'gy levels].

Our basic idea. in this point is to replace the off-
diagonal contribution

g(o) ( -f ~f
vp ( CV+Cp& ) Cp+Cv& + Cv&Cp& Cp+Cva

—( c„c„)(c„, c, &) (40a)

by a diagonal one of the form

eft' eff- r

»VS» pz —J„,»v~ (»pa

Jv &
( Cv&Cjco )( C &Cvcr

V)

jhow

V)O'

J, ( )luu ) gu(V, jl)
V) jtg V)C7

(44)

with g given by Eq. (42). Equation (44) defines E, asa.
function of gu(v, )u) in t, he appropriate way. We can also
define the excha. nge energy F, for a. level vo, by

E" = —) Jt'„) &)1„&g (v, p);
jLQV

the factor 2 appearing in (44) accounts for double count-
ing of the electron-elect, ron interaction. Thus

(40)

It is instructive to consider a simple case: assume that
the exchange hole around an electron in the v level is
localized in the first-nearest neighbors. Then

as corresponds to the exchange hole appearing around
an electron. Now, it is convenient to rewrite the tot, al
exchange energy in the following way:

+J„'", & )i, && )1„&, (40b)
= —) J„~ & )tuu & gu(V) p) )

PAV

(47)

where J„'„ is defii1ed by whel'e p and li al'e llea. rest nelghboi's. A ful't, hei' st, ep caIl
be given using the sum rule,

(40c)
g (v, v)+) g (v, p)=l

Equation (40c) guarantees that our ansatz [Eq. (40b)]
yields the same energy as the exchange contribution for
a given ground state. Moreover, for a two-level case it is

and

g (v, v) =& n„ (48b)
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Equations (47) and (48) yield

where J„, is the bare Coulomb interaction between elec-
trons in nearest-neighbor orbitals, p. and v. Equation
(49) will be shown below to be relat, ed to the correla;
tion energy F, associated with the electrons filling the
v level.

Having discussed the exchange energy, let us turn our
attention to correlation. In a first step, we consider
the case of H approaching B. metal surface. Figure 4(B)
shows a, typical energy diagram for this case. It is well
known that correlation eH'ects between t, he metal and the
adatom are treated in a simple way introducing the im-
age potential e /4d: the BHinity and ionization levels are
changed to A —e /4d and I + e /4d, respectively, with
an effective intrasite Coulomb repulsion of U —e'-/2d.

In our approach, we consider metal-adatom correlation
effects in a similar way. When an electron jumps from the
metal to the Bdatom [see Fig. 4(b)], creating a negative
ion on the surface, the metal screens the extra charge and
a hole is created around the adatom. If we assume this
hole to be localized in the adatom nearest neighbors, the
intra. -atomic Coulomb interaction U is reduced to U —J& ~

[see Fig. 4(b)]. At the same time, the ionization level
should be shifted by some amount as in the case shown
in Fig. 4(a). The point to be noticed here is that the new
ionization level I' should be taken in such a way that the
Hartree solution of the new effective Hamiltonian is not

modified by the new levels. This means that v e should
take

IeA I + J(0)

UefY U J(0)

v ith these definitions:

(5I)

as it should be.
Equat10ns (50) IIIcluclP. ITlefal CQI'I'clafl011 effects 011 tile

adatom. In order to calculate the modification that these
new levels introduce in the tot, al energy we assume
(U —J( l) small enough for B. Hartree approximation to
be appropriate. Equation (51) shows that, in this limit,
the electronic spectrum obtained from the total Hamilto-
nian [Eq. (27)] is the same Bs the one calculated with the
initial ionization level I and the intrasite Coulomb inter-
action U. The total energy is not, however, the same, the
reason being that the "initial' ionization level I has been
shifted by J( & & II. ), Bnd tltat the intrasite Coulomb
interaction has been reduced to U —J& ~. The ioniza-
tion shift reduces the total energy by J~ & ( A. ),
due to the change in the iriitial level which has to be
used as a reference to calculate the total energy more-
over the reduction of U rnodifies the iritrasite repulsion
and changes t, he total ei&erg& by J ' ( i~ t- &( i~

l

(this value accounts for clouble counting of the intrasite
Coulomb interaction). Both contributions yield the fol-
lowing adatom correlation energy:

(0)

(b)

(52)

where we have assumed & 6 )=& 6,

Equation (52) has been obtained for an Bdatom
chemisorbed on a n'ietal surface, but the same arguuient
can be a,pplied to any ot, her physical case, say, witli an
atom located inside the solid. The only important con-
Cllf lolls thaf, 11Bve beeII lIltrOClucPC1 fo ohtatll Eq. (52) Bre
the following: (i) the screening hole has been assumed to
be located in the nearest neighbors; (ii) (U —J( l) has
been assumed to be small enough for a Hartree solution
of the adatom eAective Hamil tonian to be accurate, This
would not be the case for the adatom far from the surface
when intrasite correlation effects are important.

It is of interest to compare Eqs. (52) and (49). For the
restricted case we are consider ing here,

(53)

FIG. 4. (a) Energy diagram for a. hydrogen-atom
chemisorbed on a metal surface. The affinity (A) and the
ionization (I) levels are corrected by the image potential:
e /4d. The effective iutrasite Coulomb interaction is recluced
by e /2cl (b) AVheII an electr. on (—) fills the affinity level,
the metal screens this extra, charge aud a, hole (+) is created
around hydrogen. This effect reduces U to V —J( ~, —J~

being the interaction bet~veen the ext, ra electron and its hole
which is assumed localized irr t.he adatorn nearest neighbors.

If we take v Bs the Bdatom, Eqs. (52) and (53) show that

@adatom 1 ~adatom
correl (54)

This is an important result that has been obtained by
assuming the correlation and the exchange hole are lo-
calized on the nearest-neighbor sites. )Ve will assume
that the same equation holds for B. more general hole (or
correlation) pair distribution function. This allows us to
write, for the more general case,
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EV ~V 3 ~~V
exchange + carve) & exchange (56)

Equation (56) yields the total exchange and correlation
energy per orbital, and allows us to int, roduce many-body
CAccts in our LCAO approa. ch following a method closely
related to the Slater Xo approach [in our case, no pa
rameter appears; the equivalent of t, he parameter n for
the Slater approach is fixed by the argument yielding Eq.
(55)1

D. Hepping integrals. Dardeeu tunneling currents

Sections IIA—II C give our formal procedure to calcu-
late the electronic properties of any system. In particu-
lar, the hopping integrals T&, between two orbitals are
given by Eqs. (27b), (22a), (22b), and (22c). In this

@correl =
2 +z = ) Jgsv & n&& & 9&(+i p) . (55)

p, g v

In genera. l, we shall ta,ke

section we discuss how to obtain these hopping terllls
by nIeans of the Bardeen t, unneling currents between
the atomic orbitals @„and p&. The advantage of this
procedure is that one can reduce the calculation of T„,
to cxpl'essions involving only valence orbitals: in other
words, in the final equations, t, he atomic core orbitals do
not appear. This means that, from the point of view of
the LCAO method presented here, t, he t, unneling currents
play the same role as pseuc/opot, ent, ials in the free-elect, ron
calculations.

Our staI'ting point, , as n1ent, ioned above, is aft'oIded
by Eqs. (27b), (22a), (22b), and (22c). Notice that, , in

principle, I«v is given exact, ly by these equations if tl1e

diferent tcrITls, 5&„, 6&, , BI1cl Il~ „, arc calcu lat .. (l to
all orders of the overlay. As discussed in Sec. II A, T~„
should be calculated in this way if the (v, p) overlap, S„,,

is very large. For most, purposes, S„,is small, and we can
obtain T&„up to second order in the overlay coefficients.
Then, t», h& „, and h& „, should ~c replaced by the

)

values given by Eqs. (24b), (24c), (24d), and (24e). This
yields t, he following equation:

+ s +U" &il, &+X' &A„&+ ) J „&np & —) J ~ &~l),

l O'', Ag V, P, Agp, , v

(57)

This equation can be rewritten in a, more transparent, way as follows:

where

I H(o) 14i & 2" (& & I +lo) I & &+ & OI I Hlo) I &~ &)

2, /

H(o)
————.', '7 + V, (r —R )+ V„(r —EL„) + ) V (r —R )+ ( ", dr') ( 6,

4) g/LV

' 0~(r')0~(r) d,

(59)

In this equation V„and V& are the potentials created
by the nuclei of the atoms where the orbitals v and p
are located, respectively, V„ the potential created by the
other nuclei; the next three terms represent the Hartree
potentials created by the electrons located in orbitals v,
p, and A, while the last term represents the exchange
interaction associated with the A orbitals. One has to
notice that the last term of IIto) operates on g„and @&

as follows:

Equation (58) has t, he same form as Eq. (10b) of I,
where a. one-electron local pot, ent, ial was introduced; in
our actual case, H&o& yields t.he IIartree-I"ock nonlocal
potential that depends on the clifkerent, ocupation nun1-
bers, ( A. p &. Me should stress that EI&o& is an approxi-
mate HaI tree-Fock potential, si11ce terms yielding collt r1-
butions proportional to, or larger than, S- have been ne-
glected ( if Hto~ is proportional ta S, & g„~ Hto~ ~ j„&
is proportional to S ). The exchange term [last term in

Eq. (59)] yields only a, non-negligible cantributian if Pp
belongs to one of the atoms associated with the orbit, als

The Hamiltonian (59) includes the Hartree-Foci& con-
ti'lbut, lon assoclatcd with at0111s v and p, , and thc Hal't, rec
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H(p)
——H +Hp +H (61)

where H and Hp represent the IIartree-Focli potential
of the atoms associated with orbitals v arid p, respec-
tively, v hile H refers to the other atoms. Thus,

potential created by the nuclei, and mean charges of the
other atoms. AVe rewrite H~ in the following way:jo)

where Z~ is the nuclear charge, and the other terms yield
the Hartree potential and the exchange contribution as-
sociated with the orbitals g of t, he n atom. The non-
local term of Eq. (62) operates on the wave functions as
explained in Eq. (60). A similar equation can be writ, ten
for Hp replacing n by P and v by p. . As regards H we

use a Ha, r'tl'ee a,pproxlllla, tloll:

A i 2H = ——V'
2

(62)

(63)

In order to calculate T„„we use Eqs. (58) and (60) and
write:

T:,= & @ I (H:+ Hp) 14~ & — 2" [& @- I (H. + Hp) 14. &+ «~ I (H:+ Hp) I &~ &]

+ & q, I H„ IV/„ & — ""((tP, I
H

I @, ) + & @p I

H'
I @p )) . (64)

We proceed to discuss the contribution to T,„coming from the a and P atoms. Notice that Hamiltonians H and Hp
include all the electrons of both atoms, and their contribution to T,„has to be worked out in detail. We shall show
that all these details can be embodied in the Bardeen tunneling current plus some correction terms to be discussed
below.

In a, first step, assume that @, and g„are chosen such that

Hp 0~ = &;,'0~

Then, using the same argument given in I, it can be shown that

(65)

& @. I(H. +Hp) I &p & — 2" [& 0. 1(H. +Hp) I &. &+ & 4i I(H. +Hp) I @p &]

@,Vpg„dr + @„V P„dr — '"
Q, Vpg, dr+ @„Vg„dr I, (66)

where the whole space, 0, is split into the subspaces 0
and 0„, associa, ted with orbita. ls v a.nd p. , respectively.

In Eq. (66),

with the atomic potentials V and Vp. If we assume these
effects to be small, Eq. (66) reduces to

TB
VP (@,V'g„—g„V'g„)dS, (67)

T,„= & @„1(H +Hp)1@„&

o. „being the surface limiting the subspaces O„and 0„
and satisfying the condition

— — "[&@„1(H + Hp) I @„&

+ & @~ I (H + Hp) 14u &], (7o)

@ugpdr = g, Q„dr = -„' g g„dr. (68)

JJ —-Q +V, Hp —— 7' +Vp. (69)

Moreover, V~ and Vp are defhxed by the following equa-
tions:

the same equation as obtained in I [see here Eq. (19)].
In obtaining Eq. (66) we have assumed Eqs. (65) to

hold. In general, this assumption is not appropriate
due to change in the orbital occupancies, & n„

&, and ( n~ ) when going from the atom
to the more general system. Then, it is convenient, to
introduce the atomic potentials, V ' and Vp", such that

Equation (66) includes the long-range effects associated Hat $ ~2 + Vat (71)
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H "g,. = E„'Q„, Hp'Q„= E„'Q„. (72)

Here V ' and V&' are as V, and Vp replacing the level
occupancies by their atomic values.

In the next step, we write

The atomic orbit, als g, and Q„are chosen to satisfy the
following equations:

H =H" +H"'+(H —H" )(0) cx P a o

+(Hp —Hp' ) + H

and calculate, independently, the contributions coming
from (H ' + Hp"' ).

Using the previous a,rgument for t, he new Ha.milt, onia. n

(H " + Hp' ), we obtain the following equation:

T.,", =«. 1(H "+Hp'")
I @ & — '"[& v 1(H."'+Hp"')

I @.&« I(H.'"+Hp'")
I @ &]

TB P Vp'Q„dr+ g, V 'g„dr— .Vp', dr+ 4„V"4„dr)

The total hopping element, T„„,is given by

T, „=T:„'+«. I ~(H: +
~&p ) I &', & — .

""[«. I ~(H: + H p ) I &. & + «~ I ~(H: + Hp ) I &~ &j
2

+ & @. I
H

I &w & — 2"(& 4. I H: I « & + & o~ I H: I 4P &) (75)

where

b(H + Hp) = (H + Hp) —(H '"+ Hp' ) . (76)

E. Surface calculatious

Hamiltonian (26) and Eqs. (27) yield our basic ap-
proach to the chemisorption problem. Many-body ef-
fects are reduced to a one-electron Hamiltonian using
the Slater-like approach developed in Sec. II C, while the

Equations (74) and (75) yield our results for T,„,the hop-
ping between orbitals v and p, belonging to the atoms n
and P, respectively. Equation (74) yields the hopping for
two isolated atoms, and this equation shows that, basi-
cally, this contribution is given by the Bardeen tunneling
current T„„. Other contributions in Eq. {74) are long-

range eA'ects of the atomic potentials V ' and V&, and
it should be stressed that they can be calculated assum-
ing all the orbital charge concentrated in the respective
nucleus except for the valence electrons.

Equation (75) yields two other contributions. The
R.rst one comes from the change in the orbital charge
for the atom in the system; its contribution is controlled
by b(H + Hp). In this case, only the valence or-
bitals present changes in their occupancies and yield non-
negligible cont. ributions to T„„.On the other hand, Eq.
(75) also yields contributions associatecl with the FIartree
potential created by other atoms: these are given by the
terms associated with H in Eq. (75). In general these
last contributions are not important, the reason being
the cancellation between & $„1H„ I g„& and the next
term —(9„„/2)[& $„1H

I P„& + & @„ I
H

I @„&].
To complete the discussion of this sect, ion, we comment

that the contributions associated wit, h H~ and Hp can be
calculated using only two-center integrals, while the ones
coming from H need three-center integrals that can be
calculated expanding the Slater atomic wave functions in
Gaussian orbitals.

I

hopping interactions are calculated in the way discussed
in Sec. II D. This defines a. one-electron Hamiltonian for
the whole system: the metal surface and the adsorbate.
AVe have solved this Hamiltonian in a, self-consistent way
as follows: (i) The one-elect, ron IIamiltonian is projected
onto the la.st few layers of the surfa. ce meta, l and the a.d-
sorbate by means of a. decimation technique. "-' Thus, t, he
interface properties are calculated by solving a, reduced
efkctive ma, trix that includes a.ll the bulk metal effect, s.
(ii) The projected one-electron Hamiltonian is solved us-

ing a Green-function method; this yielcls the one-electron
occupancies

& A
jr

ImG, , (w) d~u, (77a)

1&cci 2
7l QQ

ImG, ~ (~u) du), (77b)

III. RESULTS AND DISCUSSION

In this paper we present detailed results for the ad-
sorption of a monolayer of H on the Li(100) and Al(100)
surfaces. We have chosen these cases because t, here are a
lot of theoretical ~8 and experimental results 3 for
these systems. The purpose of our calculation is to check
the validity of our ab in, idio approach and, at the same
time, to analyze the main physical factors controlling the
chemisorption of H on simple metals.

We start considering the H jAI(100) system for which

needed for defining the complete IIamiltonian, since the
many-body eKects and the hopping interactions depend
on & 6,, & and the & c, cz &. (iii) The one-electron
Hamiltonian is solved self-consistently in the electron oc-
cupancies, & n; & and & c, c& &, by means of the electro-
static potential created by all the charges of the system
and the Slater-like potential associated with the exchange
and correlation eKects.
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there are some accurate LDA calculations. ' Fig-
ure 5 shows the surface geometry: we have analyzed
the chemisorption energy for a, hydrogen monolayer ie-
lazing perpendicular to the surface, with the hydro-
gen atoms moving along the (a) center and (b) bridge
metal surface sites. In our calculations we have used t, he
1s, 28, 2p, 3s, 3p orbit als fol Al, and t he 18 Ek level; t, he
difterent atomic eave functions have been taken directly
from Ref. 17, without allowing any changes in the pa-
rameters defIned in the orbitals. We have checked by
introducing a relaxed orbital for H, that a wave-function
expansion introduces a decrease in the total energy of the
system smaller than 0.1 eV per surface atom.

Figure 5 gives the total chemisorption energy per unit
cell for the hydrogen monolayer on Al(100) on the center
and bridge sites of the surface. The origin of distances
is the last meta, l layer. In our result, s, the H monolayer
always finds its equilibrium position above the last, metal
layer; the distance between the H monolayer and the last
metal layer is 2.0 and 2.4 a, .u. for the center and bridge
sites, respectively. This result shov s that the high metal
electron density of Al prevents the hydrogen atoms from
penetrating the crystal. At the equilibrium distances, t, he
chemisorption energies are 0.80 and 2.07 eV for the center
and bridge sites, respectively. These results should be
compa. red with the LDA figures a.s ca.lcula, ted for a. single
hydrogen atom chemisorbed on t, he same Al surfa. ce."-'-

The results of Ref. 22 give the following chemisoiption
energies: 1.4 eV (center) and 2.3 eV (bridge). Our results
are a. little smaller [0.6 eV (center) and 0.22 (bridge)j
than the LDA results: this reflects the fact that, for a
monolayer there is some repulsion between the hydrogen
atoms that reduces the chemisorption energy per unit,
cell. It is interesting to mention that in some recent LDA

calculations, Mallo has shown that for a monolayer of
H on the Mg(1000) surface the chemisorption energy per
atom is reduced by a few tenths of eV with respect to
the single atom case, in good agreement with the results
obtained here. Similar results for the Be(1000) have been
obtained by Yu and Lam. In general, the results of
Fig. 5 show a good agreement with the LDA results: the
small diAerences between both calculations can be traced
back to the eAect of having in our actual case a. hydrogen
ITlol'lolayel' illstead of a. Single a.tol'H.

In order to have a, better understanding of the diITer-
ent eAccts controlling the adsorption process, we show in
Fig. 6 the difI'erent contributions we have obtained in our
calculation to the chemisorption energy of H on Al(100).
This is split into the following terms: (i) electrostatic
energy; (ii) valence kinetic repulsion; (iii) core kinetic re-
pulsion; (iv) hybridization; and (v) exchange and corre-
lation energies. The electrostatic energy includes all the
contribution from the difkrent charges, nuclei, and core
and valence electrons. The kinetic repulsion yields the
energy associated with the terms going like S,&T& a—nd

4S,'~ (E, —E&) [see Eqs. (27) and (33)j; we have split this
energy for the valence electrons and the core electrons
interacting with the hydrogen level. The hybridization
term yields the energy associated with all the hopping
interactions and with the transfer of charge between dif-
ferent levels: thus, it includes the changes of energy due
to the transfer of electronic charge between hydrogen and
the substrate. Finally, the many-body terms associated
wit, h the exchange and correlation eftects are also shown.

The first thing to notice is the large contribution that
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FIG. 5. Chemisorption energy per unit cell for a hydrogen
rnonolayer on Al(100). Bridge and center sites are shown. The
distance refers the hydrogen monolayer to the last metal layer.
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I'IG. 6. DiR'erent contributions to the chemisorption en-
ergy of H on Al(100). (a) Center. (b) Bridge. (i) Electrosta. tic
energy. (ii) Valence kinetic repulsion. (iii) Core kinetic repul-
sion. (iv) Hybridization. (v) Exchange and correlation.
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most of the different terms have to the total energy that,
appears as the result of a delicate balance among all the
terms. It is also important to realize that the core and va.—

lence kinetic repulsion are the lnain fact, or controlling the
equilibrium distance between hydrogen and the metal; in
the particular case of Al, the valence kinetic energy gives
enough repulsion to prevent the hydrogen from penetrat-
ing the metal: this is mainly clue to the high electron
density in the metal. The nlain @tractive energy is clue
to the hybridization tel'iTl, although the exchange a.ncl

correlation energy also plays ali important role. In gen-
eral, the hybridization energy is controlled by the shift
of the mean hydrogen level with respect to the metal:
when the ad-atom penetrates the metal, its mean level
is lowered by the electrostatic potential created by the
atoms and some electron charge is transferred from the
metal to the hydrogen atom, this transfer of charge in-
creasing the chemisorption energy, In Fig. 7 we show the
local density of states on the hydrogen monolayer for the
equilibrium distance at the center and bridge positions:
it is interesting to realize that for the bridge site, this
density of states is a little larger due to the shift of the H

mean level to lower energies. This explains that the hy-
bridization and the chemisorption energies are larger for
the bridge site, and that the electron transfer of charge is
also larger for this cas=: we have found that 0.05 electron
are transferred from the Iuetal to the hydrogen atom at
the bridge equilibrium distance.

't'Ve should also mention that for this II/Al(100) case,
the hydrogen atom is kept so fal awny from the metal sur-
face that, the overlap between the diAerent atomic wave
functions is a.lways s111a.lier tha. n 0.4. This ca.n be checked
in Fig, 8, where the overlap between the 1s H level and
the other A} orbitals is shown as a function of the hydro-

gen distance to the metal surface. These results validate
the S2 expansion used to calculate the H/Al(100) inter-
ac tloll.

Let us now discuss the result, s we have obtained for
the H/Li(100) interface. For this case, we only present
detailed calculations for the center position. The main
reason is that, as discussed below, the Li electron den-
sity is rather low and the hydrogen atom can penetrate
the metal: this behavior favors the center position where
hydrogen penetrates the metal more easily and finds an
equilibrium position between the first and second metal
layers,

Figurc 9 shows thc total chci11isorptioll cl'1cl'gy pcl' unit
cell for the hydrogen monolayer on Li(100) (center posi-
tion). The equilibrium distance is found 0.4 a, .u. under-
neath the last metal layer, and the chemisorption energy
2.1 CV.

AVC should mention that the overlap between the wave
functions of hydrogen and the nearest neighbor of the
metal second layer can be larger than in the Al case (see
Fig. 10). In this case, we have followed the prescription
given in Sec. II A, and have calculated the hopping in-
tcgrals between the hydrogen and the metal atom to all
orders in the overlap coefficient. Otherwise, we follow
the method discussed above.

In I"ig. 11 we show the diferent contributions to the
chemisorption energy. For the H/Li(100) system we find
that the core kinetic repulsion between the FI 1s level and
the Li 1s level is the main term controlling the H-Li equi-
librium distance. The main attractive term is aAorded
by the hybridization term and the trarnsfer of charge be-
tween the metal and the II atom. In our calculations
this t,ransfer of charge introduces three-center contribu-

40—

0

0
~0.0

(b)

H/Al(100) center position

I I II I I I I I 'I I I I I I I I I I I I I I I I I I I I

H/Al(100) bridge position

0.3

CL

~ 0.2
0
O

0.1

H/Al(100) center position

S —PZ

I I I I I I I I I l I I I I I I I I I l I I I I I I I I I
i I I I I I I

1.2 1.7 2.2 2.7
distance to the surface(a. u. )

0
tn 4.0
O

0.0 I I I I I I I f I I I I I I I I I i I I I I I I I I I l I I I I I

—0.7 —0.5 —0.3 —0. 1

Energy referred to the Fermi level (o.u. )

C
0.5

EY
LLJg 0.4
C)

(b) H/Al(100) bridge position

S —PZ

FIG. 7. Local density of states on the hydrogen monolayer
at the chemisorption energy minimlln1 for the H/A](100) case.
(a) Center. (b) Bridge. E, is the conduction-band bottom of
the metal.

0 3 I I

1.8
I I I I I I i 1 I I I I I I I I l I I I I I I I I I l I I I I I I 1 I I l I I I I I I I I I

2.0 2.2 2.4 2.6 2.8
distance to the surface(a. u. )

FIG. 8. Overlap between the 18 H level and the Al orbitals
of the last metal layer. (a) Center. (b) Bridge.



11 428 F. J. GARCIA-VIDAL et al.

o.o—
H/Li(100) center position

—0.5

0
Q)~ -1.o
C
Q)

0——1 5
CL
L0
N

~ -2.0

10-

0-

—10-

(iv)

(v)

2+5 r l r

—1.6
r I s s r I I I r r I s I s I s I r I I r r I I s 1 I s r I s I r I

~
s r I r I s r I

—1.1 —0.6 —0. 1 0.4
distance to the surface(a. u. )

r r I s I

—09
ance

20 s r s r r s s

—1.4
dist

r r s r s

—0
to the

r I I I 1 r l r r I r r I r s l I l

4 0.1 0.6
surf ace(a. u. )

I'IG. 9. Chemisorption energy per unit cell for a hydrogen
monolayer on Li{100). Center site. The distance refers the
hydrogen monolayer to the last metal layer.

FIG. 11. As in Fig. 6 for a, hydrogen monolayer on Li(100).

tions yielding important efkcts on the hopping between
hydrogen and the metal. I"or the IZ/Li(100) system, the
hydrogen aFinity level is strongly decreased by the elec-
trostatic potential createcl by the met, al atoms below t, he
metal Fermi energy, Due to this effect, at, the equilibriums
distance 0.61 electron are t, rausferrecl fiom the metal to)

the adsorbed atoIT1, this 111echallisH1 t,eucllng t, o lucrea, se
substantia, lly the chemisorption energy. In Fig. 12 we

show the local density of states on the hydrogen layer at
the equilibrium distance: it is clearly seen in this figure

that, the hydrogen level is just, below the conduction-band
bottom, and that a high density of states associated with
the formation of a 18 H level band appears below that
conduction-band bottom.

It, is worth comparing our results for the H/Li(100)
7 26 —28with other independent approaches. Ne mention

the theoretical work of Beckman and Ikoutecky, 2 and
Ray and Hira. : these authors have investigated t, he
interaction of a single H atom with Li clusters using a
full configuration interaction method. The cheB11sorp-
tion energies calculated in these references are a little
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FIG. 10. Overlap bet~veen the 1s H level and the Li or-
bitals of the metal second layer.

FIG. 12. Local density of states on the hydrogen layer at
the chemisorption energy minimum for the H/Lrt100) case.
E, is the conduction-band bottom of the metal.
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larger than 2 ev, in good agreement with our results.
As regards the equilibrium distance for the H/Li(100)
interface, the cluster calculations '- show a. large dis-
persion in the H-site posit, ion. Some information can be
surmised, however, by considering the similar system of
H on Na(100) [this is an open bcc structure like Li(100),
having also a low electron density]: experimental' and
theoretical iesults""' "" sugge;t, that hydrogen is located
below the last Na layer as our results show' for t, he Li
ca.se.

Vie should finally comment that the main mechanism
associated with the hydrogen chemisorption of H on sim-
ple metals depends on the lowering of the hydrogen afIin-
ity level below the Fermi level by the electrostatic poten-
tial created by the metal atoms. This mechanism is fully
developed for the H/Li(100) case, where the hydrogen
can penetrate the metal, the hydrogen mean level being
located just below the bottom of the metal conduct, ion
band. For the H/Al(100) case, the high electron density
in Al prevents the hydrogen atom penetrating the metal:
due to this reason, the hydrogen mean level is not lowered
as much as in the Li(100) case, although the most favor-
able hydrogen adsorption site is determined at the bridge
site by maximizing the transfer of charge from the metal
to the adsorbate. These results are similar to the ones
found in the LDA method, "- or within the framework
of the overcomplete Anderson model. As shown in the
LDA calculations, when hydrogen penetrates the metal
surface, its amenity level crosses t, he Fermi energy, mov-
ing down in energy, until the hydrogen is located inside
the solid: then, the mean hydrogen level is located just,
below the bottom of the metal conduction band.

IV. CONCLUSIONS

In this paper we have presented an ab initio LCAO
method devised to calculate the electronic properties of
solids, in general, and surfaces and interfaces, in partic-
ular. The case of a H rnonolayer adsorbed on normal
metals (Li and Al) has been analyzed following the clis-
cussion of the method presented here.

The essential idea of this paper is to introduce a, to-
tal Hamiltonian which is expressed as t, he superposition
of Hamiltonians defined for each pair of atomic orbitals.
The terms appearing in this simplified Ha.miltonian have
been obtained from the most general Hamiltonian by us-

ing a well-defined prescription: first, we introduce S, t, he
overlap between difI'erent, orbitals; then, we only keep in
the most general initial Hanziltonian t, hose terms con-
tributing to the total energy up to second order, S'-, in
this overlap, The total IIanxiltonian obtained with this
procedure is similar to the one proposed by Harrison;
the main advant, age of the discussion presented here is,
however, that we have given a clear prescription to cal-
culate a.ll the difTerent terms a.ppearing in t, he Hamilto-
nian, many-body terms included, using the atomic wave
functions of the constituents. In particular, the hopping
integrals between two orbitals have been related to the
Bardeen tunneling currents between those orbitals, these
currents playing in our approach the same role as pseu-
dopotentials in the free-electron methods.

It should also be commented t,hat for the cases of large
orbital overlaps, we have found that the total Hamilto-
nian introduced in this paper still represents a good ap-
proximation to the most complete initial Hamiltonian of
the problem if the hopping integrals are calculated up to
infinite order in the overlap.

We have found that, this prescription should be ap-
plied for S ) 0.4; for smaller overlaps, t, he up-to-second-
order expansion in S yields very accurate results. We
should mention that, in practice, only the overlap be-
tween nearest neighbors can be large (with S & 0.4);
for this case, only the hopping integrals between near-
est neighbors should be calculated using the full Lowdin
wave functions [Eq. (17)] instead of the approximate ones
[Eq. (23)].

Another important point of the discussion presented
in this paper is the treatment of the many-body efI'ects,
Our total IIamiltonian is a many-body one, with electron-
electron interactions that have been analyzed within our
LCAO method using an approach similar, but not iden-
tical, to the Xn method proposed by Slater for a free-
electron-like system. M'e should stress that the main
point of our procedure to analyze many-body efI'ects is
the introduction of the pair correlation function associ-
ated with the exchange hole created around an electron;
the total exchange-correlation energy is also related, like
in the Slater method, to the energy associated wit, h t, his
pair correlation function. It should be noticed, however,
that in our treatment, this pair correlat, ion function is cal-
culated specifica, lly for each orbita. l, its va.lue depending
on the electronic properties of the actual environment.

The method has been checked by calculating the elec-
tronic properties of the siiz~ple n~olecules Ik-~ and Lili, a,nd
analyzing the interface propert, ies of a hydrogen mono-
layer adsorbed on t, he Li(100) and Al(100) surfaces. We
have chosen to present t, he case of H on t, he Li a»d Al
surfaces, because we have found these cases to present
the strongest test on the method discussed here. We
have been currently calculating the cases of alkali-metal
atoms on semiconductor and metal surfaces, as well as
the case of oxygen on metal surfaces with our method
(details of these calculations will be published elsewhere)
and we have found these chemisorption systems not to be
so critically dependent on the correct treatment, of all the
terms contributing to the total energy. In particular, we
have found that for H on met, al surfaces either the overlap
between H and the metal atoms can be large (the case of
Li) or t, he many-body interactions very important, (the
case of Al). The results for H on metals allow us also to
compare our method wit, h other independent, theoretical
approaches and the experimental evidence. The agree-
ment with these cases is very satisfactory, in particular
with the LDA results. This comparison suggests that, the
chemisorption energy, as calculated within our. approach&,
has an accuracy better than 0.2 eV.

The main advantages of the met, hod presented here are
as follows: (i) Its relatively easy implementation to move
complicated problems of molecules chemisorbed o» sui-
faces. As mentioned in the Int, roduction, it is not. easy
to obtain the properties of chemisorbed molecules using
the LDA method; the simplicity of the LCAO met, hod
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presented here in comparison with the LDA approach of-
fers the possibility of treating those more complicated
chemisorbed systems, while retaining good accuracy in
the result. (ii) Second, the method presents the advan-
tage of all the LCAO approaches: a careful description of
the chemical bond properties associated with the system
under consideration. One example is the problem of the
charge transfer between an adsorbate and the substrate:
in the LDA methods, it is not well defined as to how one
can obtain this charge transfer, while in the LCAO ap-
proach discussed here this can be easily extracted from
the atomic basis used in the calculation. This problem is
closely related to the H-Li(100) system discussed above:
our calculation yields an important charge transfer from
Li to H; this is not surprising since it is well known that
for the Li-H molecule an in1portant charge transfer from
Li to H is found. This is mainly due to the electro-
static potential created by the Li atom on the hydrogen
level that is strongly lowered in energy. Some people
have argued that this charge transfer, as calculated in
the LDA approaches for H on low density metals, is fic-
titious because the extra charge on H is compensated
by an extra positive charge tightly localized around the
atom. Our approach shows that this is not the case:
the charge transfer is indeed localized on H and the few
metal atoms surrounding the adatom, but its appearance
is due to the same chemical effects one finds for the LiH
molecule, which are cleal'ly incorporated in our approach.

We should finally discuss 3 little further ouI' approx-
imation for calculating mainly-body effects in oui sys-
tena. Our approach is only valid if the effective intra-
site Coulomb interaction, U —J'"l [see Eq. (50)], can

be treated in a mean-field approximat, ion. There ap-
pear cases where this approxin1ation is not valid aiiy-
more: a typical case is the adsorption of alka. li-metal
atoms on semiconductors, when metal-induced levels ap-
pear ln the semlconductol' gap. Then, our approxillla-
tion for this effective intrasite Coulomb interaction [going
as (t'I —J& &)n;ln, t] should be improved by introducing
intrasite correlation effects. We only n1ention here that
this can be implemented in our method by introducing an
appropriate self-energy associated with the Hubbard-lil;e
term of the I-Iamiltonian.

Finally, we conclude that the ab i&titio LCAO method
presented here is very reliable for calculating the
chemisorption properties of interface problems. In gen-
eral, the method offers a simple and reliable way of calcu-
lating more complex systems that cannot be easily solved
by an LDA approach. Moreover, it provides a natu-
ral way of extending our calculations to systems hav-

ing important many-body effects, by treating the intra-
sit, e Coulonab interaction by meaI1s of conventional n1any-
body techniques (details will be publishecl elsewhere).

The application of the present, met, hod to the calc»-
lation of bulk materials is under cuiient, research in oiii'

laboratory.
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