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An ab initio linear combination of atomic orbitals (LCAO) method is presented to calculate the
electronic properties of solids. This method is based on the following points: (i) The total solution
of the electronic system is obtained using an expansion of various physical parameters up to second
order in the overlap between the different atomic orbitals; extensions to large-overlap cases are also
discussed. (ii) The total many-body Hamiltonian is reduced to a superposition of Hamiltonian bonds,
defined for each pair of atomic orbitals. (iii) The parameters for hopping between two orbitals are
related to the Bardeen tunneling currents between the same wave functions; these tunneling currents
play, in our approach, the same role as pseudopotentials in the free-electron theory of solids. (iv)
Many-body effects are treated using a Slater-like approximation for the exchange and correlation
interaction. We show that a many-body Slater-like potential can be introduced within our LCAO
approach. Our method has been demonstrated by considering the simple molecules Hz and LiH. A
further application has been made for the chemisorption problem of a hydrogen monolayer adsorbed
on the Li(100) and Al(100) surfaces. Results are presented for the chemisorption energies, equilibrium
distance of the adsorbed layer, and the density of states. Good agreement is found with other
theoretical results and experiment. Our results indicate that the main mechanism for the hydrogen
adsorption on simple metals is associated with the lowering of the hydrogen affinity level due to the
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electrostatic interaction with the metal atoms.

I. INTRODUCTION

The tight-binding (TB) or linear combination of
atomic orbitals (LCAO) methods!~2 are receiving in-
creasing attention for the solution of various problems
in solid-state physics. They are also used in the analysis
of disordered solids, surfaces, or systems without three-
dimensional translational symmetry: In these cases, ex-
tended wave functions can be described by a linear com-
bination of the orbitals of constituent atoms. An obvious
advantage of this approach is its computational simplicity
that allows calculations to be performed that would oth-
erwise be too time consuming when alternative methods
are used. Recently, for example, TB molecular dynamics
has been developed for different systems,*® showing its
applicability to complex situations with great accuracy.

Some theoretical effort has sought to put this localized
picture on a fundamental basis.5~8 In general, the TB
description developed in these references is based on the
stationary properties of the self-consistent solutions of
the density-functional theory.

A more semiempirical approach has been used®~1! to
rationalize the TB method from the physical and the
chemical trends of different materials. This approach is
deeply related to the Hiickel theory in molecular physics,3
a method that has been extensively used in surface
physics.!? In this field, some people!® have introduced
model Hamiltonians improving over the Hiickel approach
in order to obtain a better description of the chemisorp-
tion problem.

As regards this last field of chemisorption, it is

4

worth mentioning that a great deal of progress has
been achieved in it by means of elaborate numer-
ical calculations vperformed using the local-density
approximation.!41% This approach has been successfully
applied to simple atoms chemisorbed on metal and semi-
conductor surfaces, but only in very simple cases has it
been possible to calculate the important physical prop-
erties of chemisorbed molecules. As in the case men-
tioned above of molecular dynamics, a TB method not
relying on phenomenological parameters for the interface
calculations would offer an alternative approach to the
local-density-approximation (LDA) method in order to
analyze complicated chemisorbed molecules.

In spite of all the work mentioned above, there is still
a lack of a simple fundamental approach relating the TB
Hamiltonians to the basic properties of the constituent
atoms.

The aim of this work is, following Ref. 16 (hereafter
I) to fill this gap, presenting an ab initio discussion of
how to calculate the different parameters of a TB Hamil-
tonian using no adjustable parameter. This discussion
includes one-electron and many-electron effects and is
applied to the case of atomic hydrogen chemisorbed on
normal-metal surfaces. The results obtained for this sys-
tem give strong support to the method presented here.

In Sec. II we discuss the general approach we follow to
obtain the TB Hamiltonian. Contact is made with molec-
ular physics to check the method, and a discussion about
how to calculate the many-body properties of a system
described with a TB Hamiltonian is also presented. This
is necessary in order to obtain reliable results for the elec-
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tronic properties of any system. In Sec. III we discuss the
case of H chemisorbed on normal metals. We have chosen
to analyze two cases: hydrogen on Al and hydrogen on
Li. For Al there are accurate LDA results,!®22 and this
system will allow us to make a reliable comparison be-
tween the results calculated with our approach and with
LDA. The case of Li is also interesting because it is a
metal of low density presenting a different behavior with
respect to Al: as will be discussed in Sec. III, Al is a high
density metal, as hydrogen chemisorbs on without pene-
trating the surface, contrary to the case for Li. Finally,
in Sec. IV we present our conclusions and an evaluation
of the method presented here.

II. GENERAL METHOD

The method we shall present in this paper is an ex-
tension of that initially developed in I. Our aim is to
find a solution of the general Hamiltonian of a solid or
an interface by using a linear combination of the orbitals
associated with the atomic constituents!? of the system.
In I we introduced some of the main ingredients of this
work.

(i) The total solution of the electronic system was ob-
tained by expanding various physical parameters up to
second order in the overlap S;; between different orbitals,
say ¥; and ;. Although this method was applied in I
to a physisorption problem, we shall show below that it
can also be adopted as well for other physical problems
of interest in solids, where chemical bonds are important.

(ii) The crystal Hamiltonian was reduced in I to a su-
perposition of bonds, defined by each pair of atomic or-
bitals. This will be shown below to be consistent with the
expansion up to second order in the overlap coeflicients.

(iii) The hopping parameters between two orbitals were
related to the Bardeen tunneling current between the
same wave functions. We shall extend this approach to a
more general case below. The advantage of proceeding in
this way is that the Bardeen tunneling current embodies
all the information associated with the atomic core wave
functions. Thus, we can say that the Bardeen tunneling
currents play the same role as pseudopotentials in the
free-electron theory of solids.

In this section we shall not only discuss these points
in detail but also analyze how to include exchange and
correlation in this LCAO method. As before, we will not
use any adjustable parameter.

A. Overlap expansion and molecules

We shall discuss here the validity of the overlap ex-
pansion as used in our method to calculate the electronic
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properties of the system. The best way of analyzing this
point is by considering simple systems for which exact
solutions can be obtained. We have chosen for the sake
of simplicity the molecules Hy and LiH. The results ob-
tained for these cases will illustrate clearly the points
under discussion.

Let us start by considering two atoms 1 and 2, with one
orbital per atom: for Hy, we choose the 1s levels, while
for LiH we consider the 2s and the 1s wave functions,
respectively (for the LiH case, the Li 1s wave function
shall be introduced below but, for the time being, let us
keep the dicussion to this simplified level). In our LCAO
approach, those two wave functions are used to calculate
the properties of our electronic system defined by the
following Hamiltonian:

g1 2 _ <IN 22
H= QZZVI ;Il‘i*R” 2le',~~Rz|

1 1 Z1Z4
Bl Ten 1t M

where r; and r; refer to the electron coordinates, and R,
and R, are the coordinates of the nuclei having charges
Zy and Z, respectively. Using the atomic orbitals, ¥ (r—
R;) and ¢2(r — Rs) in atoms 1 and 2, we introduce the
orthogonal basis, ¢; and ¢2, by means of the general
equation

éi =Y (ST, (2)
J

where S;; is the overlap between wave functions ¢ and j.
For a two-level system, S™1/2 can be exactly calculated
yielding the following equations:

1= A1 + pio (3a)
G2 = pp1 + APy, (3b)
where

1 1 1
2= (s + amsm)

and

1 1 1 )
= \0+972 " 1=9)72)
S being the overlap between orbitals ¢; and g, S =
<y | >.
Wave functions ¢; and ¢, are used to write the many-
body Hamiltonian in the following second-quantized
form:

H= Z(€1fl1a + €27125) + Z(t + hifti—g + hafta_ o) (&), é00 + &b, é10) + Uritritn) + Usiiagigg
g o

212
d )

+ Y WUirohao + (J = Jo)R1ohas] +
[

(4)
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where the usual creation and anihilation operators are
introduced (7, = cwcw)

In I it was noted that other
like Jxél{a?;_aél._.,éga or chlaé{_.géz_aéga have been
neglected in writing the Hamiltonian (4). It is worth

terms,
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(See I for further details.)

The overlap expansion is introduced here by using Egs.
(3), and expanding the coefficients A and p up to second
order in S. This yields the following equations:

realizing that the order of magnitude of the contribution € = 6:2(,0)
of these terms to the total energy of the system is propor-

tional to J, < é{aéga >< é;_aél_a >, a term going like

2
+ —5;—(550) — e~ 5t (6a)

54, since J, ~ S§% and < &l ¢y, >~< @l _é1_, >~ S t =10 _ S( © 4 g0y (6b)
This means that the main terms kept in Eq. (4) are pro- 2
portional to, or larger than, S?: this is consistent with
the overlap expansion that is going to be introduced h; = A% — §-(U-(O)+J(O)) , (6¢)
presently. We should stress here that this argument is ’ 20
going to be used in the more general case, as a guide to 0 S? o
select the main terms of the more general Hamiltonian U; = Ui( ) 4 ?(Ui( ) J(O)) —2Sh; , (6d)
for a solid.

The different terms of the Hamiltonian (4) are defined g2
in the usual way; for instance: J=JO 4 7(2'](0) — Ul(‘)) _ Uéo))

v? A Zy —S(h1 + h) 6

;= NEY —— —_ NEY d 1 2) ( e)

= fou) (=5 - ey~ ey ) e
(52) J=Jp=JO - g® 4 jOg2 (6f)

(5b)  where the superscript (0) means that Egs. (5) have to be
used to calculate the different terms replacing ¢; by ;.
This procedure yields the following approximate Hamil-

tonian (up to second order in S):

U; —//qsz(x ’¢2(r)dx @’

r—//¢1(r)¢2(1 | (")po(x')dr dr’ . (Bc)

Ao Z( O
+E( © (_)0)

+ Z(t + hini_s + /13712_0)(510620 + éggclo) + Ul(o)h”ﬁll + Uz(o)i12113,21

g

[ — &0 4 (U — TNy, — (U8 — TNy ) — S(t+ hiny—g + hgflg_.,)) Ao

e + (USY = T iy — (UL = Ty o] = S(t+ hyiy_g + h2ﬁ2—0)> fizg

72174

+ > [T O%1giap + (SO = T + TS ,05,] +
(4

We should make clear that in these approximate equations, ¢ and h; are not the exact values but the ones given by
Egs. (6b) and (6¢).

In our approach to chemisorption we propose to introduce a further simplification related to the many-body terms
appearing in 71, and fg,. In this step, the terms (S”/4)(U(O)
be replaced in a Hartree approximation:

JONA _yRys, —Shift1_ghigg, Or hyfty_ ,c{”c% will
we can expect this approximation to be a reasonable one, since the main
many-body effects are associated with U )nl f1y or J(Oa f,. Therefore, we make the following substitutions:

1 171 g

S? . . S? X S? Ty R
T(Ufo) — J(O))nl_anla — T(UI(O) — J(O)) < Ni_yg > Nig + —4'((750) — J(O))Tll._a < Ny >
S2
—54~(U§°> —JO) < iy, >< iy, >, (8a)
—Shini_oRgy — —Shy < Nyj_, > Nog — Shini_y < Nag > +Shy < Nj_y >< Mgy >, (Sb)
hiity— g€l yéa — hy < 1i_y > &l cag + hani_s < ¢l co0 > —hy < y_g >< & Gy > . (8c)
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The last term of each of these equations has to be in-
troduced in order not to change the total energy in per-
forming the Hartree approximation. Moreover, we have
also found that, with a good approximation in the total
energy, we can neglect these contributions if, at the same
time, we neglect the second term of each equation. This
amounts to making the following replacements:

Sfl

T(Ul(o) - J(O))fll_.ofl]o

52
S T(Ul(m —JO)Y <y > 016, (92)

(9b)

—Shini_sNo9y — —Shl < Nyeg > Nay ,

hifiy &), E20 — h1 < _g > €l 0, (9¢)

We should remark that in going from Egs. (8) to Eqgs.
(9) we still retain good accuracy in the calculation of
the total energy of the system. This approximation im-
plies, however, neglecting some terms [like (52/4)(U1(0) -
JONA_, < Ry >, =Shifi_, < Ry >, and hify_,
X < é}aég,, >] that must be included if one is interested
in calculating with high accuracy the electrostatic po-
tential acting upon each orbital. For example, the term
hifii_, < &{0620 > is associated with the electrostatic
potential created by the 1-2 bond charge upon the 1 — o
orbital; the other two terms, (S2/4)(U” — J@)a,_,

X < M1 > and —Shin;_, < Ny, > are related to the
|
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electrostatic potential created by the 1o and 20 charges
upon the 1 — ¢ orbital, due to the renormalization in the
20 and lo wave-function weights due to the creation of a
1-2 bond. In this paper, we shall study the total energy
of some chemisorption problems without analyzing the
induced interface dipole and the changes in work func-
tion and stick therefore to the approximation given by
Eqs. (9).
Then, Hamiltonian (7) can be written as follows:

H=Y Eft,+ Y Efnz + Y T7(&}, 600 +éb,e1,)
o g o

+U1(0)1i1T7:L11 + Uéo)flgTh.gl

+ D W Ohyph_g + (JO = JO 4 TSy 512, )
g

VAP
+ 7 (10)
where
Ef =9+ [ e — e 4 (U = JO) < iy >
—(Uj(o) - JOY <y, >] - ST,
(11a)
T =t+hy < Ri1_yg > +ha < no_s > (11b)

Equations (10) and (11) are the basis of our method for
calculating the total energy of molecules with only two
atomic orbitals.

For more orbitals and two atoms, Egs. (10) and (11)
can be generalized as follows:

H= ZE"nw + 30 T do + &l é0) + D U Rurhsy
o,(id) i
| O - © _ 50 4 jOg2 212> (12)
+§ Z [']ij NioNj—o + (Jij ‘]z ,t7 + J )n'UnJUJ + d .
ij#i,0
In this equation:
0) S ©) 4 70 _ - © _ . © _ . 2(0) _ -
€+ 2—4- g FU < hj_g > +‘]ij <fj_e >+ Z Jy < fygr > — Z J < g >
i o] I#,j
e+ U <ijg >4 <o >+ Y TP < > =3I <y, >
o' 1#i,j 1£i,j
- DSy (13a)
J#E
TG =tij+hi <himg > +hj <fj_g >+ D higj <fug >— D b <hup >, (13b)
a'l#i,j 1#£i,j
NG lmr )65 () dv i’ (13¢)
Ti; = //¢,(1)¢1(r )| - I¢,(r)¢](1 )dr dr’ (13d)
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(remember that in these equations, ¢t and h should be
calculated up to second order in the corresponding over-
laps).

The additional terms appearing in these equations with
respect to Egs. (10) and (11) are contributions due to

other orbitals. Thus, 3/, ; Ji(o) < fygr > yields the
Hartree contribution of the [ orbital to the i level, while
Zo,,#,j hiij < fygr > yields also the Hartree contribu-
tion of the ! orbital to the ¢j hopping. We shall show
presently that the more general Hamiltonian (12) follows
from the total Hamiltonian by expanding the different
interactions in the overlap coefficients.

We apply now Egs. (12) and (13) to the calculation of
the binding energies of the H2 and LiH molecules. Fig-
ures 1 and 2 show the results of a standard Hartree-Fock
calculation using for Hy a 1s level per atom, and for LiH
a 1s,2s configuration for Li and 1s level for H. In the
same figures we also show the results obtained with our
method for the same configurations. In the case of Hj,
we find that our method (S? expansion) understimates
grossly the binding energies (by ~ 2 eV), although it
yields a good equilibrium distance. For LiH, the results
of our S2-expansion method yield a much better agree-
ment with a Hartree-Fock (HF) calculation: the differ-
ence in the binding energy is around 0.2 eV, and in the
equilibrium distance less than 0.2 a.u. These results can
be understood because for Hy, S can be as large as 0.7
at the equilibrium distance (see Fig. 1), while for LiH
the 2s(Li)-1s(H) overlap is only 0.43 at the equilibrium
distance (see Fig. 3). Notice that even for Ha, our S? ex-
pansion starts diverging from the HF results for S >0.4.
These results show that our Hamiltonian (12) is a good
approximation to the actual problem if S < 0.4.

2.8
1 ' H-H MOLECULE
4 \
j \
S
(3} ] \
Pt : \
o 0.8 \
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L 1 \
5 ]
L ]
& ]
z 4
() <
Z 1.2 1
@ ]
-3.2 trrrrrrrrr 7Y T T
0.8 1.8 2.8
DISTANCE(a.u.)
FIG. 1. Binding energy for H, calculated using (i) a stan-

dard HF approximation, (ii) our S? expansion in all the terms
of the Hamiltonian, (iii) as in (ii) except for the hopping term
that is calculated exactly. We also show the 1s-1s overlap (iv)
as a function of the H-H distance.

F.J. GARCIA-VIDAL et al.

44
2.0 q
] LiH MOLECULE
3 1.0
]
> 4
o ]
[+4
& ]
z 4
W -
¢ 4
=z 4
E p
& 901
-1.0 4
2.0 2.5 3.0 3.5 4.0 4.5
DISTANCE (a.u.)
FIG. 2. Bindingenergy for LiH calculated using (i) a stan-

dard HF calculation, (ii) our S? expansion in all the terms of
the Hamiltonian.

We have investigated further which is the main rea-
son for the inaccuracies in our S2-expansion approach.
To this end, it is convenient to consider the one-electron
Hamiltonian of two levels, as obtained from Eq. (4) by
neglecting many-body effects. Then, we get the reduced
Hamiltonian (Z; = Z2 = 1)

2.4 0.55

0.50
20
>
< 0.45 o
-
(7]
N6 o
I 0.40 >
hd o
=
) -
Z12 035 %
a N
CCL> |
~
0.8 >
0.25
0.4 0.20
2.0 3.0 4.0 5.0 6.0

DISTANCE (a.u.)

FIG. 3. Hopping interaction between the H 1s and the Li
2s orbitals as calculated; with the exact Hamiltonian; (ii) us-
ing our S? expansion. We also show (iii) the overlap between
these two orbitals as a function of the Li-H distance.
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N . A L L 1
H = ;(Elnlo + 627120) + 21(610020 + cgoclo) + ‘C‘l s

(14)

1- 82712l — )~ 5t (15a)

1 S
-t [y _ 20, ©
b= (1-252) (t 2(61 &2 ))

(see I for further details). The main point to notice here is

(15b)

that the exact value for ¢ is given by ¢(®) — %(6(10) +),
the hopping as calculated in a S?-expansion approach,
times (1 — S2)~!. This last factor, (1 — 5%)~!, yields the
correction introduced upon the lowest approximation to
t by the wave-function overlap. It is easy to check that
this factor is very large for S ~ 0.7, the overlap appearing
at the equilibrium distance of Hs.

In order to check that the hopping is the main factor in-
troducing the inaccuracies in our S?-expansion approach,
we have calculated the total energy of Hy using Hamil-
tonian (10) and Eqs. (11) with ¢, h;, and h? calculated
exactly to all orders of S. In Fig. 1, we have also included
the H, binding energy as calculated with this approxima-
tion: these results show a very good agreement with the
HF calculations and confirm our comments about the in-
accuracies introduced by our S2-expansion method. Sim-
ilar results have been obtained for LiH; in Fig. 3 we only
show the 2s(Li)-1s(H) hopping; as in the case of Ha, we
also find that our approximate calculation yields smaller
values for this hopping integral than the HF results.

To conclude this section, we should say that our results
show that our S%-expansion method is a very accurate
approximation to the bond problem for not very large
overlaps, say, S <0.4. For higher overlaps Eqs. (12) and
(13) are, however, a good approximation if T, ¢, and h
are calculated exactly up to all orders of S.

B. The total Hamiltonian as the superposition
of bonds

Let us now discuss how the total crystal Hamiltonian
can be written as a superposition of the bonds defined
for each pair of atomic orbitals, as in Eqgs. (10) and (11).

Our starting point is the general many-body Hamilto-
nian:

- 1 Zy, 1 1
H=—zSv2_S 2k S -
22 Z|l‘i—R,kl 2igz'¢:i|ri_rj|

YAYA
QZ!RLk—IRIl (16)

1Lkl

0= Zsun,,,, + Z

(v,p),0 Ao!

+ZU nuTnuL + 5 r; Z [Jup.nuonu s+ (Juu

N N4
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We propose to solve the electronic part of this Hamilto-
nian by means of an electron basis defined by the atomic
orbitals 1, (r — R;) where o refers to the atomic orbital.
For the sake of simplicity, we shall write from now on
(¢,a) = v, and introduce the Lowdin orthogonal basis:

$u=D (ST, (17)

where S,, =< ¥, | ¥, >. Using this new basis, the
electronic part of Hamiltonian (14) can be written in a
second quantization language as follows:

H=Y esivo+ D tu(lous +hytus)

v,o a,(p.wv)

+ 3 0

vwouio'

et -
ua “g’CAU'CwO ) (18)

where

(19a)

RN S U
su—/m(x)( - ;unnk;)‘“()d’

tow = [8,0) (—72

Zk Sdry
_ZL:W> fu(x)dr

(19b)

0% =3 [ [omeutrrmmmient o
(19¢)

The first step to simplify Hamiltonian (18) is to neglect
terms contributing to the total energy that are propor-
tional to S*, where S is a parameter measuring the over-
lap between different orbitals. This implies neglecting
all terms in the many-body part of the Hamiltonian that
have four different orbitals. In general, these terms con-
tribute in S%, as

tou + Zh)\ uun)\d' - Z h)\ uuﬁ'z\a (E}/aéﬂa + é};aéva)

08 <& éus >< c;'“,,c,\t7 >~ 54 (20a)
since

Ok ~ §? (20b)
and

< & plwe >~< El e >~ S (20c)
Then, Hamiltonian (18) can be written as follows:
J:c,uu)huah'ua] y (21)
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where

= [ [B@s ) e

for A\ #vand poro #o’,

éu(r")dr dr’
(22a)

’
ago

xvp =0 for A\=vorpand =0, (22b)

h:)c\,uu = //¢A(I)¢)\(1 )¢y(1)l 1 |¢u(l‘/)drd1',,

(22¢)
U, = /qsy( )II I (x')dr d' | (22d)
Jop = //¢2(1)[ — I</)u(1")(1rclr’, (22e)

and

Juiw= [ [ 8006,0) e ()0 yiwar'

(22f)

In Eq. (21) the many-body terms depending on three
orbitals have been written like h,\,,,“fz,\azél,,éw or
h3 wnmc,fwc,w, while the terms depending only on
two orbitals go like U,ny,17,), Jupfwefty—o or (Jyu —

z' uu)ﬁuaﬁua

Apparently, the terms proportional to hf ,, go like S2,
and their contribution to the total energy like S3; how-
ever, we shall show later that hﬁ,‘, contributes to the
total energy with a term proportional to S?, if A and u
or v belong to the same atom.

Hamiltonian (21) can be further simplified if we use
Eq. (17) and expand the matrix (S=1/2),, up to second
order in the overlap as follows:

¢u = wu - % ZS;U/"/)U + % ZS;‘/\S)\lﬂpu . (23)
v A

Introducing this expresion in Egs. (22) yields the fol-
lowing equations:

(0) 4 = Z Suu

u;éu

N

e+ UOq,_5 + IO )n# o+ Z
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e, =e +1 ZSE#(EE,D) — el — ZS,,,,tu,, ,  (24a)
H 7
tyw =80 — 15, + ey (24b)
/\ Wi hg\ol)/u (J(O) (0))
Syufor A\ #vand p,or o #£0', (24c)
,\,,u—O for A\=vand g, or o =o', (24d)
$ou=h5) = 18, (I3 + I79) | (24e)

U, =UP+ 137 82,(U0 = I8 =23 8,.hl,,

v " (24f)
Juw=Jd8) + 152,278 — U® - U®)
- ”l‘(h'l/ v + hﬂ,l“/)
- Z (S"/\hu%,,)\ + Sﬂ)\hl’lﬂ)\)
A py
+1 DS - ) +4 Z S2,(70) — SOy |
' (24g)
J”I‘ - J:c v = J(U) —_ ,](0) + J(O)SZ
Z J‘(’(/?‘) vA + S“)‘)
AFpy
1 D0 (ST + ST (24h)
Afvp

where the superscript (0) means that Egs. (22) have to
be used to calcula,te the different terms replacing ¢, by
¥,. In Eqgs. (24), JA is equal to U( Notice that A%, ,
if A and v or g belongs to the same atom, is of order S,
and therefore this term contributes to the total energy of
order S? as commented above.

When Egs. (24) are introduced in Hamiltonian (21)
and different terms are rearranged, the following result
is obtained:

o' A£ v A#py

/\nz\a’ - Z Jz(O)h )

— €£O)+U;;0)ftu-—a +J( Ay—o + Z Jp)\ firgs — Z Jx/(\o)n/\[,)

o' AFuv

Ao!

w#v
+ 5 (e St
o,(v,pn) A

+3 ST Qe + (I = I, + TO)S?
N XA

A# uv

- Z Suu (tuu + Zhiz,pfl)\gl - Zh‘i,uuﬁ)\d)] flua
A

;- Zh,\ ,,un,\,,) (cwc,,,, + c”ac,,,,) + ZU( )n,,Tn,,l

uu)nuanua] : (25)
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The next approximation follows the line of the discussion given above in I A| and replace the terms multiplying 7,
and (&},éu0 + ¢€l,,6,,) by their mean values. This yields the following equations:

H=Y Effo+ Y TJ.(,eu0 + elobuo)
v,o owv#p
+Y UPnh, + 3
14

v \u#EV,o
where

Y UShvanuo + (I5) = I + IE)SE ) ino) (26)

52
By = e+ 3 = e+ U0 <y > 4 <o >4 Y I <o > = S TN < hne >

nEV

o AEuu A#v

. ( . 0 - 0 ~
D+ UL <o >HID <iyo >+ D I <o >— D TN < gy >

=>  SuuTy,

p#v

and

’ . .
To = tuu+ 9 b3, <t > =Y b5, < e >
x X (27b)

This is the same Hamiltonian given for molecules in
Egs. (12) and (13) above. These results show that our
basic Hamiltonian is given by the superposition of the
different Hamiltonians defined for each pair of atomic or-
bitals. One word of caution should be said here: strictly,
other orbitals modify a single bond Hamiltonian through
the new terms appearing in £, and T,,,. As it will be dis-
cussed below for some specific cases, these three orbital
interactions can play significant effects in the final solu-
tion of our problem. Let us stress, however, that formally,
the total Hamiltonian in our S?-expansion approach can
be viewed as the superposition of the Hamiltonians for
all the independent pairs, whether they are chemically
bonded or not.

Equations (26) and (27) define the electronic proper-
ties of a given system as a function of the properties of
their atomic constituents. For the case of hydrogen or
any other adsorbate interacting with a metal surface, this
approach implies solving in a previous step the electronic
properties of the metal surface from the characteristics
of the metal atoms. Here we have followed a simpler ap-
proach, assuming that the metal surface properties are
known from independent calculations; in other words,
the aim of this analysis is to apply our ab initio LCAO
approach to calculate the electronic properties and ad-
sorption energies of some adsorbates on metal surfaces,
which we assume to be well described by k eigenfunc-
tions, vk, and the corresponding eigenvectors, €(k). In
practice, these eigenfunctions are obtained by using an
appropriate tight-binding description of the metal band:
we have followed Papaconstantopoulos!® and used for the
calculation of the metal structure the parameters given
in Ref. 18. Thus, we introduce the metal Hamiltonian

Hy = e(k)él, éxo (28)
k,o

and consider the metal as a single system with many dif-

o\ AFv,p A#Fp,v

(27a)

ferent levels, interacting with the adsorbate. Notice that
before, we assumed each atom to be well characterized
and the total system to be built up as the superposition
of all the atoms; in the present case, we assume the metal
and the adsorbed atoms to be well characterized, and the
total system as the superposition of the metal and the ad-
sorbate. We apply the approach developed previously to
this system, and define the Hamiltonian as in Eqs. (26)
and (27). We shall only consider the one-electron terms
as they are the only ones having some slight differences
with respect to the previous approach.

The important result we obtain in this one-electron
approach is that, due to the overlap with the k states,
the « level is shifted by the following energy (see I):

550{ = i ZSIQ(,C([EU - E(k)] - Zsk,aTk,a ’ (29)
k k

where Sk,o =< ¥k | Yo > is the overlap between 3y and
the atomic wave function ¥, of an adatom, F, the cor-
responding atomic level, and Tk  the hopping element.
Comparing Egs. (27a) and (29), we see that both equa-
tions yield similar results showing how overlaps modify
the effective one-electron level. Equation (29) can be
written in a local basis defining

v =y Ciy}, (30)

where M is an atomic metal orbital. Introducing this
equation in Sk,o of Eq. (29), integrating in k, and ne-
glecting interferences between different metal atoms, one
gets the following result:

oo
650 = %Zslza [m(Ea - E)nzl'w(f)df‘: - ZSZQII‘ZQ (31)

This equation yields the main difference between the ac-
tual approach and the one giving Eq. (27a): instead of
the term $S? (EM — E,), EM being the metal atomic
level, one finds EM replaced by [ enM(e)de, n} ()
being the local density of states on the metal atom.

The result obtained in Eq. (31) suggests a further gen-
eralization of Eq. (27a), replacing
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S

€D 4 UOdy_g + T Qe+ > T V0 — 3 T5 Vi,
a' Afpv A#uv
5ELU)+U;(:0)7it‘—° + Jh?,)ﬁu-a + Z Jp(t(»)\)ﬁ'\”’ - Z J;”E‘O)ﬁ,\g
o' A uv A#py
by
[ee] o0
beyy = / de 71;,(5)/ de'ny(e)[(e - J.E(;)t) <o >) = (€' = I < nyo >)] (32)
—00 —0o0

where n,(e) and n,(e’) are the local densities of states
associated with the v and u levels, respectively. In
this equation, we have eliminated the contributions
J.S?L) < nue > and J.s?,) < ny, > to the € and ¢’ lev-
els, respectively, because the electron hopping between
the v and p levels does not see those mean potentials
(see I). Using Eq. (30) we can replace (27a) by

Bo=e® + 1T S - ST (9
u#v u#EY

which will be used below instead of Eq. (27a) given above.

In our approach to the chemisorption problem, ef,o) can
represent the metal level as given by the tight-binding
parameters, and the correction terms %Z‘#” 53#56,,“
and — Zu;ﬁu Su T, are calculated for the metal adsor-
bate coupling, with u referring to the different adatoms.
Alternatively, ES,Q) can represent the bare adatom level;
then, the correction terms are calculated for the metal-
adsorbate coupling, or the adatom-adatom interaction if

more than one atom is adsorbed on the metal surface.
|

U %1 — Uyt < ity > +UO < fpp > iy = U < Ry >< iy >

J;S?A)ﬁuoﬁp—a —_— J,S?‘)fluo < ﬂ,_‘_a > +J,E(‘)) < Ny > ﬁu—.g - J,E%) < Nyg >< TAlu._o >,

C. Exchange and correlation

Hamiltonian (26) and Eqs. (27b), (32), and (33) define
our model for the chemisorption problem. This Hamil-
tonian is a many-body one, and many different approx-
imations are possible to obtain the total energy and the
electronic properties of the system. First of all, we dis-
cuss the Hartree-Fock approximation and, later on, we
show a better kind of approach which we have used to
introduce many-body effects: this approach is equivalent,
within a LCAO method, to the X« method proposed by
Slater for a free-electron-like system.!®

The many-body terms appearing in Hamiltonian (26)
are

H™ = U0, 10,

+% Z (Jns?z)ﬁuaﬁu—U + jl-(’(l)t)ﬁ""h””) ’ (34)
v,u#v,o
where
I = I = 19, + IS, (342)

In a Hartree-Fock approximation, the different terms of
Egs. (34) are decoupled in the following way:

Jlsz)ﬁuaﬁua E— js?‘)ﬁ‘/g < ﬁlw > +jl£3) < Ny > ﬁua - jl(,?‘) < Nyg >< flug >

F(0 ~ N ~ - - - N - ~ . ~ ~
_ngu)(< clacuff > CILO'CVU + CITJOCHU < CLUC"U > =< lelocﬂﬂ >< CILOC"U >) )

where < > means the mean value in the ground state.
The terms introduced in (35a) and (35b) and the first
three terms of (35¢) correspond to the typical Hartree
approximation, while the last three terms of Eq. (35¢)
correspond to the exchange contribution associated with
J:E(,),)‘ From the point of view of the total energy, the
many-body terms yield the following HF contributions:

USD%, 1) — U < g >< iy >, (36a)

JIS?A)fI’UUﬁM—U e J.(/z) < fyg >< ﬁu—a >,

(36b)

(35a)
(35b)
(35¢)
[
jlg?t)ﬁllo'ﬁ/uo d jIS?‘) < Nyg >< 1'1“0 >
—JO) < &l ylue >< &l 600 > (36¢)

Hamiltonian (26) can be solved in a HF approximation
by using Eqgs. (35), and the total energy can be calculated
by means of Eqgs. (36). It is of interest for the discussion
presented below to reconsider the simple case of two lev-
els, ¢; and ¢y (Sec. ITA). In a HF approximation, the
restricted one-electron solutions of the HF Hamiltonian
take the following general form:
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with eigenvalues F,, Fy = Ey, E3, and E4; = Ej3.
For this simple case, if we have only two electrons filling
the lowest level, say F; < Fj:

< Ny >= a? s

< fgg >= %, (38)
<&, éa >=af .

Then, the many-body terms can be calculated straight-
forwardly using Egs. (35) and (36). Notice that « and 3
should be calculated self-consistently, since the Hamilto-
nian depends on the wave-function ground state.
_What is of interest to comment here is that the term
Ju(,),) in (35¢) yields the following contributions:

J](S),Bzma + sz)aznzg - jfg)agﬁz - jfg)aﬁé{oéga

., aﬂc%clg + J(O)a2ﬂ2 (39a)
to the total Hamiltonian, and the following contribution:

(0) o?p? — (0) a?g? =

(39b)

to the total energy. Equation (39b) shows that no con-

tribution to the total energy comes from the j,sa)ﬁ,,,,ﬁ,w
term, the reason being that one electron cannot interact
with itself. If we look at Eq. (39a) we find, however, that
the jﬁi’ﬁwﬂw term yields a nonzero contribution to the
HF Hamiltonian.

In the following we propose to introduce an alterna-
tive to the HF approximation, similar to the Slater Xa
method, in order to avoid the problems associated with
the previous discussion [basically, Eq. (39a) yields very
large negative values for the 1-2 hopping and too large
positive shifts in the energy levels].

Our basic idea in this point is to replace the off-
diagonal contribution

_‘]52)(< élrzaélw > éLaéW’ + élaé#ff < é;TLaéVU >

— < &l >< &l 6., >) (40a)
by a diagonal one of the form
—-Jeﬂ < fyg > Ny — Jﬁffﬁ,,,o < Npo >
+IS < Ry >< e >, (40b)

where J&T is defined by

I < el eue >< elycvo >= I < o >< fpo >

(40c¢)

Equation (40c) guarantees that our ansatz [Eq. (40b)]
yields the same energy as the exchange contribution for
a given ground state. Moreover, for a two-level case it is
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easy to find from Eq. (40b) that Jﬁﬂ J,(,(,),), then, the
exchange term cancels out exactly the Hartree-term ap-
pearing in (35¢), as it should, because the single electron
cannot influence itself.

Equation (40c) is the basic equation replacing the ex-
change off-diagonal contribution by a diagonal one. This
substitution will be used in our approximated Hamilto-
nian for calculating all the electronic properties. The
adequacy of this ansatz can be further explored by ana-
lyzing the exchange pair correlation function associated
with Eq. (40c). To this end, let us notice that

Yo <@l bue >< Elybre >=< s >=< RYo >
u
(41)

This equation suggests the introduction of the pair cor-

relation function g, (v, ¢t), by means of the equation
< & pluo >< Elobvs >=< Mo > go(v, 1) (42)

because Egs. (41) and (42) show that
> 9o(vp) =1
m

as corresponds to the exchange hole appearing around
an electron. Now, it is convenient to rewrite the total
exchange energy in the following way:

(43)

Ey == > JO <, cu ><él, b0 >
v, u#v,o

-12- Z Jl(,z) < Nyg > gol(v, ) (44)

v, u#v,o

with g, given by Eq. (42). Equation (44) defines F, as a
function of g, (v, p) in the appropriate way. We can also
define the exchange energy E.?, for a level vo, by

B ==Y T8 <o > go(vip) ; (45)
r3%

the factor 3 appearing in (44) accounts for double count-
ing of the electron-electron interaction. Thus

=13 B (46)

It is instructive to consider a simple case: assume that
the exchange hole around an electron in the v level is
localized in the first-nearest neighbors. Then

E = — Z jﬁ?‘) < Nye > golvyp) (47)
n#v

where ¢ and v are nearest neighbors. A further step can
be given using the sum rule,

90(1’:”)"}‘290(’4#)— (48a)
u#v
and
9o (v, V) =< fye > . (48b)
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Equations (47) and (48) yield
EY = —JO) < e > (1= < ityo >) (49)

where J,(L?,) is the bare Coulomb interaction between elec-
trons in nearest-neighbor orbitals, u and v. Equation
(49) will be shown below to be related to the correla-
tion energy E7° associated with the electrons filling the
v level.

Having discussed the exchange energy, let us turn our
attention to correlation. In a first step, we consider
the case of H approaching a metal surface. Figure 4(a)
shows a typical energy diagram for this case. It is well
known that correlation effects between the metal and the
adatom are treated in a simple way introducing the im-
age potential e?/4d: the affinity and ionization levels are
changed to A — e?/4d and I + e?/4d, respectively, with
an effective intrasite Coulomb repulsion of U — e?/2d.

In our approach, we consider metal-adatom correlation
effects in a similar way. When an electron jumps from the
metal to the adatom [see Fig. 4(b)], creating a negative
ion on the surface, the metal screens the extra charge and
a hole is created around the adatom. If we assume this
hole to be localized in the adatom nearest neighbors, the
intra-atomic Coulomb interaction U is reduced to U —J(®)
[see Fig. 4(b)]. At the same time, the ionization level
should be shifted by some amount as in the case shown
in Fig. 4(a). The point to be noticed here is that the new
ionization level I*f should be taken in such a way that the
Hartree solution of the new effective Hamiltonian is not

FIG. 4. (a) Energy diagram for a hydrogen-atom
chemisorbed on a metal surface. The affinity (A) and the
ionization (7) levels are corrected by the image potential:
e?/4d. The effective intrasite Coulomb interaction is reduced
by e?/2d. (b) When an electron (=) fills the affinity level,
the metal screens this extra charge and a hole (+) is created
around hydrogen. This effect reduces U to U — J(©, —j©®
being the interaction between the extra electron and its hole
which is assumed localized in the adatom nearest neighbors.

F.J. GARCIA-VIDAL et al. 4

modified by the new levels. This means that we should
take

I =7T4+JD <n_, >,

(50)
Ut =y — J©
with these definitions:
T U <p_,>=1+U<n_, > (51)

as it should be.

Equations (50) include metal correlation effects on the
adatom. In order to calculate the modification that these
new levels introduce in the total energy,?® we assume
(U — J(O)) small enough for a Hartree approximation to
be appropriate. Equation (51) shows that, in this limit,
the electronic spectrum obtained from the total Hamilto-
nian [Eq. (27)] is the same as the one calculated with the
initial ionization level I and the intrasite Coulomb inter-
action U. The total energy is not, however, the same, the
reason being that the “initial” ionization level I has been
shifted by J(® < fA_, >, and that the intrasite Coulomb
interaction has been reduced to U — J(®. The ioniza-
tion shift reduces the total energy by J(© < n_, >,
due to the change in the initial level which has to be
used as a reference to calculate the total energy;?® more-
over, the reduction of U modifies the intrasite repulsion
and changes the total energy by J(® < n; >< n| >
(this value accounts for double counting of the intrasite
Coulomb interaction). Both contributions yield the fol-
lowing adatom correlation energy:

Eadatem — _ g0 < 5, > (1- < 7y >), (52)

where we have assumed < 1, >=< fi_, >.

Equation (52) has been obtained for an adatom
chemisorbed on a metal surface, but the same argument
can be applied to any other physical case, say, with an
atom located inside the solid. The only important con-
ditions that have been introduced to obtain Eq. (52) are
the following: (i) the screening hole has been assumed to
be located in the nearest neighbors; (i) (U — J(°)) has
been assumed to be small enough for a Hartree solution
of the adatom effective Hamiltonian to be accurate. This
would not be the case for the adatom far from the surface
when intrasite correlation eflects are important.

It is of interest to compare Eqs. (52) and (49). For the
restricted case we are considering here,

EY =) EV =

27O <, > (1= < Ry >) .

(53)
If we take v as the adatom, Eqgs. (52) and (53) show that
g™ = pptstom (54)

This is an important result that has been obtained by
assuming the correlation and the exchange hole are lo-
calized on the nearest-neighbor sites. We will assume
that the same equation holds for a more general hole (or
correlation) pair distribution function. This allows us to
write, for the more general case,



S

(l:/orrel Z J;w < Nyo > ga(’/)H) . (55)
u#EV
In general, we shall take
gxchange + Econel =2 ‘gxchange . (56)

Equation (56) yields the total exchange and correlation
energy per orbital, and allows us to introduce many-body
effects in our LCAO approach following a method closely
related to the Slater X'« approach [in our case, no pa-
rameter appears; the equivalent of the parameter o for
the Slater approach is fixed by the argument yielding Eq.

(56)].

D. Hopping integrals. Bardeen tunneling currents

Sections II A-IT C give our formal procedure to calcu-
late the electronic properties of any system. In particu-
lar, the hopping integrals 7}, between two orbitals are
given by Egs. (27b), (22a), (22b), and (22c). In this
|

17, =t8) + hi%, < fy_o > +h)
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section we discuss how to obtain these hopping terms
by means of the Bardeen tunneling currents between
the atomic orbitals %, and +,. The advantage of this
procedure is that one can reduce the calculation of T},
to expressions involving only valence orbitals: in other
words, in the final equations, the atomic core orbitals do
not appear. This means that, from the point of view of
the LCAO method presented here, the tunneling currents
play the same role as pseudopotentials in the free-electron
calculations.

Our starting point, as mentioned above, is afforded
by Egs. (27b), (22a) (22b), and (22c). Notice that, in
principle, T}, is given exactly by these equations if the

different terms, t,,, h.K:",lu, and h§ vy are calculated to
all orders of the overlap. As discussed in Sec. II ATy,
should be calculated in this way if the (v, ) overlap, S,,,,
is very large. For most purposes, S,, is small, and we can
obtain T, up to second order in the overlap coefficients.
Then, .., h,\"uu, and s L, should be replaced by the
values given by Eqs. (24Db), (24¢), (24d), and (24e). This

yields the following equation:

<o > = 3 BSG) < x>

ag'x
S N N . .
———gﬂ e+ <, _, > +J,§?) <fy_qg >+ Z J,E(i) < Npgt > — Z Jf/’\(o) < Nre >
ol Afv,u A#V,p
+ D4 UD <t > +IQ <ty >+ Y. I <inor > = D0 T <y > (57)
o' Afv,p AF v
This equation can be rewritten in a more transparent way as follows:
. S N .
Ty, =< ¥ | HYy | ¥ > — ;“(< Yo | Hooy | % >+ < 9u | Hioy | %0 >) (58)
where
He. = _1y? ' . 1!)1/ ,) d 2
©="3 +V,(r=R,)+ V., (r —R,) + Z Vo(r — Ry) + ' ) < n,_g >
w# pv
" a(r’) Y3 (') YA () Pa(r) o
’ ( Mo ) < e > 2 (J ) <mer> = L (J TS < e >
(59)

In this equation V, and V), are the potentials created
by the nuclei of the atoms where the orbitals v and p
are located, respectively, V,, the potential created by the
other nuclei; the next three terms represent the Hartree
potentials created by the electrons located in orbitals v,
u, and A, while the last term represents the exchange
interaction associated with the A orbitals. One has to
notice that the last term of H("O) operates on ¥, and ¥,

as follows:
w;t >

<¢u ( M@dr/>
_ [ [0

[r—1'|
|,_._1./1

(60)

I

Equation (58) has the same form as Eq. (10b) of I,
where a one-electron local potential was introduced; in
our actual case, H("O yields the Hartree-Fock nonlocal
potential that depends on the different ocupation num-
bers, < ), >. We should stress that HE, is an approxi-
mate Hartree-Fock potential, since terms yielding contri-
butions p10p01tiona‘l to, or larger than, S? have been ne-
glected ( if H(Go) is proportional to S, < ¥, | H(UO) | . >
is proportional to S?). The exchange term [last term in
Eq. (59)] yields only a non-negligible contribution if ¥
belongs to one of the atoms associated with the orbitals
Py, or Y.

The Hamiltonian (59) includes the Hartree-Fock con-
tribution associated with atoms v and y, and the Hartree
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potential created by the nuclei, and mean charges of the
other atoms. We rewrite Hf, in the following way:

Hfyy = HS + H§ + HY (61)

where Hj and Hf represent the Hartree-Fock potential
of the atoms associated with orbitals v and u, respec-
tively, while HZ refers to the other atoms. Thus,

[ro l 2 ,,(1‘/)
Ha_—QV— +</|r—r’| ><n,,a>
(/ & I/) dr)<flao/>

a¢yal |l‘ rl
‘r/’a(r)‘ﬁa(r)
u‘é;/( ——l—;-:—/—l— ><n(w>, (62)
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where Z4 is the nuclear charge, and the other terms yield
the Hartree potential and the exchange contribution as-
sociated with the orbitals ¥, of the o atom. The non-
local term of Eq. (62) operates on the wave functions as
explained in Eq. (60). A similar equation can be written
for Hf replacing a by 8 and v by p. As regards HJ we
use a Hartree approximation:

- Zw Pi(x')
HS = - E —————+E ( A2 ) < g > .
w#aﬁrb—Ra Ao! ll_ll‘
(63)

In order to calculate 777, we use Eqgs. (58) and (60) and

vy
write:

3 a2 Sy To 7o 7o agd
Tu=<ty | (HE+ HE) | > —=F[< %0 | (HS + HE) | o > + <y | (H + HE) | % >)

2

+<¢ulﬁglwu>"5‘;“(<¢ulﬁz|¢y>+<¢ulgzlwu>)' (64)

We proceed to discuss the contribution to 7)), coming from the a and § atoms. Notice that Hamiltonians HZ and Hg
include all the electrons of both atoms, and their contribution to 7}, has to be worked out in detail. We shall show
that all these details can be embodied in the Bardeen tunneling current plus some correction terms to be discussed
below.

In a first step, assume that ¥, and v, are chosen such that

HZp, = B}y, HEw, = Ejtyy, . (65)
Then, using the same argument given in I, it can be shown that

Suu

<¢u'(ﬂg+ﬁ§)lwu>— [<¢uI(ﬁg+ﬁg)l¢u>+<’/)uI(Hg+ﬁg)|¢#>]

(/ waﬁ’lﬁudl"f-/w”Vanydr) ) (66)
e} o

with the atomic potentials Va and Vp. If we assume these
effects to be small, Eq. (66) reduces to

. Sv .
= T,,LL + / Y, Vi dr + / Y, Vatppdr — 2K
Qo Qg

where the whole space, , is split into the subspaces 2,
and €2,, associated with orbitals v and p, respectively.
In Eq. (66),

TS, = <, | (HS + HE) | ¥u >
S, ) X
——2-5[< Yo | (HG + HE) | ¥, >
+<¢u|(gg+f{g_)l¢'u>],

the same equation as obtained in I [see here Eq. (19)].
In obtaining Eq. (66) we have assumed Egs. (65) to
hold. In general, this assumption is not appropriate
due to change in the orbital occupancies, < 7n,_, >,
< fyu_s >, and < Ny, > when going from the atom
to the more general system. Then, it is convenient to

18 =4 [ Vb - uTwis, (67)

o, being the surface limiting the subspaces Q, and €2,
and satisfying the condition

/ﬂu Yypudr = /Q Yy udr = %/ﬂwul/),‘dl‘.

Moreover, V, and f/,@ are defined by the following equa-
tions:

(70)

(68)

ga — ——%VZ + Va Hﬁ - —%—VZ + Vﬁ . (69) introduce the atomic potentials, Va and Va", such that
Equation (66) includes the long-range effects associated H2 = A o Za Hgt =1V + Vﬁat . (71)
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The atomic orbitals 3, and v, are chosen to satisfy the
following equations:

H3'Wy = By, HE'$u = Efyy, . (72)
Here V' and Vﬁat are as V, and Vs replacing the level

occupancies by their atomic values.
In the next step, we write

al 'yo,a 7 o,at Su
Ton =< o | (HT™ + HZ™) | > —=55
N R Su
=TB 4 / W, Vap,dr + / Yo Vi pudy — 22
Qo Qg

The total hopping element, T}7

v 18 given by
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f{(ﬂo) — H;t,a + Hv;t,a + (1;"1; _ H(:;t,a)
+(H — H" )+ HS (73)
and calculate, independently, the contributions coming
from (H2%? + H;;t’”).

Using the previous argument for the new Hamiltonian
~ &t t g .
(H2%7 + Hg '?), we obtain the following equation:

(< 0w LCHE™ + HE™) [y >< o | (HZ™ + HP™) | ¢ >]

( / ¥, Vi, dr + / wuV;tw,,dr) : (74)
Q Q

§ S'/ TO 4 ‘o 04
T, =T+ <, |8(HI + HY) | ¥, > — 2“[< Vo |6(HI + HE) [y >+ < ¥, | 8(HS + HY) | 9, >]

14 v
. S . R
+<‘/’u|H5|¢M>"12/“(<’/’V|Hg|¢’1/>+<'¢’M|Hw|¢u>)v (75)
[
where hopping interactions are calculated in the way discussed
ro g fo . fro Goat . fro.at X in Sec. II D. This defines a one-electron Hamiltonian for
S(Hy + Hp) = (Hg + Hg) — (H™ + Hy ) - (76) the whole system: the metal surface and the adsorbate.

Equations (74) and (75) yield our results for 7,7, the hop-
ping between orbitals v and p, belonging to the atoms o
and g, respectively. Equation (74) yields the hopping for
two isolated atoms, and this equation shows that, basi-
cally, this contribution is given by the Bardeen tunneling
current T,ﬁ. Other contributions in Eq. (74) are long-

range effects of the atomic potentials V2 and V;‘, and
it should be stressed that they can be calculated assum-
ing all the orbital charge concentrated in the respective
nucleus except for the valence electrons.

Equation (75) yields two other contributions. The
first one comes from the change in the orbital charge
for the atom in the system,; its contribution is controlled
by 6(HZ + HZ). In this case, only the valence or-
bitals present changes in their occupancies and yield non-
negligible contributions to 7,7,. On the other hand, Eq.
(75) also yields contributions associated with the Hartree
potential created by other atoms: these are given by the
terms associated with HZ in Eq. (75). In general these
last contributions are not important, the reason being
the cancellation between < %, | HJ | ¥, > and the next
term —(S,,/2)[< ¥y | HS | ¥y > + < ¥ | HS | Y. >).

To complete the discussion of this section, we comment
that the contributions associated with H, and Hg can be
calculated using only two-center integrals, while the ones
coming from H, need three-center integrals that can be
calculated expanding the Slater atomic wave functions in
Gaussian orbitals.

E. Surface calculations

Hamiltonian (26) and Egs. (27) yield our basic ap-
proach to the chemisorption problem. Many-body ef-
fects are reduced to a one-electron Hamiltonian using
the Slater-like approach developed in Sec. IT C, while the

We have solved this Hamiltonian in a self-consistent way
as follows: (1) The one-electron Hamiltonian is projected
onto the last few layers of the surface metal and the ad-
sorbate by means of a decimation technique.?! Thus, the
interface properties are calculated by solving a reduced
effective matrix that includes all the bulk metal effects.
(it) The projected one-electron Hamiltonian is solved us-
ing a Green-function method; this yields the one-electron
occupancies

1 [Br
<n;>= - / ImGj;(w)dw (77a)
1 [EF
< é!éj > = —; / IlTlGij (w)dw y (77b)

needed for defining the complete Hamiltonian, since the
many-body effects and the hopping interactions depend
on < n; > and the < é}éj >. (iil) The one-electron
Hamiltonian is solved self-consistently in the electron oc-
cupancies, < 7; > and < é}éj >, by means of the electro-
static potential created by all the charges of the system
and the Slater-like potential associated with the exchange

and correlation effects.

III. RESULTS AND DISCUSSION

In this paper we present detailed results for the ad-
sorption of a monolayer of H on the Li(100) and Al(100)
surfaces. We have chosen these cases because ithere are a
lot of theoretical??=28 and experimental results2®:3° for
these systems. The purpose of our calculation is to check
the validity of our ab initio approach and, at the same
time, to analyze the main physical factors controlling the
chemisorption of H on simple metals.

We start considering the H/A1(100) system for which
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there are some accurate LDA calculations.??~2* Fig-
ure 5 shows the surface geometry: we have analyzed
the chemisorption energy for a hydrogen monolayer re-
laxing perpendicular to the surface, with the hydro-
gen atoms moving along the (a) center and (b) bridge
metal surface sites. In our calculations we have used the
1s,2s, 2p, 3s,3p orbitals for Al, and the 1s H level; the
different atomic wave functions have been taken directly
from Ref. 17, without allowing any changes in the pa-
rameters defined in the orbitals. We have checked by
introducing a relaxed orbital for H, that a wave-function
expansion introduces a decrease in the total energy of the
system smaller than 0.1 eV per surface atom.

Figure 5 gives the total chemisorption energy per unit
cell for the hydrogen monolayer on Al(100) on the center
and bridge sites of the surface. The origin of distances
is the last metal layer. In our results, the H monolayer
always finds its equilibrium position above the last metal
layer: the distance between the H monolayer and the last
metal layer is 2.0 and 2.4 a.u. for the center and bridge
sites, respectively. This result shows that the high metal
electron density of Al prevents the hydrogen atoms from
penetrating the crystal. At the equilibrium distances, the
chemisorption energies are 0.80 and 2.07 eV for the center
and bridge sites, respectively. These results should be
compared with the LDA figures as calculated for a single
hydrogen atom chemisorbed on the same Al surface.??
The results of Ref. 22 give the following chemisorption
energies: 1.4 eV (center) and 2.3 eV (bridge). Our results
are a little smaller [0.6 eV (center) and 0.22 (bridge)]
than the LDA results: this reflects the fact that for a
monolayer there is some repulsion between the hydrogen
atoms that reduces the chemisorption energy per unit
cell. It is interesting to mention that in some recent LDA

bridge
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; 15
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S 051
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—2.51.........,.....rr..ﬁ......,.,..
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FIG. 5. Chemisorption energy per unit cell for a hydrogen

monolayer on Al(100). Bridge and center sites are shown. The
distance refers the hydrogen monolayer to the last metal layer.
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calculations, Mallo3! has shown that for a monolayer of
H on the Mg(1000) surface the chemisorption energy per
atom is reduced by a few tenths of eV with respect to
the single atom case, in good agreement with the results
obtained here. Similar results for the Be(1000) have been
obtained by Yu and Lam.3? In general, the results of
Fig. 5 show a good agreement with the LDA results: the
small differences between both calculations can be traced
back to the effect of having in our actual case a hydrogen
monolayer instead of a single atom.

In order to have a better understanding of the differ-
ent effects controlling the adsorption process, we show in
Fig. 6 the different contributions we have obtained in our
calculation to the chemisorption energy of H on Al(100).
This is split into the following terms: (i) electrostatic
energy; (ii) valence kinetic repulsion; (iii) core kinetic re-
pulsion; (iv) hybridization; and (v) exchange and corre-
lation energies. The electrostatic energy includes all the
contribution from the different charges, nuclei, and core
and valence electrons. The kinetic repulsion yields the
energy associated with the terms going like —S;;T;; and
%S%(E’i — E;) [see Egs. (27) and (33)]; we have split this
energy for the valence electrons and the core electrons
interacting with the hydrogen level. The hybridization
term yields the energy associated with all the hopping
interactions and with the transfer of charge between dif-
ferent levels: thus, it includes the changes of energy due
to the transfer of electronic charge between hydrogen and
the substrate. Finally, the many-body terms associated
with the exchange and correlation effects are also shown.

The first thing to notice is the large contribution that

(a) H/AI(100) center position
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FIG. 6. Different contributions to the chemisorption en-

ergy of H on Al(100). (a) Center. (b) Bridge. (i) Electrostatic
energy. (ii) Valence kinetic repulsion. (iii) Core kinetic repul-
sion. (iv) Hybridization. (v) Exchange and correlation.
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most of the different terms have to the total energy that
appears as the result of a delicate balance among all the
terms. It is also important to realize that the core and va-
lence kinetic repulsion are the main factor controlling the
equilibrium distance between hydrogen and the metal; in
the particular case of Al, the valence kinetic energy gives
enough repulsion to prevent the hydrogen from penetrat-
ing the metal: this is mainly due to the high electron
density in the metal. The main atractive energy is due
to the hybridization term, although the exchange and
correlation energy also plays an important role. In gen-
eral, the hybridization energy is controlled by the shift
of the mean hydrogen level with respect to the metal:
when the ad-atom penetrates the metal, its mean level
is lowered by the electrostatic potential created by the
atoms and some electron charge is transferred from the
metal to the hydrogen atom, this transfer of charge in-
creasing the chemisorption energy. In Fig. 7 we show the
local density of states on the hydrogen monolayer for the
equilibrium distance at the center and bridge positions:
it is interesting to realize that for the bridge site, this
density of states is a little larger due to the shift of the H
mean level to lower energies. This explains that the hy-
bridization and the chemisorption energies are larger for
the bridge site, and that the electron transfer of charge is
also larger for this case: we have found that 0.05 electron
are transferred from the metal to the hydrogen atom at
the bridge equilibrium distance.

We should also mention that for this H/AI(100) case,
the hydrogen atom is kept so far away from the metal sur-
face that the overlap between the different atomic wave
functions is always smaller than 0.4. This can be checked
in Fig. 8, where the overlap between the 1s H level and
the other Al orbitals is shown as a function of the hydro-

(a) H/AI(100) center position
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FIG. 7. Local density of states on the hydrogen monolayer
at the chemisorption energy minimum for the H/Al(100) case.
(a) Center. (b) Bridge. E. is the conduction-band bottom of
the metal.
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gen distance to the metal surface. These results validate
the S? expansion used to calculate the H/AI(100) inter-
action.

Let us now discuss the results we have obtained for
the H/Li(100) interface. For this case, we only present
detailed calculations for the center position. The main
reason is that, as discussed below, the Li electron den-
sity is rather low and the hydrogen atom can penetrate
the metal: this behavior favors the center position where
hydrogen penetrates the metal more easily and finds an
equilibrium position between the first and second metal
layers.

Figure 9 shows the total chemisorption energy per unit
cell for the hydrogen monolayer on Li(100) (center posi-
tion). The equilibrium distance is found 0.4 a.u. under-
neath the last metal layer, and the chemisorption energy
2.1eV.

We should mention that the overlap between the wave
functions of hydrogen and the nearest neighbor of the
metal second layer can be larger than in the Al case (see
Fig. 10). In this case, we have followed the prescription
given in Sec. IT A, and have calculated the hopping in-
tegrals between the hydrogen and the metal atom to all
orders in the overlap coefficient. Otherwise, we follow
the method discussed above.

In Fig. 11 we show the different contributions to the
chemisorption energy. For the H/Li(100) system we find
that the core kinetic repulsion between the H 1s level and
the Li 1s level is the main term controlling the H-Li equi-
librium distance. The main attractive term is afforded
by the hybridization term and the transfer of charge be-
tween the metal and the H atom. In our calculations
this transfer of charge introduces three-center contribu-
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FIG. 8. Overlap between the 1s H level and the Al orbitals

of the last metal layer. (a) Center. (b) Bridge.
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FIG. 9. Chemisorption energy per unit cell for a hydrogen

monolayer on Li(100). Center site. The distance refers the
hydrogen monolayer to the last metal layer.

tions yielding important effects on the hopping between
hydrogen and the metal. For the H/Li(100) system, the
hydrogen affinity level is strongly decreased by the elec-
trostatic potential created by the metal atoms below the
metal Fermi energy. Due to this effect, at the equilibrium
distance, 0.61 electron are transferred from the metal to
the adsorbed atom, this mechanism tending to increase
substantially the chemisorption energy. In Fig. 12 we
show the local density of states on the hydrogen layer at
the equilibrium distance: it is clearly seen in this figure
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FIG. 10. Overlap between the 1s H level and the Li or-

bitals of the metal second layer.
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FIG.11. Asin Fig. 6 for a hydrogen monolayer on Li(100).

that the hydrogen level is just below the conduction-band
bottom, and that a high density of states associated with
the formation of a 1s H level band appears below that
conduction-band bottom.

It is worth comparing our results for the H/Li(100)
with other independent approaches. We mention?¢-28
the theoretical work of Beckman and Koutecky,?® and
Ray and Hira:2"?® these authors have investigated the
interaction of a single H atom with Li clusters using a
full configuration interaction method. The chemisorp-
tion energies calculated in these references are a little
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FIG. 12. Local density of states on the hydrogen layer at

the chemisorption energy minimum for the H/Li(100) case.
E. is the conduction-band bottom of the metal.
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larger than 2 eV, in good agreement with our results.
As regards the equilibrium distance for the H/Li(100)
interface, the cluster calculations?®~28 show a large dis-
persion in the H-site position. Some information can be
surmised, however, by considering the similar system of
H on Na(100) [this is an open bcc structure like Li(100),
having also a low electron density]: experimental®® and
theoretical results???3 suggest that hydrogen is located
below the last Na layer, as our results show for the Li
case.

We should finally comment that the main mechanism
associated with the hydrogen chemisorption of H on sim-
ple metals depends on the lowering of the hydrogen affin-
ity level below the Fermi level by the electrostatic poten-
tial created by the metal atoms. This mechanism is fully
developed for the H/Li(100) case, where the hydrogen
can penetrate the metal, the hydrogen mean level being
located just below the bottom of the metal conduction
band. For the H/A1(100) case, the high electron density
in Al prevents the hydrogen atom penetrating the metal:
due to this reason, the hydrogen mean level is not lowered
as much as in the Li(100) case, although the most favor-
able hydrogen adsorption site is determined at the bridge
site by maximizing the transfer of charge from the metal
to the adsorbate. These results are similar to the ones
found in the LDA method,?2~ 24 or within the framework
of the overcomplete Anderson model.?® As shown in the
LDA calculations,?® when hydrogen penetrates the metal
surface, its affinity level crosses the Fermi energy, mov-
ing down in energy, until the hydrogen is located inside
the solid: then, the mean hydrogen level is located just
below the bottom of the metal conduction band.

IV. CONCLUSIONS

In this paper we have presented an ab initio LCAO
method devised to calculate the electronic properties of
solids, in general, and surfaces and interfaces, in partic-
ular. The case of a H monolayer adsorbed on normal
metals (Li and Al) has been analyzed following the dis-
cussion of the method presented here.

The essential idea of this paper is to introduce a to-
tal Hamiltonian which is expressed as the superposition
of Hamiltonians defined for each pair of atomic orbitals.
The terms appearing in this simplified Hamiltonian have
been obtained from the most general Hamiltonian by us-
ing a well-defined prescription: first, we introduce S, the
overlap between different orbitals; then, we only keep in
the most general initial Hamiltonian those terms con-
tributing to the total energy up to second order, S?, in
this overlap. The total Hamiltonian obtained with this
procedure is similar to the one proposed by Harrison;®
the main advantage of the discussion presented here is,
however, that we have given a clear prescription to cal-
culate all the different terms appearing in the Hamilto-
nian, many-body terms included, using the atomic wave
functions of the constituents. In particular, the hopping
integrals between two orbitals have been related to the
Bardeen tunneling currents between those orbitals, these
currents playing in our approach the same role as pseu-
dopotentials in the free-electron methods.
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It should also be commented that for the cases of large
orbital overlaps, we have found that the total Hamilto-
nian introduced in this paper still represents a good ap-
proximation to the most complete initial Hamiltonian of
the problem if the hopping integrals are calculated up to
infinite order in the overlap.3?

We have found that this prescription should be ap-
plied for S > 0.4; for smaller overlaps, the up-to-second-
order expansion in S yields very accurate results. We
should mention that, in practice, only the overlap be-
tween nearest neighbors can be large (with S > 0.4);
for this case, only the hopping integrals between near-
est neighbors should be calculated using the full Lowdin
wave functions [Eq. (17)] instead of the approximate ones
[Eq. (23)].

Another important point of the discussion presented
in this paper is the treatment of the many-body effects.
Our total Hamiltonian is a many-body one, with electron-
electron interactions that have been analyzed within our
LCAO method using an approach similar, but not iden-
tical, to the X method proposed by Slater for a free-
electron-like system. We should stress that the main
point of our procedure to analyze many-body effects is
the introduction of the pair correlation function associ-
ated with the exchange hole created around an electron;
the total exchange-correlation energy is also related, like
in the Slater method, to the energy associated with this
pair correlation function. It should be noticed, however,
that in our treatment, this pair correlation function is cal-
culated specifically for each orbital, its value depending
on the electronic properties of the actual environment.

The method has been checked by calculating the elec-
tronic properties of the simple molecules Hy and Lill, and
analyzing the interface properties of a hydrogen mono-
layer adsorbed on the Li(100) and Al(100) surfaces. We
have chosen to present the case of H on the Li and Al
surfaces, because we have found these cases to present
the strongest test on the method discussed here. We
have been currently calculating the cases of alkali-metal
atoms on semiconductor and metal surfaces, as well as
the case of oxygen on metal surfaces with our method
(details of these calculations will be published elsewhere)
and we have found these chemisorption systems not to be
so critically dependent on the correct treatment of all the
terms contributing to the total energy. In particular, we
have found that for H on metal surfaces either the overlap
between H and the metal atoms can be large (the case of
Li) or the many-body interactions very important (the
case of Al). The results for H on metals allow us also to
compare our method with other independent theoretical
approaches and the experimental evidence. The agree-
ment with these cases is very satisfactory, in particular
with the LDA results. This comparison suggests that the
chemisorption energy, as calculated within our approach,
has an accuracy better than 0.2 eV.

The main advantages of the method presented here are
as follows: (i) Its relatively easy implementation to more
complicated problems of molecules chemisorbed on sur-
faces. As mentioned in the Introduction, it is not easy
to obtain the properties of chemisorbed molecules using
the LDA method; the simplicity of the LCAO method
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presented here in comparison with the LDA approach of-
fers the possibility of treating those more complicated
chemisorbed systems, while retaining good accuracy in
the result. (ii) Second, the method presents the advan-
tage of all the LCAO approaches: a careful description of
the chemical bond properties associated with the system
under consideration. One example is the problem of the
charge transfer between an adsorbate and the substrate:
in the LDA methods, it is not well defined as to how one
can obtain this charge transfer, while in the LCAO ap-
proach discussed here this can be easily extracted from
the atomic basis used in the calculation. This problem is
closely related to the H-Li(100) system discussed above:
our calculation yields an important charge transfer from
Li to H; this is not surprising since it is well known that
for the Li-H molecule an important charge transfer from
Li to H is found.?® This is mainly due to the electro-
static potential created by the Li atom on the hydrogen
level that is strongly lowered in energy. Some people
have argued that this charge transfer, as calculated in
the LDA approaches for H on low density metals, is fic-
titious because the extra charge on H is compensated
by an extra positive charge tightly localized around the
atom. Our approach shows that this is not the case:
the charge transfer is indeed localized on H and the few
metal atoms surrounding the adatom, but its appearance
is due to the same chemical effects one finds for the LiH
molecule, which are clearly incorporated in our approach.

We should finally discuss a little further our approx-
imation for calculating many-body effects in our sys-
tem. Our approach is only valid if the effective intra-
site Coulomb interaction, U — J(© [see Eq. (50)], can
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be treated in a mean-field approximation. There ap-
pear cases where this approximation is not valid any-
more: a typical case is the adsorption of alkali-metal
atoms on semiconductors, when metal-induced levels ap-
pear in the semiconductor gap. Then, our approxima-
tion for this effective intrasite Coulomb interaction [going
as (U — J(©)n;;7,] should be improved by introducing
intrasite correlation effects. We only mention here that
this can be implemented in our method by introducing an
appropriate self-energy associated with the Hubbard-like
term of the Hamiltonian.3%

Finally, we conclude that the ab initio LCAO method
presented here is very reliable for calculating the
chemisorption properties of interface problems. In gen-
eral, the method offers a simple and reliable way of calcu-
lating more complex systems that cannot be easily solved
by an LDA approach. Moreover, it provides a natu-
ral way of extending our calculations to systems hav-
ing important many-body effects, by treating the intra-
site Coulomb interaction by means of conventional many-
body techniques (details will be published elsewhere).

The application of the present method to the calcu-
lation of bulk materials is under current research in our
laboratory.
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