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Quantum-statistical theory of high-field transport phenomena
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On the basis of Tani's formalism for nonlinear response, a closed-form expression of the field-
dependent dc conductivity is introduced. The field-dependent dc conductivity of electron-background
(impurity and phonon) systems is evaluated by using the Mori-type projection technique. We also obtain
the field-dependent self-energy operators, which show that the collisional broadening appears in both
weak and high fields, while the intracollisional field effect is observed only in high field, as predicted by
Barker. The results are compared with the work of some other authors.

I. INTRODUCTION

Recently we have seen a remarkable advance in the
techniques of crystal growth and device processing. '

This affords a realm of physics on the submicrometer and
subpicosecond dimensional scale, and makes the study of
high-field transport active. One of the subjects of
numerous theoretical and experimental investigations
that have received considerable attention in recent years
is the transport of electrons in very high electric and/or
magnetic fields. '

Early theoretical studies on high-electric-field trans-
port were mainly based on semiclassical techniques in-
cluding the Boltzmann transport theory. The ap-
proaches, however, led to unsatisfactory results, the
reason being that high fields alter the quantum states and
the energy spectra of the carriers. ' Some quantum
theories appeared in efforts to improve the results.

Barker, while studying a steady-state Boltzmann
equation for high fields, predicted the existence of two
quantum effects as a consequence of the level broadening
due to the relaxation and the accelerating effects of the
field in the collision event: the "collisional broadening"
(CB) and the "intracollisional field effect" (ICFE), respec-
tively. We see that these effects can be described by prop-
er ' ' or complete" treatment of quantum transport.
Many other attempts for high-field transport, such as
Feynmann's path-integral approach, ' ' the force-
balance approach, ' ' the Green's-function ap-
proach, ' the generalized-quantum-Langevin-equation
approach, the Monte Carlo method, ' the
projection-operator method, the resolvent-super-
operator approach" based on Tani's nonlinear-response
formalism, the Stark-ladder-representation ap-
proach, and the Wigner-representation approach
would be capable of including the CB and ECFE effects in
submicrometer structures.

En this paper, we will present a high-field quantum
transport theory based on Tani's nonlinear-response for-
malism and the Mori-type projection-operator tech-
nique, which could account for a wide variety of high-

II. NONLINEAR STATIC CONDUCTIVITY

Consider a system of many electrons subject to an
external electric field E( t) given by

E(t)=Eexp(et), 0&a«l .

Then, the total Hamiltonian of the system is

HT(t) =H+HE(t) .

Here the time-independent part is given by

H =H, + ii V +Htt = g h I "+H~,
1

h =h, +qU,

(2.1)

(2.2)

(2.3)

(2.4)

where h, is the unperturbed part of the single-electron
Hamiltonian and v is the scattering potential which is the
impurity part plus the phonon part, i.e.,

Ue —i +Ue —ph &

u, ,
= g i)'(q)exp(iq r),

q

u, „=g (yqbq+yqb ),
q

(2.5)

(2.6)

(2.7)

and Hz is the background Hamiltonian which contains
the phonon part only, i.e.,

Htt = g (b tbq+ —,
' )A'co (2.8)

The time-dependent part is given by

field effects, magnetophonon effects, and intervalley
scatterings. A closed-form expression for the steady-state
current with field-dependent dc conductivity shall be de-
rived. We will also obtain a general expression of the
temperature- and field-dependent self-energy, which are
closely related to the CB and ICFE effects and show a de-
tailed method of practical calculation of the field-
dependent conductivity. Finally comparison with some
other theories shall also be made.
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Hz(t) = g hz'"exp(et),
I

h~= —er E .

(2.9)

(2.10)

The I in Eqs. (2.3) and (2.9) denotes the single-electron in-

dex, r is the position of the conduction electron with
eff'ective mass m, u(q) means the Fourier transform of the
impurity potential, b q ( b q ) is the creation (annihilation)
operator of the phonon with momentum Aq and energy
iricoq, yq[—=Cqexp(iq r)] describes the interaction of the
electron and phonon, C depends on the type of interac-
tion, and g is a dimensionless expansion parameter which
shall be set equal to unity at the final stage. It should be

p,q(H) =exp(aN —PH) /Z
=exp [aN —p(H, +H~ ) ](S,„,„—S,dd ) /Z

peB pv (2.11)

with

noted that electron-electron interactions can be partly in-
cluded in y through the screened interaction potential. "

We suppose that the external field is initially absent
and the system is in thermodynamic equilibrium with
temperature T. The initial state can be described in
terms of the grand-canonical density operator

exp[aN —P(H, +H~ )]

Tr[exp[aN —P(H, +H~ )]]

pi, =exp[aN p(H, +—H~ )][Tr(S,„,„)—S,„,„+S,dd]/Z,

Z =Tr[exp(aN —PH) ]

=TrI exp[aN —P(H, +HJi ) ]S,„,„j,

(2.12a)

(2.12b)

(2.13)

S,„,„=1+g f dP, J dP, . J dP, „V(P,)V(P, ) V(P,„),
k=1 0 0 0

P ~l ~2k —2

Sodd X J dpi I dp2 J dp2k —1V(pl)V(p2) V(p2k —1)
k=1 0 0 0

(2.14a)

(2.14b)

p( t) =p,q+ p, ( t), (2.15)

in which pi(t) represents the field-dependent density
operator and is not necessarily small. The Liouville equa-
tion ifidp/dt = [Hz (t),p(t) ] can be written as

i~ap, (t) = [[H +H~(t) ],p, (t) ]

+[HE(t) p ii] [H~(t) pi ] (2.16)

where we have used the fact that [H,p, ]=0 and
Bp,q/Bt=o. The second and third terms on the right-
hand side of (2.16) represent the rate of change of p, due
to the external electric field alone. Then the last term de-
pends on the rate of change of the electron-background
interaction due to the external field. When an external
electric field is applied, energy is supplied to the electron

Here N is the total number of electrons in the system,
a=Pg, P=(ks'r) ' and

V(p) =exp[p(H, +Hid)] V exp[ p(H, +H~ )], —

where ks and g, respectively, are the Boltzmann constant
and the chemical potential, and Tr denotes the many-
body trace. Note that we have used Tr(S,dd=0) in Eq.
(2.13) by the orthogonality of the background state.

We also assume that as the time-dependent external
field is applied to the system, the statistical density
changes as

system. This energy, which increases rapidly with in-
creasing field, is dissipated to the background. Thus, the
power supplied by the external field to the electron sys-
tem is transferred to the background via the interaction
between electrons and the background. This transfer en-

ergy which is due to the electron-background interaction
generally brings about the heating of the background.
For a system which has a low density of electrons, such
as in semiconductors, we now assume that the back-
ground is part of the heat reservoir for the electron sys-
tem and is in contact with another huge heat reservoir
with temperature T. The system we consider here is
nearly in thermal equilibrium with the outer world, so
the background temperature can be kept constant. This
means that the amount of energy which is transferred to
the background from the conduction electrons is quite
small, so the last term of Eq. (2.16) which includes the
effect of the heating of the background can be neglected.
However, this assumption is certainly invalid for metals
and for the extremely high-field regime where the effects
of nonequilibrium heating of the background occur. "
Studies of the effects will be left for future investigation.
We kept the term [Hz(t), p, (t)] since the electric field is
not necessarily weak.

In order to obtain p, (t), we define the density operator
in the Dirac picture as

pii3(t) =exp[iHz. (t)t/iri]p, (t)exp[ iHr(t)t/iri] .— (2.17)
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Diff'erentiating Eq. (2.17) and considering Eqs. (2.16), we
obtain

0
p, =(1/iA) lim f dt exp(e+t)exp[iHT(t)t /A']

g~ 0+ OO

iRBP,D(t)
ED(t»p.a ]

where

(2.18)
X [HF,p,ti]exp[ iH—T(t)tlfi]

(2.20)

HED(t) =exp[iHT(t)t/h']HE(t)exp[ iHT(—t)t/fi] .

(2.19)

Integrating Eq. (2.18) and taking into account Eq. (2.1'7)

we have p„ the steady-state value of p, (t), as

with e+ =e+s(s~0+), which amounts to the adiabatic
switching on the perturbation given by Eq. (2.9).

On the other hand, the average steady-state current
density can be calculated in terms of the density operator
as

(gJ) =Tr[JP, ] =(I/i fi) lim f dt exp( e t)T—r p,ii, —g er J(tlHr( t))
0+ I

(2.21)

J( tlH):—exp(iHt /iri) J exp( iHt /fi)—, (2.22)

J= —g e( d r'"/dt) = g j'" .
I I

(2.23)

Here j is the single-electron operator in the one-band ap-

where we have used Eqs. (2.9), (2.10), and (2.20) and
J(tlH) is a total current operator in the Heisenberg pic-
ture given by

proximation, and AJ is the total current minus the initial
value.

The k component of Eq. (2.21) becomes

(b Jk ) = g lim f dt exp( e+t)gk&[—tlHT( t)]E&, —
0+

(2.24)

where k, i =x,y, z and Pk&[tlHT( —t)] is the field-

dependent response function given by

/k' [tlHT( —t) ]= (1/i')Tr p,ii, —g er&'" Jk [tlHT( —t) ]
I

Pf Tr I P BJi( i Wi IH, +Hid )Jk [tlHT( t) ]]d p, —
0

a
Tr[p,g(H)Jk[tlHT( —t)]] .

u)~0 BQ)

Here we have used the Kubo identity and the following identity: '

f d13 p, J( iii'tP IH, +H )= »m p.,(H)
0 0 Bu)

(2.25a)

(2.25b)

(2.25c)

(2.26)

(2.27b)

In Eqs. (2.25c) and (2.26) H:H, +Hei —u J—, u being a c-number vector, is the modified Hamiltonian that gives a

more compact response function. Considering Eqs. (2.24), (2.25b), and (2.25c) we obtain the formal expression for the

generalized field-dependent conductivity tensor cr k&(E& ) as

~„(E,) =& ' f "«exp( »)f 'dOiTr[p, —~Ji( t&PilH, +H, )J—k(tlH+H~)] (2.27a)

= lim 0 ' f dt exp( st)Tr[p, li(H—)Jk(tlH+Hz)]
u(~0 BQI 0

since (EJk)IQ=Q&ok&(E&)E&, " where 0 represents

the volume of the system. We see that Eq. (2.27) is a
function of the external 6eld E and includes nonlinear
terms. If the Ohmic condition E—+0 is taken in Eqs.
(2.27a) and (2.27b), Eqs. (2.27a) and (2.27b) are reduced to
the Kubo formula for the linear static conductivity.

In order to express Eq. (2.27b) in the single-electron
representation for an electron-background system we as-

sume that the statistical operator p,ti(H ) in Eq. (2.27b) is

factorized as ' "'

p,q(H)=pti(Hii)p g&,'"—u.J '

I

(2.28)

and the many-body trace Tr is reduced to tr Tr' '. '"
Here pa(Ha):exp( 13Hz)/Tr' '[exp( 13Hz)) and the

symbols tr and Tr' ' Incan the single-electron trace and

the many-body trace over background coordinates, re-

spectively. Then, the exact field-dependent conductivity
formula, Eq. (2.27b), can be expressed in terms of the
single-electron trace as
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o'~, (E, )=A J d(exP( s()—tr (im
~

jg( ((hE+ 7(U+ Ha ( ls
Bf

0 1-0 jul
(2.29)

where h,z ——h, +hz, ( )ii denotes the average over the
background (impurity and/or phonon) scatterings, and f
is the modified Fermi-Dirac operator given by

rewritten from Eqs. (2.35) and (2.37) as

f (Ek, )
—f(Ek, )

~kl(EI)=& ' g ' '
Jlk k (Jkk k (El))B

1 2 2 1

1' 2 1 2f=[exp[@'(h, +u j—g)]+1] (2.30)
(2.39)

with P'=(k iiT, )

In order to rewrite Eq. (2.29) in a more convenient
form, we represent the interaction term in the back-
ground average as

atr lim jk(tlh, F+riu+H~)
uI ~0 c)u l

. It), dz f(z)(A, , IR,j, R, IA,, )
j. ' 2

where Xk k
= (A2IXIA, , ) for any operator X. The central

problem of evaluation of Eq. (2.39) is the evaluation of
the configuration over the background fields. Especially,
the main task is then to give a suitable expansion method
for the operators J'kk k (Ei) in Eq. (2.39), which will be

2 1

outlined in the following section.

III. FIELD-DEPENDENT SELF-ENERGY OPERATOR

x & J(,jlk(tlh, k+rIu+Hii)IA, , ),
where we have used

(2.31)
In order to obtain the field-dependent self energy we

will present two representations: a closed-form represen-
tation and a continued-fraction-form representation.

lim (z —h, —u j) '=RjiR,
ui ~0 C)u I

with R, =(z —h, )
' and f (z) is defined by

f (z) = [exp[P'(z —g)]+1]

(2.32)

(2.33)

A. The closed form

For the calculation of J'kk k (Ei), we define the projec-
2 1

tion operators Po and Po for the states IJ(., ) and ll.z) as

h,EIJ &=Ekl~& . (2.34)

The A, in Eq. (2.31) denotes the single-electron state corre-
sponding to the energy eigenvalue E&.

PoX =(Xk,k, /Jkk, k, )Jk

Po 1 —Po ~

(3.1)

(3.2)

It should be noted that for our choice of the electron
state we shall adopt a representation in which h,E is diag-
onal.

Then, by considering Eqs. (2.29) and (2.31) the field-
dependent conductivity is reduced to

where X is any operator.
Following Mori, we separate jk (tl h T ) into the projec-

tive and vertical components with respect to the jk axis
as

Jk( tl hr ) Poj k( tl hT )—+ PoJk( tl h T)
' g «~iII;I~2&&J(2ljk(Ei)IJ i &&a

with hT =heE+'gv +Hg and

f (sk, ) —f (ek )'
&~iljil~2& (2.37)

(2.35)

where jk(Ei) is the Laplace transform ofjk(tlh, ) defined
by

J'k(Ei)= LT[jk(tlh, )]=—f dt exp( st)jk(tlh, ), —

(2.36)

Zok k (tlhT)jk

+ f «i ok,k (t, lhT)f', (t t, lh )T,
—

where

Zo» (tlhT)=—jk» (tllh, )/jkk k,
f ', (tlhT) =exp(iL, t/fi)f ', ,

f i —= tLijk/&

T

LT—=L E+qL, +I

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

h, lk&=okla, & . (2.38)

Then, the field-dependent conductivity formula can be

1 2

Here E& is the energy eigenvalue of the Hamiltonian h,
satisfying

Here L,F( =L, +LF ), L„and —LB are Liouville operators
corresponding to the single-electron Hamiltonian
h, +hE, the scattering potential v, and the background
(phonon and impurity) Hamiltonian, respectively.

In order to obtain J'kk k (Et ) or Zok k (Ei ), we

differentiate Eq. (3.4) as
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Zp&, &, (tlhT) =!~p«ZO«(tlh, }+
t

=i!iipk k Zpk k (tlhT)+ dt, Z» k (t t, l—hT)kok k Zpk k (tllhT) .

(3.9a)

(3.9b)

Here

ippA, A. (LTj k/~)AAJk, k .A(E. A, Eip

pkk( I T)=fink (

—=Z, k k (tlhT)~pk, k, ,

f, (tlhT)=iLTf', (tlhT)/&,

Z, k k (tlhT)=—fik, k, (tlhT)/f ik,k, ,

~ok,k,
=—f!k,k, /J'kk, k,

(3.10)

(3.11)

(3.12)

(3.13}

(3.14)

where Go~ =( ignis —L,E —Lt!—)
' and we have used the

relation ( A B)—' = A 'g" p(B A ') for any opera-
tors A and B. Now the self-energy operator Xok k (Ei)

2 1

has been expanded with respect to I., corresponding to
the scattering potential. Equation (3.17) is the general
formula for the field-dependent self-energy operator given
in a closed expansion form for electron-impurity and
electron-phonon systems, which is applicable to the
weak-coupling case since we have taken the relation
( A B} '—= A 'g" o(BA ') . Equation (3.17) is
identical to the result obtained by the Argyres-Sigel
projection-operator method.

where we have used" ( Uk k
—

U& k )~ =0 in Eq. (3.10).
2 2 1 1

Then, the LT of Eqs. (3.9a) and (3.9b) leads to

Zpk k (E!) —=jkk k (E!) /j kk k

B. The continued-fraction form

In order to obtain Z, k k (E!) of Eq. (3.16b) we define
2 1

the projection operators P, and P', as

=r~ —i~ok k +~ok k (Ei)] ' . (3.15) (3.18)

&Ok,k, «i ) = —
~pk, k,«!) (3.16a)

Here Xpk k (Et), often called the field-dependent self-
2 1

energy operator, is defined as

Pi=1 —Pi . (3.19)

By utilizing these operators we separate f, (tlhT ) of Eq.
(3.12) into the projective and vertical components with
respect to the fi axis as

= —Z!k,k, «!)~ok,k, (3.16b) f!(tlh T ) =Pif i(tlhT )+P!f!(tlhT )

where b,p& k (Ei) and Z, & k (Ei) are the Laplace trans-
2 1 2 1

form of Eqs. (3.11) and (3.13), respectively. Considering
Eqs. (3.5)—(3.8), (3.11), (3.12), and (3.16a), and taking into
account the relation

where

=Z, k k (tlhT)f,

+ Zips ti hT p t —ti hT dt) (3.20)

Pp(L E+Lt! )Gpt! PpX = [(L g +Lg )GpiiPP]k k =0,
we obtain

okk( !)=( Akk)

f2(tlhT)—:exp(tLpt/&)f 2

fz =&L2f i/&

L2=P~LTPo .

(3.21)

(3.22)

(3.23)

X X [(p(L 6ppPp 1 L 7 ]p p )ppp, (3.171
%=1

In order to obtain Z&k k (E!), we differentiate Eq. (3.13)
2 1

as

Zlk k (tlhT)=i~1k, k, Zlk k (tlhT)+ «1~1k,kl(t —tllhT»lk k (tllhT)

t
=&~ik k Zik k (tlhT)+

(3.24a)

(3.24b)

where

~1k. A. (LTPpf 1 /~)A. A. /f lA, A.

~» & (tlh, )—=f»,& (tlhT)/f», &,

—=z»&(

f2(tlhT )=iLTPpf~(tlhT)/fi,

(3.25)

(3.26)

(3.27)

Z» k (tlhT) =f»,k, (t)/f», k, ,

~ik,k,
—=f»,k, /fik, k,

Then the LT of Eq. (3.24) leads to

Zik k, «!)=—fik, k, «!)/flk k,

ik k +&» k (E!}l

(3.28)

(3.29)

(3.30)
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Here X» &1(E&) is the first-order field-dependent self-'2'
energy operator in the continued-fraction forms given by

&1~,1.,
«1)=—~1~. ~. (Ei)

= —Zu, i., «1 )i)'ii, ,i,

(3.31a)

(3.31b)

We now see that h, z & (E& ), the LT of Eq. (3.26), is given
2 1

in a closed-form expansion while Zzi i (E1 ), the LT of
2 1

Eq. (3.28), can be given in a continued-fraction manner
via the successive projection operators onto the
f2,f3,f4, . . . axes as follows.

In order to obtain the general form for ZJ& z (E&) weJ2&
define the projection operators P and P' onto t.he f axis.
as

m=0

=P,f, (t hT)+P,'f, (tlhT)

=Z, i ~,(tlhT)f,
t+ ZJ~ i (t, lhT)f1+, (t t,—lhT)dt, , (3.34)

Z, , i. (tlhT)=f i. i. (tl hT) /f, ii. ,

fz'+1(tl h T ) —= exp(iL& + it /A) fr+1,
f,'+1 ='I;+ 1f,—/k,

(3.35)

(3.36)

(3.37)

where the notation Q +' means POP 1P2 . PJ
and

P,& =(X).,i., /fJi. ,i., )f,
P'=1 —PJ J

Thus we have

(3.32)

(3.33)

j—1

I-, +1=P,'I.T—II P' .

Then the time derivative of ZJ& & (tl h T ) leads toJ 21

(3.38)

d t
Ziz z (tlhT)=icoiz z Ziz & (tlhz )+ dt, bJ& z (t t, lhT )Zi—& & (t, lhT) (3.39a)

=1'~,.i i Z 1„1 (tlhT)+ f dtiZ~ i, i, (t til" r)~Jr z Z)z z (ti!"T) (3.39b)

where

j—1

~,~,~, = LT ff P'fJ/&
m=0

(3.40)

The LT of Eq. (3.39) leads to

Z. . .(E, )
=f. . .(E, )lf. .—.
=[s —i~ji. k ~, i.,i.,«l)) ' (3.44a)

~, i. i. (tlhr)=fJ+ii. i. (tlhz)/fJ), .,i.,
—=Z, , 1 (tlh )b.

j—1f (tl" ) = L, g P f (tlh )/111

~,~,,i.,
—:f, + ii.,i., /f, i.,i.,

(3.41)

(3.42)

(3.43)

=[s iso x z Z +» z (E1)h.i. i. 1

(0~j ~ ~), (3.44b)

where E~i 1 (E& ) and ZJ+, z z (E& ) are the LT of Eqs.
(3.41) and (3.43), respectively. Now Eq. (3.44a) is given in
a closed-form expansion in the jth continued-fraction
representation. By considering Eqs. (3.15), (3.16b), (3.30),
(3.31b), and (3.44b), we obtain the general field-dependent
self-energy operator given in a continued fraction:

—
~o~,~,

s lM2A, A, (3.45)

S l&3
s —Lco4A, 2A, )
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where ho~ ~, 61~ ~, . . . and m1& &,A@2& &, . .. can be easily
2 1 2 1 2 1 2 1

obtained from Eqs. (3.40) and (3.43). We see that Eq.
(3.45) is applicable to the strong-coupling case. Consider-
ing Eqs. (2.39), (3.10), and (3.15) we can express the field-
dependent static conductivity tensor as

f ei —fe2
lQ

1 2 &1 &2

Jl12jk21
—1~ —E,+E, —&1~~„,(E, ) &,

(3.46)

It should be noted that the Ik; &(
=—Ii & ) and

E; (i= 1,2,3,...) are, respectively, the eigenstates and eigen-
values of h,E satisfying Eq. (2.34). The real and imagi-
nary parts of iiiiXo2, (Ei) defined by

IV. EXPLICIT EXPRESSION
FOR THE SELF-ENERGY

In this section we shall derive an explicit expression for
the field-dependent self-energy for both the weak-
coupling and the strong-coupling cases given in Eqs.
(3.17) and (3.45), respectively. The central interest in the
evaluation of Eqs. (3.17) and (3.45) is averaging over the
background (impurity and phonon) configurations.

A. Weak-coupling case

For the second order of the scattering potential in Eq.
(3.17) we obtain for the impurity scatterings

iiiiXo2i(Ez ) =
3 1 3E —E —its

i AX, (Ei ):V, (—Ei )+iI,(Ei ) (3.47) E3 —E2 —iAS Imp
' (4.1)

are the line shift and linewidth, respectively, for the tran-
sition between states !1& and !2&. Both of these quanti-
ties are functions of temperature and the external electric
field. Physically the inclusion of the field in the self-
energy operator accounts for the intracollisional field
effect, i.e., the accelerating effect of the electric field. The
self-energy results in the lifetime broadening, which is re-
sponsible for the spectral broadening of line shapes.
Therefore, the ICFE effect of the interaction in each col-
lision event and the CB effect by scattering are studied
theoretically by examining the real part of the conduc-
tivity tensor.

where we have used the relations

g (PoX)3i= g X3
3 3W2

(GoX);.=( its —E;+E—)'X;J.
(4.2)

(4.3)

and dropped" the vertex correction terms involving v;;.
Equation (4.1) is good for sufficiently weak scattering,
which is identical with that of Suzuki" obtained for low-
impurity density.

For the phonon scatterings, we have

ifiXo2, (Ei)=(I/jk2, )& I(L,GpPoLjk)2, + [L,G, PoL, G, Po(L,F+L )jk]2, I & „ (4.4)

for the second order of the scattering potential, where &qlq+1& =0, (4.9)

G, =( its L,E—Lp)— —

We define the phonon state as

(4.5)
& q l(G.,X);, I

q' &

(4.6)
&q!X,, !q'&

—1'~ —E;+E,—&qlH~ lq &+ &q'IH~lq'&
(4.10)

and take into account the following relations:

b, lq&=+n Iq
—1&,

bt Iq &=Qn, + 1lq+1&,

(4.7)

(4.8)

for any operator X. Here the matrix element is given
with respect to both the electron states ( Ii &, Ij & ) and the
phonon states ( I q &, I

q' & ). Then with the help of Eqs.
(4.2) and (4.6)—(4.10) the field-dependent self-energy in
Eq. (4.4) leads to

2

iiriXo2, (Ei)= g g (1+n ) +
q 3 E —E +Q~1 3 q 3 2 q

Ir,+23 I' !y,3i I'
+n E —E +Pi —As' E —E —A —'fis

1 3 q 3 2 q

(4.11)
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where nq = [exp(PA'~q) —1] ' is the phonon distribution
function and the vertex correction terms involving y;;
have been dropped. " It should be noted that the rna-
trix elements of the interaction term in Eqs. (4.1) and
(4.11) depend generally on the electric field, and the field
dependence on the electronic transition rates is intro-
duced through the electron states and the energy denomi-
nators. Equation (4.11) is identical to that of Suzuki"
and Ryu et al.

B. Strong-coupling case

ko21= ( A +8 )/A

(C'+D')
iri( A '+8')

(4.14)

(4.15)

where we have used Eq. (4.2) and utilized the fact that
any terms including an odd number of U disappear in the
impurity average, and

the numerator and the denominator separately in approx-
imation.

For the impurity scatterings we have

By considering Eq. (3.45) given in a continued-fraction
manner we can obtain the general formula for the
strong-coupling case. In order to obtain the field-
dependent self-energy iiiiXo2, (E&), we must evaluate the
quantities ho21 and co,2, given in Eqs. (3.14) and (3.25), re-
spectively:

~021 f121 ~Jk21 (~T~O TJk ~~ )21~Jk21 & (4'1

~121 (~T+Of 1 ~~)21~f121

A = g U23U32
3

8 = g V13U31
3

C'—= g (E3 1 23 32
3

D'= g (E2 E3)U»—U» .
3

(4.16)

(4.17)

(4.18)

(4.19)

(+T~O T~O TJk ~~ )21 ' 121 (4.13)

These quantities are contained in Eq. (3.45) and should be
averaged over the background (impurity and phonon)
configurations. The simplest way to do so is to average

Here we have dropped" the vertex correction terms in-
volving U, , . Then we obtain from Eqs. (3.45), (4.14), and
(4.15)

iiriXP21(Ei ) = g +
E 1 E3 —i hs +0;1 ——iiriX121(Ei ) E3 E2 i Kgb +—g—;2

—iiriX121(Ei )
(4.20)

where iiriX, 2, (E& ) in the denominator is the field-
dependent high-order term given in Eq. (3.45) and

A = g g (I+n )y yq32,
3

(4.25)

I [(E3 E, ) A' —C']—+ [(E3 E, )8' —D']—]
( A '+8')

I [(E2 E3)A ' —C']+—[(E2 E3)B' D']j——
( A '+8')

Equation (4.20) is the general formula for the strongly in-
teracting electron-impurity scattering case which is simi-
lar to Sawaki's expression based on the Stark-ladder-
representation approach. If the quantities 0, , 0,2, and
the high-order self-energy iiriX, 2, (E&) are neglected, Eq.
(4.20) is reduced to Eq. (4.1) obtained up to the second-
order terms for the weak-coupling case.

For the phonon scatterings we have from Eqs. (4.12)
and (4.13)

8 =—& &nqyq23yq32
3

C—= X g ~,y,'»y, »
3

D =—& g (1+~,)yqi3yq»
q 3

F= gg (1+nq)y—q23yq32(E3 E, +ficoq),
q 3

G—= g g nq'Yq23Yq32(E3 El APiq),
q 3

Y 13yq31(E2 E3 ~ q)
3

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

QO21= —( A +8 +C +D) I& (4.23)
I= X X (I+nq)'Yqi3yq3i(E2 E3 &~q) .

q 3
(4.32)

where

(I'+G+H+I)
A'( A +8 +C+D) (4.24) Here we have used Eqs. (4.2) and (4.6)—(4.9) and

dropped" the vertex correction terms involving yq, ,
Then considering Eqs. (3.45), (4.23), and (4.24) we obtain
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I y,231'
iAX02, (EI )= g g (1+nq)

q 3 E1 E3 ~coq Ifis + 8p1(ficoq) 1~~121(EI)

ly, 31 I'

E3 E2—+ficoq ifis—+8q2(ficoq) —iA'2121(EI )

I y,+231'
+nq

E, E,—+fico ifi—s +8 3(A'co ) —I fiX,2, (EI )

E3 E2 ~~q ifis + 8/4(~coq) 1~~121(EI)

where ifIX12,(EI ) in the denominator is the field-dependent high-order term given in Eq. (3.45) and

8~, (Rcoq) =
[ [(E3 E, +fico—q) A F)+ [—(E3 E, +—fico )B —G]

+[(E3 E, +%co —)C H]+[—(E3 E, +fico—)D I]]—/( A +B+C+D),
8~2(ficoq)

=
[ [(E2 E3 —112—coq) A F]+[(—E2 E3 fi—co )B——G]

+ [(E2 E3 fic—o—q) C H] + [(—E2 E3 fic—oq )D —I]] I( 3—+B +C +D ),
8~3(11icoq) =8~, (

—A'coq),

8 4(fico ) =8 2(
—fico ) .

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

If 8,(fico ), 8 2(11ico ), 8 3(fico ), 8„4(iiico ), and ifiX, 21(EI ) are neglected, Eq. (4.33) is reduced to Eq. (4.11) for the weak-
coupling case. Equation (4.33) is the general formula for the phonon scattering which is similar to that of Sawaki.
Real and imaginary parts of Eqs. (4.1), (4.11), (4.20), and (4.33) give the line shift and linewidth, respectively. By using
Eqs. (3.46) and (3.47), the steady-state nonlinear conductivity is given by

(E, ) —f (E,) r„,(E, )
Re crkl(EI ) =(f1~II) J112Jk21 [E,—E,—V„,(E,)]'+r,'„(EI)

(4.38)

where Re means "the real part of." I 02, (EI ) and V02, (EI ), respectively, can be calculated from Eqs. (4.1) and (4.11) for
a weak-coupling case or Eqs. (4.20) and (4.33) for a strong-coupling case as follows:

I 021(EI ) =1m [I'A'X021(EI ) ]= [I 021(EI ) ], „+[I,(E ) ] „
=~+ ([IU23I'S(E, —E, )+ IU» I'n(E3 —E, )] &, „

3

+~& g [(n, +1)l: I yq23l'&(EI —E3 —11i~q)+ lyq'» I'&(E3 —E, +11l~,) ]
q 3

+nq[ I yq23I &(E, —E3+f~q)+ lyq3, I &(E3 —E2 —f~q)]], (4.39)

V021(EI ) Re[ f1~021(EI ) ] = [V021(EI ) ]I~p+ [V02, (EI ) ]ph

IU23I'P + IU31I'P
3 1 3 3 2

1HlP

+yy (n 1) Iy 23I s'
E& E3 Ace

+n E —E +%co1 2 q

+ly+, I'J
E —E +A'a)

1

E —E —Ace3 2 q

(4.40)

for weak coupling and
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[~021(EI ) ]' + [~o2 (EI ) ) h

IU231'I 121«i)
2 2

3 [E] E3 +8I] V]2](EI}] +I,2, (EI )

I U311 I 121(E!)

[E, E+)); ——')), ,[Ei)] +I',~,(Ei) )
I yq231'I ]21(EI )+ g g (nq+1)

[E, E —Aco —+8,(f]co ) V, ,—(E, )]2+1, ,(E, )

I y,+3]1'f ]2](EI )

[E3 E2+—Acoq+8p2(f]co ) V, 2, (—EI )] +I 12,(EI )

I y,' 32I'f' «i)
[E, E3+f—ico +8 3(fico ) V,2](EI—)] +l, ,(E, )

Iy,3, I'r „,(E, )

I.E3 E2 A~q+8p4(A~q) 121(EI )] +~121(EI)

021( I ) ( V021(EI ) ]imp+ [V021(EI ) )ph

IU231'[E] —E3+8il V]21(EI)]
2 2(E, E+8;,—V, ,(E, )—] +I ]2](EI)

IU311 ( 3 E2+8i2 V]21(EI)]

[z, z, +))„—v„,[z, )P+r2„,[Z, )
)'-'

lyq231 [ ] 3 f~q p](A'~q) —V]21(EI )]+ g g (nq+1)
[E,—E —f]co +8,(f]co )

—V„](EI)]'+I121(EI )

I [E3—E2+Aco +8 2(A'co ) —V,21(EI ) ]

(E3 E2+A~q+8p2(A~q) V]21(EI )1 +I 121(EI )

lyq231 [E] E3+fCOq+8p3(f~q) —V„,(EI )]+ 7lq
[E] E3+f] +8—3(fi ) V]21(EI )] +—I, ,(EI )

I y,3] I'[E3 —E2 —f]coq+ 8,4(f]coq) —V»]«i ) ]

[E3 E2 ficoq+ 8p4(fi )co—V,2, (EI ) ] +I,21(EI )

(4.41)

(4.42)

for strong coupling, where I,2, (EI ) and 'V, 2](EI) in Eq.
(4.42), respectively, are the real part and imaginary part
of the high-order self-energy [—i A'X (]2E])]Iin Eq. (3.45).
To obtain Eqs. (4.39) and (4.40), we have used the Dirac
identity

lim (x+is) '=P(1/x)+im5(x), .
s —+0

(4.43)

where P denotes Cauchy's principle-value integral. The
symbols Re and Im in Eqs. (4.39) and (4.40) denote, re-
spectively, the real and the imaginary parts of the quanti-
ty. We see that the field-dependent conductivity in Eq.
(4.38) exhibits a Lorentz-like line shape. The quantities
V02, (EI ) and I 02, (EI ) play the role of the line shift and
the half-width, respectively. I"02,(EI ) gives the reciprocal
of the relaxation time. It should be noted that both of
these quantities are functions of temperature and the
external electric field.

V. CONCLUSION

We have derived expressions of the nonlinear dc con-
ductivity and the field-dependent self-energies for the sys-
tems of electrons in interaction with impurities and pho-
nons. For the derivation of nonlinear dc conductivity
tensor, Tani's theory of nonlinear response has been uti-
lized.

The perturbation has been dealt with by the two tech-
niques based on the Mori-type method of calculation.
One is a closed-form representation which is applicable to
the weak scattering case, the other is a continued-fraction
form representation which is applicable to the strong
scattering case. The results obtained for the weak
electron-background coupling case are identical to those
of Suzuki" based on the resolvent superoperator ap-
proach and of Ryu et al. based on Argyres-Sigel's pro-
jection method, and the results for the strong-coupling
case are similar to the expression of Sawaki based on
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the Stark-ladder-representation method.
There are several important issues under continuous

study, including electron-electron interactions, spin-orbit
coupling effects, the multiband model, and hot-electron
effects. All these works are left for future studies.
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