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Activation energy of the hopping conductivity of the 5-doped semiconductor in the low-density limit
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We consider the impurity band structure of a system of multiple donor sheets, spaced significantly far-

ther apart than the average in-plane donor separation. In a low-density limit the overlap of the wave

functions of neighboring donors is relatively small and the spread of the energy levels is governed by the

Coulomb shifts produced by the charged acceptors and donors. The activation energy of the hopping
conductivity in the regime of nearest-neighbor hopping is equal to the Fermi-level position with respect
to the isolated donor level, which is calculated as a function of the two-dimensional concentration of
donors and the interplane distance assuming that the small degree of compensation is provided by the

acceptors, which are distributed randomly between the sheets.

I. INTRODUCTION

In a number of recent publications the electronic prop-
erties of 5-doped layers representing a plane of donors
implanted into a semiconductor during the process of
growth have been explored. ' " Most experiments were
performed on CzaAs samples doped with Si donors.
It was demonstrated that the arrangement of the elec-
tronic states in such a system depends strongly on the
two-dimensional concentration nd of donors in the plane.
For nd greater than some critical value n„which corre-
sponds to the metal-insulator transition in two dirnen-
sions (n, =1.3X10" cm for GaAs), the donors unify
their electrons and the electron gas screens the potential
of the charged plane. The resulting potential has a V-
shaped form. Therefore for nd & n, the electronic spec-
trum consists of 2D quantum subbands and the low-
temperature conductivity of such samples is metal-like.
The treatment of the magnetotransport data permits the
determination of the electronic occupations of each sub-
band and the corresponding rnobilities. ' '

For nd & n, the donors in the sheets keep their indivi-
duality. The overlap of the wave functions of the neigh-
boring donors is relatively small. Therefore the conduc-
tivity of such samples decreases rapidly with the decrease
of temperature. ' '" For the experimental study of trans-
port properties of 5 layers in the low-density limit, mul-
tilayered structures corresponding to a set of parallel 6
layers spaced by some distance larger than the mean dis-
tance between the donors in the plane appears to be
efFective. Using the multilayer structure instead of a sin-
gle 5-doping layer avoids the carrier depletion caused by
the p-type background dopants.

In the range 10~ T & 77 K the conductivity of the sam-
ples with nd & n, involves excitation of electrons from the

donors to the conduction-band edge. As shown in Ref.
11 below T= 10 K the conductivity manifests the cross-
over to the regime of hopping transport. Note, however,
that the hopping transport is impossible if all the donors
are occupied. At low temperatures only the presence of
some portion of acceptors can create the vacant positions
in the impurity band and give rise to hopping conductivi-
ty.

Another significant consequence of the finite compen-
sation is that after some electrons fall from the donors to
the acceptors both acceptors and donors become charged
and produce Coulomb shifts of the energy levels on the
other donors. As a result, the density of states is smeared
into the classical impurity band. (This term means' '
that the width of the band is not caused by an overlap of
wave functions. ) At low temperatures the Fermi level
separates the energy levels of occupied and empty donors
in the impurity band. If the compensation degree of the
semiconductor K =N, /Nd =N, D /nd « 1, the Fermi
level should lie higher than the isolated donor level (Fig.
1). Here N, and Nd are the bulk concentrations of
dopants and D is the spacing between the sheets.

Under the condition K «1 most of the donors are sit-
uated far from the acceptors and their energy levels are
only slightly shifted by the charged impurities (Fig. 1).
Then the occupation number of a typical donor is equal
to [1+exp(@IT)],where p is the Fermi-level position
measured from the isolated donor level. If the tempera-
ture is not extremely small, hopping conductivity is
determined by typical pairs of the donors. The conduc-
tance of one pair is proportional to the small probability
to have one of the donors empty, which is exp( pIT) if-
p && T. Thus the temperature dependence of conductivi-
ty has a form

Cg
o. ~ exp T
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FIG. 1. Energy diagram of a weakly compensated semicon-
ductor. The solid lines show the bottom of the conduction and
the top of the valence band. The black dots represent electrons
occupying the donor and acceptor levels. The Fermi level p is
shown by the dash-dotted line. The first acceptor from the left
forms a 2 complex, the second a 1 complex, and the third a 0
complex.
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FICx. 2. Two neighboring donor planes and an acceptor (open
circle) situated at a distance z from the midplane. The area en-
closed by the dashed circles should contain no donors in order
to form a 0 complex.

with an activation energy c.3 p.
Therefore the calculation of the activation energy of

hopping conductivity reduces to the evaluation of the
Fermi-level position within the impurity band. This
problem is the subject of the present paper in which the
impurity band of a system of evenly spaced 5 layers is
studied theoretically. We show that the arrangement of
donors in the separate sheets can strongly change the
Fermi-level position and, consequently, the activation en-
ergy of hopping conductivity. This result can differ
significantly from the prediction of the conventional
theory, ' developed for a uniformly doped bulk semicon-
ductor. For the case when the distance between the
sheets is much larger than the mean distance between
donors in a sheet nd D »1, we obtain

2e
E3 —P—

vD
(2)

where e is the electron's charge and sc is the dielectric
constant. Remarkably enough in this region c3 does not
depend on nd. In the opposite case n„' 'D «1, the ar-
rangement of donors in planes is of no importance and we
can use the old result' for the Fermi-level position in a
system of donors distributed randomly in space

1/3
e e

c.3=p=0.99 Xd' =0.99
sc

" z D

A computer simulation was performed to obtain c3 for ar-
bitrary D. Results can be approximated by Eq. (2) for
nz~ D ~ 3 and by Eq. (3) for nd'~ D ~ 3 with an accuracy
better than 8%.

II. PRINCIPLE EQUATIQN

The theory of the impurity band structure of a lightly
doped and low compensated three-dimensional semicon-
ductor was developed in Refs. 12 and 13. We shall use
here the main ideas of this theory.

Consider randomly distributed acceptors in the space
between two 5 layers (Fig. 2). Since the concentration
N, is less than nd/D, all the acceptors are negatively

charged. In the case E «1 there are many donors be-
tween two acceptors. Normally the electron for the ac-
ceptor is provided by the closest donor, which then ac-
quires a positive charge, so that the donor and acceptor
constitute a neutral dipole. To remove the electron from
the donor the acceptor should shift the donor's energy
level above the Fermi level. The latter shift is equal to
e l~r, where r is the distance between the acceptor and
the donor. The shift is greater than p if the condition

2

r& (4)

where No(p) and Nz(p) are the concentration of 0 and 2
complexes, respectively, for a given value of p. Now in

is met. Since donors are randomly distributed within the
planes, for any given p a finite probability exists that for
some of the acceptors there are voids on both of their
neighboring planes, and no donors fulfill the condition (4)
(Fig. 2). Following Ref. 13 these negatively charged
configurations with no charged donors around an accep-
tor will be referred to as 0 complexes. Since a bulk semi-
conductor has to be electrically neutral, some acceptors
must shift the energies of two neighboring donors above
the Fermi level, thus creating a positively charged 2 com-
plex. As shown in Ref. 13, for an appropriate location of
donors, an acceptor can produce positive shifts of energy
levels of two charged donors despite their mutual interac-
tion, but configurations with one acceptor and three or
more empty donors are prohibited. In principle, two
close acceptors can hold three empty donors about them.
However, since we have assumed that E «1, the proba-
bility of such a configuration is much smaller than the
probability of the formation of 0 and 2 complexes.

We see that the charged configurations in the system
under study are negatively charged 0 complexes and posi-
tively charged 2 complexes; therefore the condition of to-
tal charge neutrality of the sample takes the form
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order to determine the Fermi-level position one should
calculate the concentrations N0 and N2 as functions of JM

and solve Eq. (5). This program is realized in the follow-
ing section.

III. CALCULATION
OF THK FERMI-LEVEL POSITION

r, (z, r„)= r&— D
z

2

' 2 1/2
D8 r ——+z
2

The expression for the concentration of 0 complexes
can be derived using the fact that the probability of the
formation of a void with the radius r in a system of
donors randomly distributed in the plane is equal to
exp( m.nd r—). I.et the acceptor be at distance z from the
midplane between two donor planes (Fig. 2). It will be a
0 complex if there are no donors at distances less than r„
from the acceptor. Then the radii of the corresponding
voids on both planes are

Now we turn to the calculation of the concentration of
2 complexes Nz(p}. A 2 complex can be constructed ei-
ther from an acceptor and two donors on the nearest
plane to the acceptor, or from an acceptor and two
donors on different planes. The latter configuration is
forbidden if r„meets inequality (7) because the largest en-
ergies of the donors reached when the acceptor is placed
exactly between the planes and the donors are placed just
opposite the acceptor are 2e /ttD e /—AD &p. So we
will consider only 2 complexes of the first type.

The arrangement of 2 complexes depends strongly on
the relation between r„and rd. The analytical expression
for N~(p} can be obtained only in the cases r„&&rd and
r„&)rd. Consider the first case. For r„«rd 2 com-
plexes are formed by the pairs of donors located anoma-
lously close to the acceptor. Let the acceptor distance
from the plane of a 5 layer be h (Fig. 3). We denote by p&
and p2 the two-dimensional coordinates of the donors
measured from the projection of the acceptor on the
plane. Then the conditions for formation of a 2 complex
can be written in the form

rz(z, r„)= r&
— —+zD

2 1/2
D6 r ———z
2

2 1e(, )=
1 Pl&P2

(h 2+ 2)1/2p,

1

Ip
—p I

where B(t) is the step function. The step function is in-
troduced here since, if the distance between the acceptor
and one of the planes is greater than r„, no void is neces-
sary to form a 0 complex. If r„ fulfills the inequality

r„&D,
then voids on the two nearest planes are sufhcient for
creating a 0 complex, and the probability that the chosen
acceptor is a 0 complex can be expressed as

2 1 1

(h ~+pz)~~~ Ip&
—

p&I
)p. (12)

Under these conditions the Coulomb shift of the energy
levels of both donors is greater than p. As is shown in
Ref. 13 under the condition r„((rd, the concentration
Nz(p) is equal to the total concentration of donor pairs
satisfying the conditions (11) and (12) (this is N~ in the
notation of Ref. 13),

p(z, r„)=exp[ nndr, (z, r—„) vrndr~(z, r—„)] . (8) 2N, nd D/2
2

N (p)= f dh f dp, f, dp 6(,—p)

Substituting (8) into (9) and performing the integration
we get

2X, D r„
No(p) = —r„+rdF—

d

if r„&D/2 and

2N, rd D
No(p) = exp 2~n„D r„———

(10a)

The total concentration of 0 complexes can be obtained
by averaging the probability p(z, r„) over the acceptor
position

D/2 dzNo(p)=N, f p(z, r„)

Xe(e,—p) .

(13)

Here the factor of 2 takes into account the fact that the
acceptor can be located both above and below the plane.
The restriction IpzI ) Ip&I reflects the fact that swapping
the donor positions results in the same configuration. A
straightforward but tedious evaluation of the integral (13)
yields

X —F1

2

&2(r„D/2)—D —rP

(lob)

if D/2&r& &D, where rd ——(~nd) ' is a typical dis-
tance between donors in a plane and F(t)t
=exp( —t ) exp(x )dx is the Dawson integral. '

0

FIG. 3. A 2 complex formed by an acceptor at a distance h
from a plane and two donors at positions p& and p~ in the plane.
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2N,

D 2
——r

Since No «N„we have D/2 r—
&

«D/2, i.e.,
p=2e /IrD.

We also solved Eq. (5) numerically using the simulation
results for Nz and the expression (10) for No. The result
is given in Fig. 4 together with the asymptotes (19) and
(12). The curve begins at the point where ptrD/e =1
since for smaller D condition (7) is violated. Our simula-
tion cannot give the dependence p(D) for D & nd, but at
this point the exact solution is already surprisingly close
to the asymptote (3), which can be used for smaller values
of D.

IV. CONCLUSION

Hopping transport in samples constructed as multiple
5 layers was studied experimentally in Refs. 10 and 11.
The parameters of the samples used were nd =0.8 X 10"

0cm, D =1000 A. The degree of compensation with re-
sidual acceptors was estimated to be between 1% and
6%. For the value nd D =8 the theory developed in the
present paper predicts p=1.85(e /trD ). Using the value
~=12.5 for GaAs we get p=2. 1 meV. The activation
energy of hopping conductivity obtained by fitting the ex-
perimental data' " to the dependence (1) appears to be
E3 1. 1 meV. We suggest that the difference between the
calculated and experimental values can be accounted for
by the quantum-mechanical effects. Indeed the theory
presented here should work only for nd (&n, . In Refs. 10
and 11 nd =0.6n„which is too large to expect quantita-
tive agreement with our theory.

There are at least two reasons why the quantum-
mechanical corrections lower the value of c.3 obtained
classically. First, the equality c,3=@ does not take into
account the fact that the energy level of the empty donor
can be shifted due to the overlap of its wave function

with the wave function of the closest occupied donor.
Actually, the energy levels of the empty and the occupied
donors are split and that causes a negative correction to
the activation energy of the hop, which is of the order of
the overlapping energy. Another correction to the classi-
cal result concerns the calculation of the concentration of
a 0 complexes No(p). For the formation of the 0 com-
plex, we demanded the absence of donors at distances less
than r„ from the acceptor. Consider now a close pair of
donors, such as a hydrogenlike molecule. It is known
(see, for example, Ref. 15) that since the distance between
the atoms in a molecule is less than 2. 5a~ (an't is the Bohr
radius), the ionization potential of the molecule is greater
than the Bohr energy. Therefore, if a close pair of donors
is located at a distance even less than r„ from the accep-
tor, the electron would not be removed from such a pair.
In other words, pairs of donors separated by a distance
less than 2.5a~ do not prevent the formation of 0 corn-
plexes. The Bohr radius in GaAs is 100 A, while the
average donor spacing is 350 A. Hence the close pairs of
donors may cause a significant increase of Xo. Since
No(p) is an increasing function of p, the increase of No
lowers the Fermi level.

The indication that quantum-mechanical effects are
important in the experimental situation of Refs. 10 and
11 is provided by the strong dependence of the activation
energy on the magnetic field observed in these experi-
ments. It is clear that the classical result is not sensitive
to the magnetic field.
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