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This paper considers in detail the empirical two-band model formulated by Nelson et al. [Phys. Rev.
8 35, 7770 (1987)] for the electronic states of semiconductor quantum wells and superlattices. The model
is also extended to the case where the structure of interest is in an external potential. It is shown that
one can define probability and probability current densities such that a continuity equation is satisfied
and that solutions corresponding to different energies are orthogonal. Expressions are derived for the
oscillator strengths of interband transitions and of intersubband transitions within the conduction band.
The pair of coupled first-order differential equations resulting from the model can be recast into a single,
second-order Schrodinger equation with an energy- and position-dependent effective mass. For a uni-
form electric field, it is shown that analytic solutions to this equation can be obtained with an error of or-

0
der (yF), where y is the nonparabolicity parameter and F is the electric field. For a 200-A rectangular
GaAs/Al„Ga& „Asquantum well, results are presented for electric-field-dependent conduction-subband
energies, envelope functions, interband oscillator strengths, and tunneling resonance widths. These re-
sults are compared with the corresponding results obtained by a direct numerical integration of the two-
band-model Schrodinger equation and with results obtained using the single-band envelope-function ap-
proximation.

I. INTRODUCTION

The most commonly used theoretical models for calcu-
lating the electronic properties of quantum wells and su-
perlattices fall into two categories: those based on tight-
binding methods (such as Schulman and Chang's empiri-
cal tight-binding treatment') and those based on k p per-
turbation theory. The single-band envelope-function ap-
proximation is the simplest example of the latter.
Despite a wealth of theoretical treatments that have been
discussed to date, very little work has been done to devel-
op models that go beyond the single-band approximation
for quantum wells and superlattices in an electric field.

In Kane's eight-band model for bulk semiconductors,
the interactions among the conduction band, the light-
and heavy-hole bands, and the spin-orbit (split-off) bands
are considered within the context of k p perturbation
theory. This treatment results in a reasonably simple
model for the band structure of a bulk III-V semiconduc-
tor near the I point that contains a number of adjustable
parameters, determined by fitting either to a more precise
band-structure calculation or to experimental data (e.g.,
effective masses determined via cyclotron resonance).

In applying the model to problems involving hetero-
junctions, Schuurmans and 't Hooft discovered that the
full eight-band Kane description yielded spurious roots.
That is, solutions for the square of the wave vector k as
a function of the energy E included values of k that were
outside the first Brillouin zone, i.e., far outside the range
of validity of k p perturbation theory. To rectify this
problem, they considered a reduced model in which the
conduction and light-hole bands were handled separately,
each with its own energy-dependent effective mass. A
similar approach was suggested by Potz, Porod, and Fer-

ry who decoupled the eight-band differential equations
by neglecting derivatives higher than second order and
thereby obtained separate second-order differential equa-
tions (with energy-dependent factors) for each band.
While these approaches incorporate the major effects of
band nonparabolicity, there are difficulties in principle
with the use of an energy-dependent effective mass in a
model that considers only a single band at a time;
specifically, solutions corresponding to different energies
are not necessarily orthogonal to each other if the com-
ponents of the envelope functions for the neglected bands
are not accounted for.

Ram-Mohan, Yoo, and Aggarwal proposed a trans-
fer-matrix treatment for energy bands in superlattices
that uses all eight bands of Kane's bulk model. It is not
clear from this paper, however, how the authors handle
the problem of spurious roots discussed above; neverthe-
less, this method appears to give a good description of
electronic states in quantum wells and superlattices. A
somewhat different approach to band nonparabolicity is
taken by Persson and Cohen and by Ekenberg, who
consider an expansion of E(k) in powers of k to obtain a
differential equation for the envelope function that is
higher than second order. In principle, extra interface
conditions are needed as a consequence. However, the
authors of these papers side step this issue, and it is not
clear that a unique, consistent description can be ob-
tained from this approach.

In this paper, I consider a two-band model that is an
empirical version of a coupled conduction-band —light-
hole-band model considered by Bastard. In the empiri-
cal two-band model, formulated originally by Nelson,
Miller, and Kleinman' for the zero-field case, the con-
duction and light-hole bands are considered separately,
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and parameters in the model are chosen to match the
effective masses and band nonparabolicity parameters
determined by other means. Based on the favorable com-
parison by Yoo, Ram-Mohan, and Nelson" of the empir-
ical two-band model with the more sophisticated eight-
band transfer-matrix technique and other k p-based
methods, it is clear that the empirical two-band model
merits further exploration. Here I consider the proper-
ties of the model in more detail and show that the model
can easily be extended to calculate energies in the pres-
ence of an electric field.

In Sec. II the empirical two-band model (as discussed
by Nelson, Miller, and Kleinman' ) is presented and
placed on a firmer footing by the introduction of a "ficti-
tious" band that represents the effects of all the bands
that interact with the band of interest. The general prop-
erties of solutions to the model are discussed, and ap-
propriate interface conditions for the model are obtained.
I show that, in an external potential V(z), the eigenvalue
equation can be recast into a single second-order
Schrodinger equation with an energy- and position-
dependent effective mass. Momentum matrix elements
appropriate for optical transitions between valence- and
conduction-band states and for transitions within the
conduction band are calculated. In Sec. III I show that if
V(z) is linear (i.e., the structure of interest is in a uniform
electric field) approximate analytic solutions to the model
can be obtained with an error of order (yF), where y is
the nonparabolicity parameter and F is the electric field.
Finally, in Sec. IV the formalism is applied to the calcula-
tion of electron-subband-edge energies for a (200 A
GaAs)/Alo 3Cxao 7As quantum well in an electric field. A
comparison of these results using the analytic approxima-
tion with a direct numerical integration shows that the
former approach is capable of very high accuracy. I also
compare results for envelope functions, oscillator
strengths for interband transitions, and field-induced tun-
neling out of the quantum well with corresponding re-
sults obtained using the single-band envelope-function
approximation.

II. EMPIRICAL TWO-BAND MODEL

A. Physical origin of the model

The specific problem considered in this paper is that of
calculating quantum-confined subband-edge energies and
related quantities in the presence of an electric field. For
concreteness, structures in which the interface normals
are along the [001] direction' are considered. Thus we
may set k and k„equal to zero, and consider the usual
reduction of the 8X8 Kane Hamiltonian into a pair
of 3 X 3 matrices representing the interaction of
conduction-band (CB), light-hole (LH), and spin-orbit
bands with spin up and spin down, respectively, and a
pair of IX I matrices for the heavy-hole (HH) band.
Thus the heavy-hole band becomes parabolic and is not
considered in detail here. These simplifications are not
possible if k~~AO; thus the empirical two-band formalism
describes only subband-edge states and is not applicable
to properties (such as those of excitons) that depend on

P„=— &sip, lz &, (2)

where ls ) and lz ) are state vectors representing, respec-
tively, the Bloch functions at k=0 for the conduction
band (I, representation of Td) and for the z-transforming
component of the valence band (I ~ representation).

Bastard's simplification of this two-band model arises
from neglecting the terms in Eq. (1) containing c,. The
motivation is that the contributions of these terms to
the eff'ective masses are small and that a second-order
differential equation can then be derived, as we shall see,
for either the conduction band or the light-hole band
alone. ' For a bulk crystal, we can then solve for the
square of the wave vector in terms of the energy:

k =—', (E E, )(E E, )/P—„,—

which may be written in the form

(3)

Ak
2m (E)

(4)

where the energy-dependent effective mass m (E) is

3' (E—E, )
m(E)= 4P„

If we write

2m *y(E E,)—
m (E)=m* 1+

then the conduction-band-edge effective mass is

3A E
4P„

and the nonparabolicity parameter for the conduction
band is'

2P
y=

3E 2m E
where E =E, —E, is the energy gap.

It can be easily shown that, within this simplified two-
band model, the effective masses and nonparabolicity pa-
rameters for the conduction and light-hole bands are
identical and differ significantly from the "true" values.

the nature of electronic states away from k~~
=0.

Bastard's starting point is to neglect the spin-orbit
band entirely, and to write out a 2X2 Hamiltonian
representing the interaction of CB and LH bands,

E, +so &2/3iP„k
H= &—2/3iP, „kE„—(y i+2y2)s

where small terms resulting from lack of inversion sym-
metry have been omitted. In Eq. (1) E, and E„arethe
conduction- and valence-band-edge energies, y, and y2
are the "bare" Luttinger parameters, s is a para-
meter related to the conduction-band effective mass,
E =iri k /2m„m, is the free-electron mass, and



11 272 R. P. LEAVITT

Nelson, Miller, and Kleinman' considered an "empiri-
cal" two-band model based on Bastard's formulation in
which m ' and y are chosen separately for each of the
bands on an empirical basis. Thus, from Eq. (1), the
simplified empirical two-band Hamiltonian for the con-
duction band is written as

E, + V(z)
d

2m*v'y dz

d g2
E, + V(z)—

2m V y dz 2m y

(13)

—iA k
2m *i/y

i' k
2m *V'y

2'

This is the Hamiltonian for the empirical two-band mod-
el for conduction-band states in the presence of an exter-
nal potential.

B. General properties of solutions

Note that the energy gap in this model, fi /2m'y, does
not coincide (necessarily) with the "true" energy gap,
given realistic choices of m* and y. In fact one can con-
sider the "light-hole" band in the empirical two-band
model as a "fictitious" band IU'& that represents the
effects of all the bands that interact with the conduction
band. In this case the momentum matrix element P„
defined by Eq. (2) is replaced by an effective matrix ele-
ment P„between the conduction band and the fictitious
band. Note also that, although the matrix elements in
Eq. (9) diverge as y~0, the degree of mixing of the con-
duction and (fictitious) light-hole bands is proportional to
i/yk and actually vanishes in the limit y~O. Thus in
this limit we recover a parabolic conduction band with an
effective mass m *.

It is interesting to consider the following choice for the
wave function of the fictitious light-hole-like band:

Probability and probability current densities can be
defined within the empirical two-band model that satisfy
a continuity equation. Consider a two-component wave
function

(14)

which is a solution to the time-dependent Schrodinger
equation with H given by Eq. (13). If we define the prob-
ability density

and the probability current density

—g 'f f*g, —
2m

then we can write a continuity equation as follows:

(1O) dp dJ
dt dz

(17)

Here, the sum extends over all states except the conduc-
tion band Ic &, and

I&nip. lc &I'

(& —E )'

It can be easily shown that, if the energy of the fictitious
band E„.is chosen such that the effective energy gap is
given by

l&n Ip, lc & I

(E, F.„)—
then the wave function for the conduction band given by
the model is correct to first order in k, and the effective
mass is the same as that given by second-order k p per-
turbation theory (except that the free-electron contribu-
tion to 1/m* is missing). Then the nonparabolicity pa-
rameter can be obtained from y = iii /2m *(E, E„,). —
This fictitious-state construction is not unique, and the
value deduced for y may not be correct; the argument
above is given to show one way such a fictitious band
may be constructed.

We now introduce an external potential by adding a
term V(z) to the diagonal elements of Eq. (9). At the
same time, if we replace k by —id/dz in Eq. (9), we ob-
tain the following:

Furthermore, since H is Hermitian, solutions to the
time-independent Schrodinger equation corresponding to
difFerent energies are orthogonal (contrary to claims
made in Ref. 7). We have

J e', e,dz= f(fifa+giga)dz=O. (18)

Also, we can obtain appropriate boundary conditions by
integrating across an interface. We obtain the require-
ment that the quantity

Q2

2m '&y

g2

2m *i/y
(19)

be continuous in addition to 4 itself. The only way that
both conditions can be simultaneously satisfied is if the
quantity m'+y is the same on both sides of the inter-
face; if this is the case, both f and g are continuous. This
requirement is equivalent to stating that P„is constant
(i.e., independent of the material), which in turn implies
that the Bloch functions at k=0 are the same for both
materials. Note that these conditions yield continuity of
the current, as defined in Eq. (16), across the interface.

In the presence of an external potential, we can define
an energy- and position-dependent effective mass as fol-
lows:
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2m*y[E E—,—V(z)]
m(E, z) =m 1+

$2
(20)

We can then write the time-independent Schrodinger
equation in the following form:

E, + V(z) E—

fi d
2m'v'y dz

d
2m'v'y dz f

fi' gm(E, z)
2m

=0 . (21)

The lower component of this equation gives

m*i/y dfg=
m(E z) dz

(22)

Note that, in terrris of f alone, the current density be-
comes

iA, df df'
2m (E z) dz dz

(23)

and also that the continuity of g implies that
[1/m (E,z)](df/dz) is continuous across an interface.
As the nonparabolicity parameter y approaches zero, we
obtain m(E, z)~m*, and we recover the usual expres-
sions for j and the interface conditions appropriate for a
single-band treatment.

From the upper component of Eq. (21) we can derive a
second-order difFerential equation involving f only:

+ V(z)f =(E E, )f, (2—4)

where we have used Eq. (22). Again, this equation
reduces to the usual single-band e6'ective-mass equation
as y~O. Note also that, in terms of the "large" com-
ponents f i,f2 of the corresponding wave functions, the
orthogonality relation derived above becomes

42 i d 2

m (E„z)m(E2,z ) dz dz
(25)

The erroneous conclusion stated in Ref. 7 regarding the
orthogonality of solutions in the two-band model was de-
duced as a result of the authors' neglect of the second
term in Eq. (25).

The arguments presented above between Eqs. (9) and
(25) can be repeated for the light-hole band (with difFerent
choices of m * and y), in which one invokes a "fictitious"
conduction-band state lc') that represents the effects of
all other bands that interact with the light-hole band. In
this case, one can convert from an "electron" problem to
a "hole" problem in the usual fashion by (a) replacing E,
by E, +i' /(2m*y) in Eq. (13), (b) measuring energies
downward from the bottom of the valence band (i.e., re-
placing E E„byE, E), (c) chan—ging t—he sign of the
potential V(z) (appropriate for the positively charged
holes), and (d) taking the complex conjugate of the en-
velope functions. One then obtains all the results of Sec.
II B [with E, replaced by E, and V(z) replaced by—V(z)], where f is now interpreted as the "large" com-

ponent of the light-hole wave function and y is interpret-
ed in terms of the momentum matrix element P, , be-
tween the light-hole band ll ) and the fictitious conduc-
tion band lc').

C. Momentum matrix elements

& clp. Il ) =~/2/3 ™P„
~c ~l ye y l

m, (E„z)mi(E „z)
df~ dfi
dz dz

(26)

and

m~ I(
m, (E„z)mI(EI,z)

df,* df,
dz dz

(27)

where r is the ratio of momentum matrix elements:
r =P, ,„,/P„. (P,„.is the momentum matrix element be-
tween the fictitious conduction band and the fictitious
light-hole band. ) The primary difficulty with the above

Let us now consider optical transitions between eigen-
states of the empirical two-band Harniltonian for various
bands. In so doing, we now must keep track of the three
actual bands of interest (the conduction band c, the
light-hole band I, and the heavy-hole band h, which is as-
sumed to be parabolic), as well as the two fictitious bands
U' (which interacts with the conduction band in the mod-
el) and c' (which interacts with the light-hole band). I
give the results for matrix elements of the momentum
operator between two-band-model solutions for transi-
tions between light- and heavy-hole valence-band states
and conduction-band states, as well as for transitions
within the conduction band. Note that the empirical
two-band formalism applies only to transitions between
subband-edge states (i.e., k~~ is set to zero). Our results
are therefore not applicable to excitonic transitions or to
transitions in which anomalous parallel dispersion of sub-
bands plays an important role. '

The results presented here are expressed in terms of the
"large" components of the appropriate two-band model
solutions, i.e., in terms of the appropriate solutions to Eq.
(24). In what follows the magnetic quantum numbers M
for the various states are suppressed„ it is understood that
these quantum numbers are chosen to satisfy the selec-
tion rules b,M =0 for p, transitions (light polarized along
the quantization axis) and b,M = 1 for p, transitions (light
polarized in the plane of the layers). Using the momen-
tum matrix elements (and phase conventions) given in the
Appendix, we arrive at the following. For a light-hole to
conduction-band transition,
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expressions is that the quantity r is not known. However,
we would expect that the largest component of the ficti-
tious state lc') is the true conduction-band state lc ) and
that, similarly, lu ) is the largest component of lu') (i.e.,
(c'lc ) and (U'lu ) are close to unity). Thus we can argue
that r is close to unity. Furthermore, the terms involving
r generally make small contributions to the momentum
matrix elements. Thus we can set r =1 in Eqs. (26) and
(27) without considerable error in the matrix elements.
As y, and y, approach zero, Eqs. (26) and (27) reduce to
the usual single-band effective-mass expressions.

For a heavy-hole to conduction-band transition, we
simply obtain (clp, lh ) =0 (as in the single-band case)
and

differential equation

d fo
z +[V(u+zo) —V(zo)]fo=Eofo,

2mo du
(31)

f(z)=A(u)fo zo+ f B(u')du' (32)

which is the ordinary single-band envelope-function
equation with an effective mass mo. Our approach will
be to obtain solutions to the two-band differential equa-
tion, (24), by choosing a function similar to fo(u) except
that its amplitude and argument are slowly modulated.
Specifically, we seek an approximate solution to Eq. (24)
of the form

(clpi ")= P,.ff, fI, dz .

Finally, consider transitions between two conduction-
band states c2 and c, . We find

im, A df i
(c2lp, c, )= — f [m(E„z)] 'f2

Eo
mo=m(E, zo)=m* 1+ (33)

where Eo is chosen as

where A (u) and B(u) are taken to be slowly varying,
with A (0)=B (0)= 1, and where we identify

, df2—[m (E2,z) ]
' f, dz Eo =E E, —V(zo)—, (34)

im, A df,
&c~lpilci&= '- f [m(Ei, z)] 'f2

2 2 dz

(29)
and where u =z —zo, zo being an arbitrarily chosen point
at which the functions f and fo are taken to coincide.

If we substitute the approximate solution f (z) given by
Eq. (32) into the differential equation, Eq. (24), we obtain
the following:

, df2
+[m(E2, z)] ' f, dz .

dz

B2f
2tl1

iri2, 2A' m'B
2m m

(30)

Equation (29) reduces to the expected result' in the limit
of parabolic bands. On the other hand, no analog to Eq.
(30) is obtained in a single-band model (in which
(c2 lp, lc, ) =0); it predicts intersubband transitions in
quantum-well structures with light polarized in the plane
of the layers. This is, to my knowledge, a new result.

We can also calculate matrix elements of p between
valence-band states; however, since the empirical two-
band model does not account for the full structure of the
valence band, these matrix elements do not give correct
results in the limit of vanishing nonparabolicity. (For the
correct results in this limit, see, for example, Ref. 16.)

III. APPROXIMATE SOLUTIONS
IN A UNIFORM ELECTRIC FIELD

Consider the case for which the external potential V(z)
is linear in z; i.e., the structure of interest is in a uniform
electric field F, with V(z)= eFz. The followin—g argu-
ment shows that one can obtain approximate solutions to
the second-order differential equation, Eq. (24), that are
accurate provided that yI' is small.

Let us first examine the case of an arbitrary potential
V(z). Let the function fo(zo+u) be a solution to the

A"
2m

+ V(zo) —V(u +zo)+Eo fo=0 . (35)

Here m is m (E,z) as defined in Eq. (20). In the above,
the primes on A and B indicate differentiation with
respect to the variable u, whereas those on fo indicate
differentiation with respect to its full argument. If we
now neglect the A" and m'A' terms, Eqs. (31) and (35)
become identical, provided

1/2

(36)

and
1/4

(37)

With these choices, the term multiplying fo in Eq. (35)
vanishes identically.

The neglected quantity multiplying fo in Eq. (35) can
be written as
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fi

2m

A"
A

m'A' i' (4mm" —7m' )

mA 32m 3

single-band envelope-function method' ' can be carried
over directly to the empirical two-band model.

m y „7m*yV'
Sm

yF «—
1/2

(39)

(38)

This result reveals why the approximations made above
are particularly appropriate for a uniform electric field.
For an arbitrary potential, both terms in Eq. (38) are
nonzero, and the error in the approximate solution ob-
tained is of order y and increases with the strength of the
potential; the approximate solution is therefore not us-
able. For a linear potential, on the other hand, the Grst
term is zero, and the error in the approximate solution is
of order (yF) . We can obtain a rough condition for the
validity of this approximation by requiring that this error
be small in comparison with energies characteristic of the
structure under consideration. Setting V(z) = eEz a—nd
neglecting factors of order unity, we obtain

IV. APPLICATIONS OF THE MODEL

I now consider applications of the model to quantum-
well structures. For simplicity, I consider only a 200-A
rectangular GaAs/Alo 3Gao 7As quantum well; other,
more complex layered structures, as well as comparisons
with experimental data, will be dealt with in future publi-
cations. Effective masses (in units of the bare electron
mass) are taken to be 0.067 for GaAs (Ref. 20) and 0.0919
for Alp 3Gap 7As. ' The conduction-band offset between
the well and barrier materials is 302 meV, which is 70%%uo

of the band-gap diff'erence (as given in Ref. 22). For
GaAs, the value y=40 A is used, which is representa-
tive of values used previously. ' "' For Alp 3Gap 7As,
y =21.3 A, which is obtained from the interface condi-
tions (see Sec. II B).

Results for the five conduction-subband-edge levels of
the 200-A well as functions of the electric Geld are shown
in Fig. 1. The solid lines represent the results of the ana-
lytic approximation to the two-band model. The dashed
lines are corresponding results calculated in the single-
band approximation. In both cases, the methods of Aus-

A rough estimate for the confinement energy in a region
of thickness L is E,h„=Pi~ /(2m L ). Using this in
Eq. (39) and again neglecting factors of order unity, we
obtain

O
O
O

eFL «
2m

(40)

which states that the potential drop across the region of
interest must be small in comparison with the effective
energy gap. For example, given that m*=0.08m, and
y =80 A (an excessively large value), we require

0

L ((600 A if F= 100 kV/cm.
In applying this approximation to a real layered serni-

conductor structure, one must divide the structure into a
number of physical regions within which the condition
(40) is valid. Normally, these regions can be chosen to
coincide with the layers comprising the structure, but on
occasion (e.g., for abnormally wide quantum wells or
large electric fields) one must further subdivide certain re-
gions to assure that Eq. (40) holds within each region. In
each region, the solution is written as a linear combina-
tion of the two usual Airy-function solutions' to Eq.
(31), Ai and Bi, which are then modified in accordance
with Eq. (32). In so doing, one chooses the parameter zo
as the value of the coordinate z in the center of the re-
gion. For semi-infinite boundary layers, one chooses zp
as the value of z at the boundary. From this point on, the
implementation is essentially identical to that for a
single-band envelope-function problem. A transfer-
matrix method can be used to propagate solutions from
one region to the next, using the matching conditions
given by Eq. (19). The fact that there are no true eigen-
states in an electric Geld for finite potential barriers might
present difhculty, but methods that have been devised
previously to deal with this problem in the context of the

~o
5 o

O

LJ

LLJ

Q O
O

LJ
I

C3

CQ
CQ

O

O
O
O

t

0.0 20.0 40.0 60.0
FIELD (kV/cm)

80.0 100.0

0
FEG. 1. Electron-subband-edge energies for a (200 A

GaAs)/Alo 3Gao 7As quantum well as functions of electric field,
calculated using the analytic approximation to the empirical
two-band model (solid lines) and the single-band envelope-
function approximation (dashed lines). The zero of energy is
taken as the conduction-band-edge energy at the center of the
well.
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velope function (solid lines) and the single-band envelope
function (dashed line) for the n =4 subband of the well.
The horizontal line shows the subband-edge energy for
this level and also serves as a zero for the envelope func-
tions. In Fig. 3(b) the corresponding probability densities
for the two-band model (solid line) and the single-band
model (dashed line) are compared. While the two proba-
bility densities are similar, the probability density for the
two-band model has no zeros within the well. This
feature is characteristic of any multiband effective-mass
treatment of quantum wells and superlattices.

I have also calculated the transition matrix elements
for electron-hole transitions between the various
conduction-band and light- and heavy-hole subbands ac-
cording to Eqs. (26)—(28). Figure 4(a) shows the squares
of the matrix elements for certain An %0 HH-CB transi-
tions given by Eq. (28) [without the factor ( mP,„/tr)t] as
solid lines. For comparison, the corresponding results
from a single-band effective-mass calculation are shown.
Similarly, Fig. 4(b) shows the squares of the matrix ele-
ments for LH-CB transitions given by Eq. (27) [without
the factor (m, P,„/fi) /3]. These quantities are propor-
tional to the oscillator strengths for light polarized paral-
lel to the confining layers. For the b, n =0 transitions (not
shown), there is very little difference between the two-
band results and the single-band results. Even for the

O

Z c4
M O—

(/)
OV o

U)o 20.0 40.0 60.0
I

80.0
I

100.0
FIELD (I V/cm)

(O)

M
CO

O

CV

M o—
CL

U)
o O0 o

o I

20.0 40.0 60.0
I

80.0 100.0
FIELD (kV/cm)

FIG. 4. (a) Oscillator strengths for certain b,n%0 HH-CB
transitions in the 200-A quantum well as functions of electric
field, with light polarized parallel to the layers. Solid lines,
two-band results; dashed lines, single-band results. (b) Corre-
sponding results for LH-CB transitions.
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FIG. 5. Resonance widths [arising from field-induced tunnel-
ing (Ref. 21)j for excited conduction-band states of the 200-A
quantum well as functions of electric field. Solid lines, results of
the analytic approximation to the empirical two-band model;
dashed lines, results of the single-band envelope-function ap-
proximation.

V. CONCLUSION

I have studied in detail the properties of an empirical
two-band model for the electronic structure of quantum

b,n%0 transitions, the differences between the two sets of
calculations are minor; thus the oscillator strengths are
not very sensitive to the presence of nonparabolicity.

To further illustrate the efFects of nonparabolicity on
the electric-field dependence of the quantum-well levels,
Fig. 5 shows the calculated resonance widths as functions
f field for each of the excited states of the 200-A well.o e

~ ~ 0 fThese widths are obtained naturally in the phase-shi t
method as the full widths at half maximum of the calcu-
lated densities of states and are proportional to the transi-
tion rates for field-induced tunneling out of the quantum
well. In Fig. 5, solid lines are the two-band results and
dashed lines correspond to the single-band approxima-
tion. Large difFerences between the two models are ap-
parent; for the n =5 and 4 states, these difFerences arise
pnmarimarily because of the differences in the calculated en-
ergies obtained in the two models. For the n =2 state,
the tunneling rate is actually larger in the two-band mod-
el than in the single-band model, even though the calcu-
lated energy is slightly lower. This is because the
effective mass in the A1Q 3GaQ 7As barrier decreases as the
energy decreases below the AlQ 3GaQ 7As conduction-
band edge, which enhances the tunneling probability.
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wells and superlattices. The general properties of solu-
tions to the model were examined in an arbitrary external
potential V(z). Within the model, one can define proba-
bility and probability current densities such that a con-
tinuity equation is obeyed. Also, solutions to the time-
dependent Schrodinger equation corresponding to
different energies are orthogonal, contrary to the claims
of Persson and Cohen. Momentum matrix elements for
interband and intersubband transitions were calculated,
and the pair of first-order differential equations resulting
from the model was recast into an effective second-order
Schrodinger equation with an energy- and position-
dependent effective mass.

For the case where V(z) is linear, an approximate solu-
tion to this equation was obtained in which solutions to
the corresponding single-band effective-mass equation are
modulated by slowly varying functions. In other words,
in this approximation the effect of the position depen-
dence of the effective mass is to distort the single-band
solutions. As an example of an application, the
conduction-subband-edge energies for a (200 A
GaAs)/Alo 3Ga07As quantum well were calculated as
functions of the electric field and compared with corre-
sponding results based on the single-band envelope-
function approximation. The high accuracy of the ana-
lytic approximation was verified by comparing these re-
sults with the results of numerical integration of the
effective Schrodinger equation. Envelope functions and
oscillator strengths for interband transitions were calcu-
lated using the two-band model and compared with cor-
responding results obtained from a single-band calcula-
tion. I showed large differences in the calculated rates for
field-induced tunneling out of the quantum well obtained
from the two-band and single-band models.

There are few cases in the literature in which nonpara-
bolicity effects have been incorporated into quantum-well
calculations in an electric field. Stevens et al. replaced
the linear potential with a large number of steps in which
the potential is constant and used an energy-dependent
(but position-independent) efFective mass in each step.
While such an approach can, in principle, give good re-
sults, the number of steps required to do so may be very
large. In a simpler treatment, Campi and Alibert re-
tained the linear potential, but used an effective mass that
was energy dependent but constant in each layer. In my
opinion, this approach will lead to incorrect results for
the electric-field dependence of the subband-edge ener-
gies.

The results presented here are easy to incorporate into
a computer code for calculating quantum-well and super-
lattice subband energies, since they use the well-known
solutions for the single-band envelope functions in an
electric field. Insofar as the accuracy of the model is con-
cerned (in comparison with more exact and sophisticated
treatments), we can rely on the comparison by Yoo,
Ram-Mohan, and Nelson" (at zero electric field) of the
empirical two-band model results with the results of a full
eight-band calculation. In Ref. 1 j. , conduction-
subband-edge energies obtained from these models agreed
to considerably better than 1 meV for a wide range of
quantum-well widths; the light-hole subband-edge ener-

gies agreed to about 4 meV, for the most part. These
difFerences are considerably smaller than the shifts arising
from nonparabolicity, and so the empirical two-band
model should give a good first-order account of these
effects. Also, the two-band model accounts well for the
so-called mass renormalization effect in the Al„Gai As
barriers which was experimentally demonstrated by Bro-
zak et al. Thus the model should be a good one for
studying effects of coupling between two or more quan-
tum wells on the electronic and optical properties of such
coupled systems.
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APPENDIX: BASIS STATES
AND MOMENTUM MATRIX ELEMENTS

In the following, I show how representations of the
double group can be constructed from those of the single
groups. Throughout the discussion, I use the isomor-
phism between representations of the Td and OI, point
groups and those of the full rotation group R3. Thus the
notation s & is used to represent a basis function for the
conduction band (I, representation of Td ) and x &, ~y &,

z & as basis functions for the valence band (I ~ represen-
tation). Where there exist corresponding representations
of the point group and the rotation group, phases are
chosen in such a way that the Condon and Shortley phase
convention usually invoked in connection with
rotation-group representations is valid also for the point-
group representations. For the double-group representa-
tions,

~
J,M &-type basis states are chosen, with J=

—,
' for

I 6 and I 7 and J=—', for I 8. I assume that these latter
states are constructed from the single-group representa-
tions as follows:

~I . ,M&= g C(L, ,',J;M —p, p)~I, ,—M—p& ~
—,',p&,

(A1)

where, in the above, the I 6 state has L =0 (I
&

single-
group representation) and J=—,'; the I 7 and I s states
have L =1 (I 5 single-group representation), with J=—,

'

and —,', respectively.
Writing the states out in full produces the following

basis functions for the single-group representations:

(A2)



EMPIRICAL TWO-BAND MODEL FOR QUANTUM WELLS AND. . . 11 279

1- ( lx &+ily & ), M =1
2

II „M&=
~ &, M=o

1

V'2
—(lx &

—ily &), M = —1

(A3)

plicitly. These are to be understood implicitly in the
main text. )

We can now write all the relevant matrix elements of
the momentum operator in terms of the quantity Pcv
defined by Eq. (2):

for the split-off band

1—(~ 1&+~xl&+idyl&), M=+ —'
v'3 2

~r„M&=. (A5)
1

v'3 Ixt &+ily 1'&), M= ——',
2

and for the light-hole ( ~M~ = 1/2) and heavy-hole
( ~M~ =3/2) bands

and for the double-group representations we obtain, for
the conduction band,

~s1&, M=+ —,
'

~r, ,M&=
~ &&

(A4)

le e= —&1/3 P,„,
«., +-,'Ip, II „+-,'

&
=«, , ——,'lp. ll „——,

'
&

lme=+2/3 P„,
«,, +-,'lp, II „——,

'
&
= —«., ——,'Ip, II.„+-,'

&

lme=&2/3 P„,

(A7)

(A8)

(A9)

1—( x 1'
& +i y 1'

& ), M = + —,
'

2

&2/3
~
z t &

—v' I /6(
~
x l & + i ~y l & ),

~r, M&=
&2/3~z l &+&I/6( ~x 1 &

—
i~y g & ),

1—(~x$& —i~y$&), M= —
—,
' .

M=+ —'
2

2

& I,, + —,
'

Ip, I
I „——,

'
&
=

& I,—
—,
'

I p I
I,+ —,

'
&

im.,= —V 1 /3 P„,
&r,, +-,'~p, ~r„+-',&=&r,, —,' p, ~r„——', &

im,
CV

(A10)

(Al 1)

(A6) where

(Note that the notation here differs from that of the main
text in that the group representations are displayed ex- p+I =+ —(p +tpy) .v'2 (A12)
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