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Current-voltage instabilities in superlattices
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A simple model of a series of circuits comprising a nonlinear resistor and a capacitor in parallel is sug-
gested for a description of I-V-characteristic instabilities and the formation of high-field domains in su-

perlattices. The model is justified if subbands in a superlattice are destroyed by a high field or scattering
and the transport is sequential tunneling. In the case of a wide second subband, the superlattice breaks
down in two parts. In the first, the transport is sequential tunneling, but in the second part, electrons
propagate in the second subband and the model breaks down there. Simple physical arguments show
that the I-V characteristics of such a superlattice has to have an S shape, which leads to oscillations and
more complicated nonstationary phenomena.

I. INTRODUCTION

Since the pioneering paper of Esaki and Chang, ' it is
well known that if a semiconductor-insulator superlattice
is placed in an electric field so high that the average elec-
tric potential drop per one period of the superlattice is
larger than the width of the first subband, the uniform
potential distribution becomes unstable and a high-field
domain is formed. The instability and formation of such
a domain are attributed to a negative conductance in-
herent to a semiconductor with narrow bands like that
realized in a superlattice. A simple phenomenological
theory predicts the formation of high-voltage domains
propagating with electronic drift velocity in the case of
N-shaped I- V characteristics and high current domains in
the case of S-shaped I-V characteristics. ' Usually the
origin of negative differential resistance is ascribed to
some features of the band structure. This approach
presents some problems when applied to the formation of
high-voltage domains in superlattices. The main
dimculty is that the band structure that accounts for neg-
ative differential conductivity appears to be destroyed in
the region of the domain. The domain is usually thought
of as such a large voltage drop across one of the barriers
in the superlattice that it surpasses the width of the first
subband and can be equal to or of the order of the gap be-
tween the first and the second subbands. ' ' Another
feature that prevents a direct analogy between a continu-
ous medium with negative differential resistance and a su-
perlattice is that a high-field domain in a continuous
medium drifts while no drift of such a domain has been
detected in superlattices.

In the present paper the formation of high-field
domains in a superlattice with sequential tunneling is ex-
plained with a simple phenomenological model. This
model allows one to see clearly the physical reason for
the N shape of the I-Vcharacteristics and explains the bi-
stability and hysteresis detected in a long-enough super-
lattice. The model is not adequate if the superlattice is
designed in such a way that the transport in the second
subband is coherent rather than sequential tunneling.
Simple arguments show that in this case one can expect

an S-shaped I-V characteristics. The theory predicts
some nonstationary phenomena.

In Sec. II the stability and the shape of the I-V charac-
teristics in the case of sequential tunneling is analyzed.
In Sec. III superlattices with a wide second subband,
where tunneling is coherent, are considered.

II. N-SHAPED I- V CHARACTERISTICS
FOR SEQUENTIAL TUNNELING

The simplest way to calculate the I-Vcharacteristics of
a superlattice is to model it by a series of N identical cir-
cuits consisting of a nonlinear resistor and a capacitor in
parallel (Fig. I). It is necessary to make a few remarks
about the justification of such a model. The first one con-
cerns the possibility of modeling a superlattice by a series
of circuits. Such a model is justified when the transfer of
an electron across the superlattice can be considered as a
sequence of incoherent tunneling events; instead of sub-
bands one has to consider electf'on levels in separate wells
of the superlattice. This is the case if either the electric
potential drop over one superlattice period or the energy
uncertainty due to scattering, irilr, exceeds the width of
the first subband ' " (here ~ is the relaxation time). In
the first case the electric field destroys the band structure
across the superlattice, and the transfer of electrons
across the barrier has to be accompanied by scattering.
The coherence of the tunneling is not recovered when a
high potential drop per period leads to a resonance be-
tween the first level on one side of a barrier and the
second level on the other side. Levels in the wells be-
tween the barriers are not equidistant and there is no res-
onance between the second and the third levels on
different sides of a barrier if there is one between the first

FIG. 1. Equivalent circuit for a superlattice in the case of
sequential tunneling.
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FIG. 2. Typical I-V characteristics of a superlattice cell in
the case of sequential tunneling. The peak corresponds to the
resonance between the first levels in the wells on both sides of a
barrier. The sharp increase of the current at high voltage corre-
sponds to the resonance between the first level on one side of the
barrier and the second level on the other side. l, and U, are the
current and voltage in the maximum of the first peak, and II,
and Ub are the current and voltage in the minimum between the
resonances. The values U&, U2, and U3 show possible voltage
drops across the barrier for a given current across the superlat-
tice.

and the second levels. This means that after the tunnel-
ing from the first level to the second level an electron has
to relax down to the first level emitting a phonon or pho-
ton before the next tunneling. A high potential drop in
the region of a high-field domain can provide a resonance
between the first and the second levels across only one of
the barriers. The coherence of tunneling in the second
subband, where electrons come after this barrier, is as-
sumed to be destroyed by scattering (another case is con-
sidered in Sec. III).

The case of a short relaxation time implies that scatter-
ing is so strong that it destroys the coherence of tunnel-
ing events even for a low electric field. It is important
that the uncertainty of the energy of the motion across
the superlattice arises not only because of inelastic
scattering but also due to the elastic scattering since the
latter can transfer the energy between different directions
of motion.

The second remark is related to the specific choice of
the equivalent circuit for one period of superlattice. A
physical reason for this choice is very clear. A tunnel
junction presents a resistance for a dc current and if tun-
neling can be neglected the junction is equivalent to a
capacitor. The I Vcharac-teristics of the resistor (Fig. 2)
is identical to that for a single tunnel junction separating
two 2D electron gases. Equivalent circuits consisting of
resistors and capacitors has been used for tunnel
diodes. ' ' Although theoretical evaluations of the con-
ductance frequency dependence for a tunnel diode (see,
e.g., Refs. 19 and 20) show a more complicated behavior
than that of two cells consisting of a resistor and a capa-
citor in parallel, this may result from the fact that these
authors were interested mainly in the case of coherent
but not sequential tunneling. Here the simple phenome-
nological model is used for superlattices for a few
reasons. The main interest of the present paper is in re-
sults concerning possible regimes and their stability for
which thin details of dynamics due to the vicinity of the
resonance do not make a difference. Also the model is

simple enough to allow one to study not only linear but
also nonlinear dynamics of the superlattice.

The last remark concerns the first and the last (in the
direction of the electron transport) barriers, which play a
specific role in a superlattice. The resistance of the first
barrier is nonlinear due to the specific role of conserva-
tion laws in the tunneling between 3D and 2D electron
gases. ' The scale of this nonlinearity is different from
that of resonant tunneling and in most cases the first bar-
rier does not change the behavior of the superlattice. The
resistance of the last barrier is linear if the voltage drop
across it is small compared to the height of the barrier.
For these reasons it is suitable to consider the first and
the last barriers not as parts of the superlattice but as
resistors belonging to an external circuit.

For the study of the stability of the superlattice the fol-
lowing features of the I-V characteristics in Fig. 2 are im-
portant. The I-V characteristics has two peaks corre-
sponding to the resonant tunneling from the first subband
of the two-dimensional electron gas (2DEG) on one side
of the barrier to the first and the second subbands of the
2DEG on the other side. The second peak is higher than
the first one and only a part of it is shown in Fig. 2. The
values of the voltage and current at the maximum of the
first peak are U, and I„and at the minimum between the
first and the second peaks are U& and Ib, respectively.
The dynamics of the circuit shown in Fig. 1 is described
by the equations

dV„
C +J(V„)=I,

dt
n=N

V„=V,
n =1

n 1p2p ~ ~ ~

(2)

du~
C +J'( U„)u„=5I,

dt
(4)

g u„=0.
n=1

where V„ is the voltage drop across the nth barrier. Sta-
tionary states of the superlattice can easily be found if
one draws a line I =const on the plot showing the I-V
characteristics of one cell (Fig. 2). The crossings of this
line with the I- V characteristics, UI, U2, and U3
( U, & U, & Uz (U„( U3) show possible voltage drops
across one barrier for a given current. Until the total
voltage drop V (NU„a11 the cells are the regime corre-
sponding to the value UI. This regime becomes unstable
when V surpasses the value NU, . In this case the voltage
drop on one or a few barriers takes the value U2 or even

U3 provided that

(N —1)U, (Ig )+ Ug & NU, ,

where U, (I& ) is the value of U, corresponding to the
current Ib. The most important criterion for the choice
among these regimes is their stability. For the stability
study, Eq. (1) has to be linearized by a substitution
V„=U„+u„, where U„= UI, Uz, or U3, u„ is small, and
I =J( U„)+5I. After linearization, Eqs. (1) and (2) take
the form
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Q)Qp ' Q~ + ' +

Qi Q~
=0

and a„=CA,+J'( U„).

Here, J'(U„) is the derivative of J(U„) with respect to
U„. The solution of Eqs. (4) and (5) is proportional to e '

where k satisfies the equation

First of all, if U„ takes the values Ui or U3, only then
are all Q„positive for a positive A, . This regime is stable,
which goes along with an intuitive assumption that a cir-
cuit containing elements with positive differential resis-
tances is stable. For the case when k of the voltage drops
U„ take the value U2 and l others take the value U3,
where k + l & N, Eq. (5) is reduced to

[CA+J'( U, )] " ' '[CA+ J'( U2)]" '[CA+ J'(U3)]'

X [NC A. +[(k+l)J'(U, )+(N —k)J'(U2)+(N l)J'(—U3)]CA,

+(N k l—)J'(U—, )J'(U, )+kJ'(U, )J'(U, )+lJ'(U, )J'(U, )}=0. (7)

If k & 1, the second factor in Eq. (7) gives A, &0, so that
the state is unstable. States with k =1 can sometimes be
stable. For instance, if I =0, then the last factor in Eq.
(7) gives

A, , = —J'( U3 )/C,
A, ~

= —[J'( U, ) + (N —1 )J'( U2 ) ]/NC,

and both values can be negative if J'( U, )

& (N —1) J'( U2 ) ~. This result shows the simple fact that
a circuit formed by a nonlinear resistor with a negative
differential resistance in series with another resistor with
a large positive differential resistance can be stable. But
for a superlattice with a large N such a situation is rather
exotic and, in general, a state with negative differential
resistance of one of the resistors is unstable. The nature
of this instability is related to nonuniform Auctuations. If
as a result of such a fluctuation U„=U3 increases, then
the tunneling current across the cell decreases. In a long
superlattice the total resistance is large and this deviation
does not lead to a substantial change of the total current.
That is, the decrease of the tunneling current in the cell is
accompanied by an increase of the displacement current,
which builds up the charge on the cell capacitance and
further increases the voltage. The obtained results sup-
port a picture that is usually implied in studies on super-
lattices. According to this picture only one stationary
state, U„=V/N, is possible till V &NU, . When V sur-
passes this critical value an instability develops. The in-
stability leads to an increase of the voltage drop across
one of the barriers while the drops across the others de-
crease. This process eventually draws the superlattice to
a stable state where the differential conductance of all the
barriers is positive. Further increase of V leads to the
jump of one more U„ to U3 and so on, which results in an
oscillatory behavior of the I-Vcharacteristics. ' ' '

It is important to note that in the model considered
here there is no space correlation between different cells
of the superlattice and the spatial arrangement of the
high-field domains cannot be determined. Actually any
correlation is destroyed in sequential incoherent tunnel-
ing. I am not aware, as well, of any experimental evi-
dence for a specific arrangement of the barriers with a

large voltage drop. That is, in the region
NU, & V & NU3(I, ) the superlattice can contain a few
short high-field domains instead of a long one. Without
correlation, the arrangement of the domains depends ei-
ther on the initial stage of instability development and is
random, or on features of the specific structure where the
barriers may not be identical. Any correlation of the
domains in a superlattice with identical barriers (with the
accuracy of the order of electron energy uncertainty) can
result only from the coherence of the transport in the first
or higher subbands.

In the same framework model it is possible to give a
simple explanation of the bistability and hysteresis ob-
served in superlattices by Vuong, Tsui, and Tsang.
When the voltage increases, the threshold for the instabil-
ity of the state with k of the voltage drops U„equals U3
and other X —k of U„equals U& occurs at
V=(N —k)U, +kU3(I, ). As a result of the instability,
the voltage drop in one more cell jumps from U, to
U3 (Ig ). If now the voltage goes down, the new state is
stable at least until (N —k —1)U, (I&)+(k+ 1)U&. This
threshold is lower than the first one by

AV=(N —k)[U, —U, (Ib)]

+k [ U3 (I, ) —Ub ]+ U, (Ib ) —Ub .

The difference U, —U, (I& ) is of order of the width of the
first resonance while the difference U3(I, ) —Ub is of or-
der of the gap between the first and the second level, i.e.,
substantially larger. This means that the range of the bi-
stability has to grow with k. Such a feature was detected
in the experiment.

This mechanism for bistability is the same as in a non-
linear resistor with an ¹ haped I-V characteristics, like
that in Fig. 2, in series with a linear resistor. The role of
the latter is played by the cells of the superlattice, which
are in the regime U„=U& or U3.

Essentially the same mechanism of bistability was ob-
served in double-barrier structures. A charge build-
up used for the explanation of this bistability is
equivalent to the charging of the capacitors in two cells.
The mechanism of negative differential conductance in
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this case was shown by Luryi. ' However, a substantial
complication in the modeling of double-barrier structures
by a series of circuits like in Fig. 1 is related to the impor-
tant role of the depletion and accumulation layers, which
can lead to additional nonlinearity of the effective resis-
tances and capacitances.

III. THK MIX OF SKQUKNTIAI.
AND COHERENT TUNNELING

AND S-SHAPED
I- V CHARACTERISTIC

The model considered in the preceding section de-
scribes the case when the tunneling between the cells of a
superlattice is incoherent. Historically the first studied
case was the opposite one. I-V characteristics is N-
shaped in both of these cases. A quite different shape of
the I-V characteristics can be obtained in the intermedi-
ate case. It can be realized if the first subband is nar-
rower than the energy uncertainty due to scattering but
the second one is much wider. Even a simple superlattice
of square wells separated by square barriers is a rather
fiexible system with three adjustable parameters (the
period, the ratio of the well and barrier widths, and the
height of the barrier), which can be chosen to satisfy
these conditions. For a small voltage, when the regime is
stable, the I-V characteristics of this superlattice is quali-
tatively the same in both cases. When the total voltage
surpasses the first threshold, the voltage drop across one
of the barriers jumps from U, to U3(I, ). Electrons tun-
neling across this barrier come directly to a wide second
subband (Fig. 3). The resistance of the superlattice for
the second subband transport is much smaller than for
sequential tunneling through the first levels. Therefore
the further increase of the voltage eventually leads to the
drop of the total resistance of the superlattice which
means an S-shaped I-V characteristics. The details of its
behavior depend on the mean free path of the electrons in
the second subband with respect to the relaxation down
to the first level. The most effective relaxation mecha-
nism, emission of LO phonons, can be excluded if param-
eters of a superlattice are chosen in such a way that the
gap between the first and the second subband is less than
the energy of LO phonons. Then a number of cases is
conceivable.

The simplest case appears when the mean free path is
longer than the length of the superlattice. When the volt-

age applied to the superlattice surpasses its threshold
value, NU„ the jump of the voltage on the kth barrier, in
the direction of the electron Aow, from U, to U3 breaks
down the superlattice in two parts (Fig. 3). The first con-
sists of the first k barriers, where the electron transport is
sequential tunneling and the threshold voltage for the in-
stability of this part is (k —1)U, +U3(I, ). The second
part consists of the last N —k barriers, where electrons
flow in the second subband and the resistance and the
voltage drop are very small compared to the first part. If
the first threshold voltage for the whole superlattice,
N U„ is larger than the threshold for its first part,
(k —1)U + U3(I, ), then after the value V=AU, is sur-
passed the first part of the superlattice is also unstable (it
breaks down in two smaller parts and so on). This pro-
cess terminates only when nearly all the applied voltage
drops across the first barrier. After tunneling across this
barrier, electrons come to the second subband. The resis-
tance of the superlattice is determined by this barrier and
is smaller than the resistance of the superlattice just
below the threshold because it is smaller than the resis-
tance of the same barrier below the threshold.

If (k —1)U, + U3(I, ) )N„ then the first part of the
superlattice is stable above the first threshold. Further
increase of V leads to a breakdown of this first part. The
instability threshold for a new part with sequential tun-

(cj

2

FIG. 3. A high-voltage domain in the case of a wide second
subband. Upstream from the high-voltage domain electrons
sequentially tunnel through the first levels in the wells (1). After
tunneling across the high-voltage domain electrons come to the
wide second subband (2).

FIG. 4. A voltage distribution in a superlattice in the case of
a wide second subband (a) below the first threshold, (b) after the
first threshold, and (c) after the second threshold. In the last
two cases the superlattice is broken down into the region with
the tunneling through the first levels (1), the high-voltage-
dornain (2), and the region with the second subband transport
(3).
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neling is lower than (k —I ) U, + U3(I, ) and again the in-
stability develops until the whole applied voltage drops
across the first barrier.

The voltage U3(I, ) —U, corresponds to the separation
between the first level and the bottom of the second sub-
band. Apparently, after the first or the second break
V ) U3(I, )

—U, . On the other hand, the regime with the
whole voltage drop on the first barrier changes back to
the regime below the threshold when this voltage be-
comes smaller than the separation between the first level
and the second subband. This means that there is a hys-
teresis of the I-V characteristics corresponding to its S
shape.

It is well known that a circuit consisting of a device
with an S-shaped I-V characteristics in parallel with a
capacitor can be used as a sweep generator. According to
the above arguments a superlattice could be used as the
main part of such a generator. Generation of high-
frequency oscillations was demonstrated on double-
barrier structures' ' ' and can also be obtained in
superlattices with an N-shaped I- V characteristics. But
in those cases a heterostructure device works as an
amplifier of one or a few resonator modes. In the case of
a superlattice with an S-shaped I-V characteristics no
resonator is necessary and the frequency of the oscilla-
tions depends on the features of the I-V characteristics of
the superlattice and the external capacitance.

The most complex and, maybe the most interesting
case, is that of a superlattice with a wide second subband
such that its mean free path is shorter than the length of
the superlattice. In such a case when the voltage is high
enough to switch electron transport to the second sub-
band a low resistance domain is formed in which the elec-
trons propagate in the second subband. The state with
such a domain is unstable because of a high voltage drop
across the other part of the superlattice. There is no
correlation of tunneling in the direction against the elec-
tron motion. But if a new domain starts to be formed not

very far from the first one in this direction, that new
domain can overlap the first one. As a result the tail of
the first domain disappears due to the relaxation of elec-
trons down to the first level, which is equivalent to the
shift of the domain (Fig. 4). This shift takes place in the
direction opposite to the direction of the electron motion,
contrary to the analogous drift of domains in a continu-
ous medium with negative differential conductance. The
phenomenon can be much more complicated because of
the formation of domains not only upstream from the
original one but also downstream. The overlap of two
domains can also lead to the transfer of electrons to a
third subband. Thus, in this case one can hardly expect
regular oscillations but rather a nonstationary regime
with a wide frequency spectrum. This nonstationary re-
gime is intrinsic to a superlattice in a sense that it is not
necessary to have any external device for its excitation
except a voltage source.

IV. SUMMARY

The present work suggests a simple phenomenological
model of a superlattice justified in the case of sequential
tunneling. The mode1 explains the formation of high-field
domains and multistability of I-V characteristics. In the
case of a wide second subband, the model breaks down
for that part of the superlattice where transport takes
place in the second subband. Qualitative consideration of
this case shows that the I-V characteristics has to have an
S shape, which leads to oscillations and more complicat-
ed nonstationary phenomena.
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