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Resonant magnetoexcitons and the Fermi-edge singularity in a magnetic field
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The e8'ect of the magnetic field 8 on the Fermi-edge singularity in optical properties of asymmetric
quantum wells is investigated using a two-subband Mahan —Nozieres —De Dominicis Hamiltonian. The
emission spectrum for carriers in the lowest subband is strongly enhanced by excitonic transitions in-

volving higher subbands. The modulation of the emission spectrum is almost periodic in 1/8.

The problem of optical transitions in the presence of an
electron gas has been extensively studied. ' Recent in-
terest concentrated on artificially structured semicon-
ductor microstructures with a tunable electron density:
gated heterojunctions, modulation-doped quantum
wells, and double-barrier resonant-tunneling struc-
tures. The enhancement of the emission spectrum in the
vicinity of the Fermi level [Fermi-edge singularity (FES)]
has been observed by Skolnick et al. It was argued that
the localization of holes allowed the observation of FES.
For extended hole states the FES is expected to be re-
duced in the emission spectrum. Recent experiments by
Chen et al. on asymmetric quantum wells enhance the
FES by coupling it with excitons associated with higher
subbands. The large enhancement of the emission spec-
trum in the vicinity of the Fermi level has been shown ex-
perimentally and calculated theoretically. ' The applica-
tion of the magnetic field led to dramatic changes in the
emission spectrum in the energy range corresponding to
the overlap of the magnetoexciton associated with the
second subband and the Fermi level in the first subband.

We present here a calculation of the emission spectrum
in the magnetic field that takes into account the details of
the subband structure, the excitonic efFects, and the
shakeup of the Fermi sea for a localized hole in a valence
band. Our goal is to understand the effect of the magnet-
ic field on the FES and how magnetoexcitons associated
with higher subbands can lead to strong oscillations in
the emission spectrum which are almost periodic in 1/B.

Let us consider a quantum well in a perpendicular
magnetic field 8 in a symmetric gauge. The magnetic
field provides a parabolic confining potential in the plane
of the well and all states are localized. The single-particle
electron states

~ m, n,j ) in the conduction band are
classified by three quantum numbers: the radial quantum
number n, the angular momentum number m, and sub-
band quantum number j. The energy spectrum is

E„J=EJ+fico, [n +(m + ~m~)/2+ ~ ], where E are.
subband energies and co, =eB/Mc is the cyclotron fre-
quency, with M being the electron mass. Each subband j
forms a separate Landau ladder. The Landau ladders in
higher subbands overlap with Landau ladders in lower
subbands. This single-particle basis is our final-state basis
in the emission process. For interband emission studies
the sample must initially contain a hole in the valence

band. We treat the hole as localized at the origin of the
plane of the well and at some position zI, in the perpen-
dicular direction. The potential of the positively charged
hole is spherically symmetric hence the angular momen-
tum of an electron remains a good quantum number in
the presence of the hole. The single-particle states and
energies for electrons in the quantum well in the presence
of the hole potential are denoted by ~m, X) and E,A, .
This is an initial basis for the calculation of emission.
The hole potential introduces a mixing of states with
different subband j and radial n quantum numbers. In
each angular momentum channel m of the initial basis
the energy spectrum is discrete, spaced on the order of
cyclotron frequency, and nondegenerate. This is to be
contrasted with the situation in the absence of a magnetic
field where a continuum of scattering states is associated
with each angular momentum channel. Hence the mag-
netic field effectively reduces the dimensionality of the
problem.

Prior to the emission of a photon, the (X+ 1 )-electron
system in the presence of a hole is in the lowest energy
state

~f ). The ground state
~f ) is a product of the Slater

determinant of initial single-particle states ~m, A, ) and a
hole state ~h ). The emission spectrum E(co) involves the
emission of a photon with frequency m with simultaneous
annihilation of a valence hole and one of the electrons
from the conduction band. The annihilation of the hole
changes the potential seen by all electrons in the conduc-
tion subbands which makes the transition a many-body
effect. The emission spectrum E(co) is given by a Fourier
transform of the real-time current-current correlation
function E(t): E(co)=2Ref 0 dt e ' 'E(t). The
current-current correlation function E(t) is given
b 1 10 12

E(t)= g M z(f~e' 'a zc e ' 'a .&c~f )M .z . (l)
mA, , m'A, '

Here a & creates a conduction-band electron in a state
~
m, A, ) with energy E z and c creates a hole in a state

~h ) with energy cot, . The M &=P„(m, l, ~h ) is the inter-
band transition-matrix element, P„ is an interb and
momentum matrix element, and ( m A, ~h ) is the overlap
between the electron and hole states. Only zero angular
momentum states contribute to emission: M & =M&5
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We shall omit the angular momentum index m whenever
only zero angular momentum states are involved.

The dynamics of the switching off of the hole potential
during the emission process is incorporated in the
Mahan —Nozieres —De Dominicis (MND) Hamiltonian:

H=g E ia ia i+(c c —1) g Vi i„a i,a i;+cohc c .m

A, , m mA, , A,

(2)

The potential V&&, to be specified later, scatters elec-
trons between different electron states after the hole has
vanished. Integrating out the hole degree of freedom in
Eq. (1) gives the current-current correlation function
E (t) in terms of matrix elements of the final-state Hamil-
tonian HI and X electron states ~%'i ):

E(t)=e "e ~ g Mi &qIi~e ~ ~~II' &Mi
A, , A,'(p

H& is the final-state Hamiltonian with a repulsive ( —V)

hole potential: HI=+ z i IE &5„i„—VPi Ia ia
and the electron state ~%i ) is a Slater determinant of all
occupied states in the Fermi sea except for the zero angu-
lar momentum state

~

A, ) . The missing state was annihi-
lated in the emission process. Hence ~%i) describes a
hole in the zero angular momentum state ~A. ) of the Fer-
mi sea. The energy EI is the ground-state energy of the
(N + 1)-electron system in the presence of the hole, and p
is the highest occupied level.

The real-time current-current correlation function can
be evaluated exactly following the work of Combescot
and Nozieres. " The essence is to evaluate the time evo-
lution of the vertex corrections G associated with the hole
in the Fermi surface and self-energy C corrections to the
"missing" valence-hole potential. This is done in the final
basis ~m, n, j ) for emission, i.e., for Landau states in the
absence of the valence hole. The details have been given
in Ref. 10 and we only give the final results here:

'I Ij,nj, n

(4)

The matrix elements M. „are proportional to the overlap
of the electron and hole wave functions
M~ „=Mo&0,n, j~h ), where Mo is a constant. The vertex
(G) functions satisfy a set of nonlinear differential equa-
tions in each individual spin and angular momentum
channel nz:

G, „(t)= iE, „G,„,' „.(t)—m

Gm (t)E Gm (t)
I , n n, g, n, g

Only the zero angular momentum channel contributes to
the emission spectrum. The self-energy corrections C(t)
are, on the other hand, determined by vertex corrections
in all angular momentum channels as all states are shak-
en up by the disappearance of the charge of the valence
hole:

C(t)=2+ E, „G,„,„(t).a

j,n, m

The factor of 2 comes from the degeneracy of spin as we
neglect the Zeeman energy when compared to the cyclo-
tron energy.

An important consequence of working in the final-state
basis is that all frequencies E n j of the final basis

~
m, n, j ) contribute to the frequency spectrum of the

emission E(t), irrespective of whether they are occupied
or empty in the final ground state of the system, i.e., in
the absence of the hole. The perturbation of the system
created by the hole and the filling of the phase space of
initial states in the presence of the hole enters via
the initial condition for matrix G (0): G~ „~' „(0)

& m, n, j m, A, ) & m, k ~m, n', j'). The summation is
over all filled states in the angular channel m in the pres-
ence of the hole. The overlap matrix elements
& m, n,j ~m, A)be, tween the initial and final states are solu-
tions of the Wannier equation:

E „i&m, n,j~m, A, )+ g V„~ „J'&m, n',j'~m, A, )
j ', n'

=E ~&m, n, j~m, k& .

Here the effective attractive electron-hole interaction
matrix elements V„„.' are defined in the final basis.

Let us examine the noninter acting system. For a
noninteracting system the initial and final bases sets are
the same. The initial condition for the vertex function G
is now simply diagonal and given by G~ „i „(0)
=5 „'„.6(p E„). It i—s easy to show that the vertex
function G does not change in time and the emission
spectrum is now given by the contribution from only a
few occupied Landau levels in the zero angular momen-
tum channel: E(t)=e "g~ „&„M „.e

The effect of the magnetic field is the quantization of
the continuum of states in each angular momentum chan-
nel. This introduces a gap in the excitation spectrum and
destroys the singularities in the long-time response of the
system. This is illustrated by considering the self-energy
correction C(t) to second order in the electron-hole in-
teraction using the linked cluster expansion. The
relevant part of C(t) which we denote F(t) is written in a
standard form as"

F(t)= i du (—1 —e '"') .R (u)
u

In the single subband case the frequency response func-
tion R (u) is given by

R (u)= g ~ V„„.~ f (m, n)[1 —f (m, n')]
m, n, n'

X5(u fico, (n' —n)), —

where f is the Fermi distribution function and u is the ex-
citation frequency. The frequency response function
R ( u ) is a series of 5 functions much like for a valence
hole coupled to a boson system. ' The contribution from
the lowest excitation energies is heavily weighted by the
u term in Eq. (8). In the case of extended states in the
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FIG. 3. The emission spectrum E(cu) for magnetic field

changing from B=3.4 to 7.2 T in steps of 0.20 T. The ratio of
matrix elements is M„2/M„& = —0.24 for all n so the coupling
to the first subband is much larger than to the second subband.
There is almost no coupling with intersubband magnetoexci-
tons. All other parameters as in Fig. 1.

of the energy of the Ep p 2 level and its hybridization with
Landau levels originating from the first subband. The
~0, 0,2) state corresponds to the electron in the second
subband strongly bound by the hole potential and can be
called a resonant (with respect to the lower subband)
magnetoexciton. As the magnetic field is removed this
level evolves into a Fano resonance. ' The hybridization
takes place when the Landau levels of the first subband

Ep &
intersect the lowest Landau level of the second sub-

band Epp 2. This happens for the special values of the
magnetic field B„satisfying a relation l /B„=nixie/EMc.
In the vicinity of these special values the highest filled
Landau level p associated with the first subband has
predominantly the character of the ~0, 0,2) level. Since
the second subband states have much larger matrix ele-
ments this has a profound effect on the emission spec-
trum. In Fig. 2 we show the emission spectrum corre-
sponding to the energy diagram of Fig. 1 over the
magnetic-field range B=3.4—7.2 T. Each Landau level n

couples equally with a hole state, i.e., M„.=M, i.e.,
transitions are non-n-conserving. We see that the spec-
trum is strongly enhanced at high energies and that the
enhancement changes by orders of magnitude as the mag-
netic field is varied. The changes are almost inversely
periodic in 1/B. The spectrum is quite complex and
shows two levels transferring oscillator strength as mag-
netic field is varied.

None of these phenomena take place if either the cou-
pling to the second subband is reduced or if the Fermi
level is well below or above the intersubband separation.
We illustrate the effect of intersubband coupling on the
emission spectrum in Fig. 3. Here we show the emission
spectrum for a hole at zh =0.75. Both the Coulomb cou-
pling and matrix elements for transitions to the first sub-
band are now much larger (M2 „/M, „=—0.24). The
emission spectrum is now similar to that obtained by

FIG. 4. The emission spectrum E(co) for n-conserving opti-
cal transitions for magnetic field changing from 8=3.4 to 7.2 T.
The ratio of matrix elements is M02/Mo &

= —1.0 and only
n =0 transitions are allowed.

Unoyama and Sham. It shows transitions from occupied
Landau levels, enhanced at higher energies, and a shake-
up tail at lower energies.

We now consider the situation in which optical transi-
tions conserve also the radial quantum number n. As-
surning the hole to be in the lowest energy state with
n =0 as is expected for a hole with finite mass, only tran-
sitions from the Ep p, electron state are possible. Hence
electrons from the vicinity of the Fermi surface cannot
contribute to the emission spectrum of the noninteracting
system. The emission spectrum representing n-
conserving transitions is shown in Fig. 4. We see that the
spectrum width no longer reAects the energy width of oc-
cupied states. However, due to the mixing of the highest
occupied level in the first subband with the n =0 empty
level in the second subband, there is a spectral feature
corresponding to nominally forbidden transitions from
the Fermi level.

We should also mention the large (of order of the Fer-
mi energy) relaxation shifts of the emission spectrum in
Figs. 2—4 due to the localized hole self-energy. All fre-
quencies are measured from the bare transition frequency
COh .

In summary, the effect of the magnetic field and reso-
nant magnetoexcitons on the emission spectrum of asym-
metric quantum wells is investigated. The main effect of
the magnetic field is the quantization of states in each an-
gular momentum channel and the removal of the low-
frequency excitation spectrum. The effect of the resonant
magnetoexcitons associated with empty subbands is the
dramatic increase of electron-photon coupling. These
conclusions are drawn from the exact solution of a simple
multisubband model of noninteracting electrons per-
turbed by a localized hole. These calculations must be
contrasted with the "ladder diagrams" calculations '
which neglect both dynamical vertex and self-energy
corrections. The calculations show that by proper sam-
ple engineering large changes in the emission spectrum
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are possible. The large enhancement of the emission
spectrum is an almost periodic function of the inverse
magnetic field. The qualitative conclusions are in agree-
ment with recent experiments by Chen et al. For quan-
titative agreement with experiment the possibility of the
finite hole mass, and the effect of electron-electron and

electron-impurity interactions should be taken into ac-
count, especially to understand the correlation of optical
and transport data in the quantum Hall regime.

The author would like to acknowledge useful discus-
sions with Arto Nurmikko.
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