
PHYSICAL REVIEW B VOLUME 44, NUMBER 20 1S NOVEMBER 1991-II

Hydrogenic impurities in triangular GaAs quantum wells
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A variational calculation of the ground state of shallow donors and acceptors in triangular GaAs
quantum wells is presented. This is connected to the properties of hydrogenic impurities in sawtooth-

doped (or 5-doped n-i-p-i) superlattices. The binding energy, lateral extension, and vertical extension
are calculated as functions of the impurity position in the well and 5-doping concentration.

I. INTRODUCTION

Steady improvements in methods of epitaxial growth, '

such as molecular-beam epitaxy (MBE) and metal-
organic chemical vapor deposition (MOCVD) during the
past decade, have provided the capability of producing
high-quality semiconductor heter ostructures having
designed potential profiles and impurity distributions
with a dimensional control close to interatomic spacing
and with virtually defect-free interfaces. These semicon-
ductor heterostructures have given rise to a rich set of
new physics as well as devices.

These systems can be classified into two classes: com-
positional and doping superlattices.

In the case of the now familiar compositional superlat-
tices, the band-edge modulation that gives rise to the
periodic potential has its origin in the different band gaps
of the components: the archetypical example is GaAs-
Ga& Al As. These types of superlattices allow an
unambiguous observation of intrinsic features such as
quantum-confined interband transitions and extrinsic
features related to the presence of donor and accep-
tor impurities in the quantum wells. A detailed list of
theoretical and experimental work on hydrogenic impuri-
ties in GaAs-Ga& „AlAs quantum wells can be found in
recent reviews on the subject.

On the other hand, only very recently has it been possi-
ble to observe clearly size quantization in doping super-
lattices. ' ' Doping superlattices consist of alternating
n-type and p-type doped layers separated by intrinsic re-
gions of an epitaxially grown semiconductor (for a review
on early work see Ref. 17). A sawtooth-shaped band dia-
gram is obtained if the thickness of the doped layer de-
creases, such that the dopants are localized on a scale
length of a lattice constant.

Besides size quantization, very recently excitonic
effects in sawtooth-doping superlattices have also been
studied experimentally' and theoretically. '

It is the purpose of this work to report on our varia-
tional calculations of hydrogenic donor and acceptor im-
purities in triangular GaAs quantum wells. In the limit
of weak coupling between adjacent quantum wells, this is
connected to the properties of shallow impurities in
sawtooth-doped superlattices. We have studied the bind-
ing energy, lateral and vertical extension of the impurity

as function of its position in the well, and 5-doping con-
centration.

It should be pointed out that in a very early proposal
on the interesting properties of 5-doped n;i-p-i structures
by Dohler, ' he estimates the change of energy for on-
center hydrogenic impurities in triangular potentials.

The rest of the paper is organized as follows. In Sec. II
we describe in detail our model Hamiltonian, the varia-
tional wave function we use to solve it, and the corre-
sponding expressions for the expectation values of the
different physical magnitudes (binding energy, lateral and
vertical extensions). In Sec. III, we give the numerical
solution of these expectation values and discuss our re-
sults.

II. THEORY

with

f2 Q2

, +e+l~lm* Bz2
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We assume that adjacent wells corresponding to the
same band are su%ciently isolated by thick barriers so as
to be independent (the quantum-well regime). We have
recently calculated the band structure and charge distri-
bution of sawtooth-doped superlattices as a function of
period and doping concentration. For a given level of
doping, it is always possible to find a period where the su-
perlattice is in the quantum-well regime. For example,
for a typical impurity concentration of 1.25X10' /cm,
the superlattice can be considered as a set of independent
quantum wells (at least with regard to the first electron
and hole subbands) for a period of 150 A.

In accordance with that simplifying assumption, the
shallow impurity state is composed of a hydrogenic atom
squeezed in a triangular potential well. In the case of the
acceptors, we neglect the coupling of the top four valence
bands, and consider a spherical hole effective mass.

Within the effective-mass approximation, the Hamil-
tonian of a hydrogenic impurity in a triangular quantum
well is given by
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and
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The particle position is represented by cylindrical coor-
dinates p and z (we have chosen the origin of coordinates
at the vertex of the V-shaped well and the polar axis
along the growth direction). z,. is the coordinate of the
impurity site along the superlattice axis.

The built-in electric field F is related to the 5-doping
concentration N according to the equation

with the fact that in the case of a 5 doping, one is
suppressing the fluctuations related to random distribu-
tions of impurities in the superlattice (growth) direction.

It is interesting to point out that the same model ap-
plies without modifications to the problem of shallow im-
purity states in compositionally graded superlattices,
where a quasi-electric-field F is obtained by a gradual
change of the alloy composition of ternary alloy semicon-
ductors. These superlattices are clearly free from the
above-mentioned approximations related to the treatment
of the impurity charges.

As an exact solution of the problem posed by Eqs.
(1)—(3) is not available, we propose the following varia-
tional wave function:

( )
g(r) =Nf (z)e

where y and g are variational parameters and f (z) is the
exact solution of Ho given by

The carrier effective mass and the GaAs dielectric con-
stant are represented by m* (m,* for electrons, mi*, for
holes) and e, respectively.

Before we embark on the solution of the quantum-
mechanical problem represented by Eqs. (1)—(3) we will
discuss brieAy the simplifying assumption made in our
treatment of the spatial charge of the impurities as a con-
tinuous charge distribution ("jellium" model). That ap-
proximation implies that we are neglecting the spatial po-
tential fluctuations which result from the random distri-
bution of impurities in the doped planes.

This is a complicated problem that has been discussed
in some detail in the past. Without going into a de-
tailed analysis of this point, we want at least to justify its
plausibility as a consequence of the following.

(i) The potential fiuctuations will be partially screened
by a small concentration of free electrons in the n-type
planes (holes in the p-type planes). The presence of free
carriers is impossible to be avoided, as experimentally the
condition of exact compensation (N„=ND ) is fulfilled
with a tolerance of about 10%.

(ii) The potential fiuctuations are minimized in the case
of a doping profile consisting of a train of 6 functions, as
compared with other doping profiles. ' This is related

Ai[ —(a —z)P], z )0f(z)=.
Ai[ —(a+z)P], z (0

with a=EoleF, and P=(2m*eFIR )' . Here Ai(z) is
the Airy function, and Eo is the energy of the first elec-
tron or hole subband.

For a given value of the electric field F [or equivalently
of N, according to Eq. (4)], Eo and F are related by the
equation'

22 2
1/3

fi F
2m

where ~a',
~

=1.02 is the first zero of the derivative of the
Airy function.

Finally X is a normalization constant, defined by the
relation

—1/2

dz z e ' 1+2' z —z,.
oo

Once Eo and f (z) are determined for a given value of
, the mean value of the energy is obtained according

to

(ga)

g2=Eo+ (q'+y') 2~N' f d—z f'(z) f dpp2m* —" o [2m
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yp+g(z —z)
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Minimization of (Sb) with respect to ri and y gives the
minimum value E;„,so we define the impurity binding
energy as

E(N, z,. )= E,„+E. 0—(9)

In addition to the binding energy, the expectation
values (p) and ((z —z, ) )'~ are relevant quantities
which are useful to ascertain the accuracy of a trial wave
function, as they provide some insight into its spatial ex-
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with ao (the eff'ective Bohr radius) =kiri /m *e . Also the
expectation values of the difFerent magnitudes approach
asymptotically the corresponding 3D limits:

tension. It should be pointed out that our trial wave
function is an exact solution of the Hamiltonian (1) in
both limits N ~0 and N D~ (x) .

For N +0—and z, =0, f (z)~const, y —+rj—&I/ao,
and Eq. (5) reduces to the ground state of the three-
dimensional hydrogen atom
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For N ~ ~ and z; =0, f (z)—+5(z), y~ao /2, g~O,
and expression (5) reduces to the ground state of a two-
dimensional hydrogen atom

' 1/2

ma*0
e
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with corresponding values of the expectation values

E(N ~ oo, O)~4 Ry',

&p)~a,*/2,

( 2) 1/2 ()

(15)

(16)

(17)

III. RESULTS AND DISCUSSION

In Fig. 1 the on-center (z, =0) donor (left scale) and ac-
ceptor (right scale) binding energies are plotted as func-
tions of N

For small values of N, the triangular potential is
very shallow, and both the donor and the acceptor bind-
ing energies approach asymptotically their respective 3D
limits. For N =10io/cm it is hard to distinguish any
confinement effect.

For larger values of N, the triangular potential be-
comes deeper, with a consequent increase of the binding
energies, towards the maximum value of 4 Ry* corre-
sponding to a 2D hydrogen atom.

Note that for the maximum concentration of impuri-
ties shown in Fig. 1, N =10' /cm, the values obtained
for the binding energies are still far from the strict 2D
limit (4 Ry*). We have checked, however, that for huge

The values of the physical parameters we use in the
calculations are m, =0.0667mo, m& =0.30mo (Ref. 27)
(mo is the free-electron mass), and e= 12.5. The
equivalent three-dimensional efFective Rydberg energy
(Ry') and Bohr radius (ao~ ) with these parameters are 6
meV (26 eV) and 100 A (22 A) for donors (acceptors).
The corresponding two-dimensional efFective Rydberg en-
ergy (4 Ry') and Bohr radius (ao /2) are 24 meV (104
meV) and 50 A (11 A) for donors (acceptors).
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FIG. 1. On-center (z;=0) donor {left scale) and acceptor
(right scale) binding energies as functions of impurity concen-
tration N
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FIG. 2. Donor binding energy vs impurity position z; for
three values of impurity concentration:
~2D 1 25 X 1014/ 2. ~2D 1 25 )( 1p13/cm2.
~2D 1 25 y 1012/cm2

(unphysical) impurity concentrations the curves of Fig. 1

approach asymptotically their respective 2D limits.
From the results shown in Fig. 1 it is clear also that the

donor impurity approaches the 2D limit faster than the
acceptor impurity: for example, if N =10' /cm, the
ratio E (N, O)/(4 Ry*) takes the values of 0.71 and 0.58
for donors and acceptors, respectively. This has to do
with the fact that because m, & mI*, , the wave function of
the electron is more extended in the z direction (for the
same electric field) and consequently feels the narrowing
of the triangular well more intensely than the wave func-
tion of the hole.

We display in Figs. 2 and 3 the donor and acceptor
binding energies, respectively, this time versus the impur-
ity position z, , for three different values of N

As expected on physical grounds, the binding energies
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FIG. 3. Acceptor binding energy vs impurity position z; for
the same three values of N as in Fig. 2.

are monotonic decreasing functions of z, , going from a
maximum value for z,. =0 to very small values for
~z, ~

&& (z ) ' (see below). This is a consequence of the
decreasing weight of the electron (or hole) wave function
at the impurity position for increasing values of z;.

When z, =0, the maximum binding energy corresponds
obviously to the greater N (solid line in Figs. 2 and 3).
However, when for a given impurity concentration z; is
larger than the corresponding impurity extension in the z
direction (roughly given by {z )'~ ) we expect larger
binding energies for decreasing values of X . This ex-2D

plains the crossover among the three curves observed in
both figures.

As a consequence of the more localized character of
the hole wave function (m,*(ml,

*
), the crossover is found

for smaller values of z, in the acceptor case (Fig. 3). We
wil1 return back to this point in our discussion of the
vertical and lateral impurity extensions given be1ow.

Finally, we present in Figs. 4 and 5 the lateral ((p) )

and vertical ((z )'~ ) extensions for the donor and ac-
ceptor impurities, respectively. In both figures z; =0.

The dashed line [(( z )o )
'

] corresponds to the mean
value of the vertical extension, calculated with the exact
solutions of Ho[f (z)]. The result is given by a closed
analytical expression

0 2 2D I/3 0
(4m.ao N )

where 2 is a constant defined by

FIG. 4. Lateral ( (p ) ) and vertical ( (z ) '~2) donor extension
as functions of donor concentration; z; =0. Dashed line: verti-
cal extension calculated with the exact solutions of Ho [Eq.
(18)].

go to zero, as a consequence of the narrowing of the tri-
angular well. The results shown in Figs. 4 and 5 corre-
spond to a smooth crossover between both limits.

The comparison between (z )' and ((z )o)' shows
nicely the complementary role played by f (z) and the ex-
ponential term in the trial wave function [Eq. (5)]. In the
3D limit, the exponential term is essential to give the
correct physics (note that ((z )o)' diverges in this lim-
it), while in the 2D limit, the confinement in the z direc-
tion is progressively given by the functions f (z) alone.

Note that in the donor case, for the highest impurity
concentration N = 10'"/cm, the lateral extension
(p) =65 A, still away from the 2D limit ao /2=50 A;
this indicates again that for this value of X the donor
impurity is not in the complete 2D regime.

The same conclusion holds for the acceptor case, with
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In the 3D limit of low impurity concentrations, the la-
teral and vertical extensions (p) and (z ) approach2 1/2

asymptotically the above-mentioned 3D limits 3mao /8
and ao, respectively. In the 2D limit of high-impurity
concentrations, the lateral extension should approach the
value ao /2 [Eq. (16)], while the vertical extension should
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FICi. 5. Lateral ((p) ) and vertical ((z )' ) acceptor exten-
sion as functions of acceptor concentration; z; =0. Dashed line:
vertical extension calculated with the exact solutions of Ho [Eq.
(18)].
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the difference that, as explained above, the 2D limit is
reached more slowly than in the donor case. For exam-
ple, for N =10' /cm, (p) /(ao /2) takes the values 1.3
and 1.6 for donors and acceptors, respectively. (In the
complete 2D limit, the ratio must be 1).

As mentioned above, the fact that the crossover found
among the different curves in Figs. 2 and 3 occurs for
smaller values of z; for acceptors than for donors, can be
explained with the results of Figs. 4 and 5. As can be
seen from these figures, for any value of
((z )' ),~„t,o„,&&((z )' )h,&„, and consequently, the
condition z,. = ( (z ) ' and the corresponding crossover
is fulfilled earlier for the acceptors.

In summary, we have calculated, within the effective-
mass approximation, the ground-state binding energy and
spatial extension of donor and acceptor shallow impuri-
ties in triangular GaAs quantum wells. While the main
part of the discussion has been focused on the case of 5-
doped n-i-p-i structures, our results are equally applic-
able to the problem of shallow impurities in composition-
ally graded superlattices.

The binding energy of on-center hydrogenic impurities
in triangular GaAs quantum wells increases monotonical-
ly from the 3D limit (low-impurity concentrations) to the
2D limit (high-impurity concentrations). This is in con-
trast with the behavior of shallow impurities in GaAs-
Ga& Al As quantum wells, where at the zero thickness
well limit, in the realistic case of a finite barrier, the elec-
tron (hole) wave function is entirely in Ga, „Al„Asand
one recovers the bulk (3D) value of the binding energy of
the donor (acceptor) in this material.

For a typical value of the triangular potential
(N =10' /cm ) while the lateral extension of the im-
purity is given by the Coulombic attraction between car-
rier and impurity, the vertical extension is essentially
given by the confinement effect of the triangular poten-
tial.

We believe that the results presented in this work may
be useful in the qualitative understanding of future exper-
imental work on shallow impurities in sawtooth-doped
superlattices.
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