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Effect of magnetic fields on exciton binding energies in type-II GaAs-A1As quantum-well structures
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We calculate the binding energies of both the light-hole and heavy-hole excitons in type-II GaAs-A1As
quantum wells in the presence of a magnetic field applied parallel to the axis of growth. Two methods
are applied and compared: a variational approach and a perturbation method. The exciton binding ener-

gies are calculated assuming infinite potential barriers. The behavior of the exciton binding energies as
functions of well widths and the magnetic field is discussed. For a given value of the magnetic field, the
exciton binding energies are found to be larger than the zero-magnetic-field case. Results obtained from
both methods are compared.
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Type-II GaAs-A1As quantum-well (QW) structures
have drawn considerable interest, both experimentally
and theoretically in recent years. ' ' For narrow well
sizes [typically GaAs-layer thickness (30 A (Refs. 1—4)],
the band-edge configuration at the GaAs-AlAs hetero-
junction may become "staggered" or type II. In this
case, an electron and a hole are confined in spatially
separate wells (see Fig. 1). There have been a few
theoretical studies in type-II QW systems. Duggan and
Ralph have calculated the exciton binding energies vari-
ationally, in the type-II configuration, using infinite po-
tential barriers for both the electrons and the holes. The
calculated values are comparable to those in type-I quan-
tum wells. Matsuura and Shinozuka studied the same
problem by using a variational approach by incorporat-
ing slightly different trial wave functions, and found simi-
lar results to those obtained by Duggan and Ralph. Sal-
massi and Bauer studied the electron-hole exchange in-
teraction in type-II QW's and have also calculated the ex-
citon binding energies by a variational method, assuming
finite potential barriers. The nonzero overlap between
electron and hole wave functions boosts the exciton bind-

ing energies by about 10—15 Po more than those obtained
by using infinite barriers. ' Degani and Farias' have
calculated the exciton binding energy in type-II quantum
wells in the presence of a static electric field using a varia-
tional approach. Recently, Branis and Bajaj' have cal-
culated the exciton binding energies by using a
perturbation-variational expansion method, " the calcu-
lated energies are somewhat lower than those obtained by
using a variational calculation, similar to the
perturbation-variational results in type-I QW's. '

The application of a magnetic field parallel to the
growth direction is expected to modify exciton binding
energies in type-II GaAs-A1As QW's. The magnetic-field
factor comes in addition to the effects of the electron-hole
confinements in the direction of growth and Coulomb
coupling. Recently, Hodge et al. " have measured the
energy of 1s —+2p+ transition of a heavy-hole exciton in
type-II GaAs-A1As QW's in the presence of a magnetic
field using photoinduced far-infrared absorption spectros-
copy. Zhang and Bajaj' have calculated the exciton
binding energies of both the heavy-hole and light-hole ex-
citons for the type-II system in the presence of magnetic
field applied parallel to the direction of growth, by using
a variational approach, based on a trial exciton wave
function, which is a combination of hydrogenic and
Gaussian eigenstates in two dimensions.

In this paper, we report a formalism to calculate the
binding energies of both the heavy-hole and light-hole ex-
citons in type-II GaAs-A1As QW's as a function of the
size of A1As layer (or GaAs layer), in the presence of a
magnetic field directed along the growth axis. We use
two different approaches: a variational method with ap-
propriate trial wave functions' ' and a perturbation one.
The results from both these methods are compared and
are found to agree rather well, for various magnetic-field
strengths and GaAs or A1As well widths. We have as-
sumed infinite potential barriers for both electrons and
holes for the sake of illustration.

II. THEORY

FICx. 1. Schematic energy-band diagram for the electron-hole
pair in type-II QW structure.

The energy band-edge configuration for the type-II sys-
tem and the corresponding coordinate system are shown
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in Fig. 1. The holes are confined in the GaAs layer while
the electrons reside in the indirect-band-gap A1As layer.
Assuming perfect confinement for both electrons and
holes (infinite-potential-barrier model), we replace the
different dielectric constants of GaAs and A1As materials
with their average static dielectric constant up=12. 3.
This eliminates any image-charge corrections. A con-
stant, uniform magnetic field 8 is applied perpendicular
to the layers (in the growth direction). The Hamiltonian
for the electron-hole system is

H =H, ( ifiV+—(elc) A) Hi, (—iAV+(e/c) A)
2

+ v (z )+ vh (zh )
ep(r, —r

where the potential wells for the electron V, (z, ) and for
the hole Vh(zh ) are assumed to be infinite, and the range
of z coordinates is 0&z, &L, and —Lh &zh ~0;
A= (r X8)/2 is the vector potential of the magnetic field
B=Bz and re and rh are the electron and hole coordi-
nates. The electron Hamiltonian H, is described in the
effective-mass approximation, while the hole Hamiltonian
Hh is the 4X4 Kohn-Luttinger Hamiltonian. ' We as-
sume parabolic hole bands in the x-y plane and in the z
direction and by neglecting the off-diagonal terms, we ig-
nore the coupling between heavy-hole and light-hole
bands. Following a standard procedure, the total Hamil-
tonian of the exciton associated with either the heavy-
hole or the light-hole band can be expressed as (in cylin-
drical polar coordinates)

1 8 8 1 8H= — — p +
p r)p r)p p i)4'

p+ Q2 + V, (z, )
m, i Bz~

a2 + Vp, (zi, )—
(m+)i Bzh [p +(z, —zh) ]'

2

+yL, + p (4)

A. Variational approach

We now calculate the energy of the ground state 1s of
the Hamiltonian described by Eq. (4) following a varia-
tional approach. The Hamiltonian H [see Eq. (2)] can be
grouped into three terms, namely, the electron part H„
the hole part Hh, and the exciton part H,„,(B),

H =H, +Hi, +H,„,(B),
where

H, (z, )=—

Hh(zh ) =—

$2 $2 + V, (z, ),
2 m i Bz~

+ V„(z„),
2 mg

(7a)

(7b)

The parameter y is the dimensionless ratio of the half of
the cyclotron energy %co, over the Rydberg constant %+..

~~c eke 2

y=
2%~ 2pyc% y

where a, =(A'/@+co, )'~ is the cyclotron radius.

2(m, ), Bz,'

2

1/2eo[p + (z, —zi, )]'~
fled pyroL,+ p8

1 8 0+1
2p+ p dp r)p p

+ V, (z, )
—

i + Vh(zh)
2 m+ i Bzg

(2)

()A'BR+18
2p+ p~p ~p p

2

2 ) +
eo[p +(z, —zh) ] 4m+

(7c)

1 1()'i+ 2)'i»
mp m+,

1 1

(m, ), (m+ ),

1 (7'i+xi»
mp

(3)

where E, is the z component of the angular momentum
(in units of fi), co, =eB/p+c is the cyclotron frequency,
and (m, )& and (m+ )& are the effective masses of electron
and (heavy or light) holes, respectively, in the direction of
the growth [the transverse masses are (m, ), and (m+ ), ].
All the mass values can be expressed in terms of Lut-
tinger parameters '

y& and y2 as in

In the variational approach, we write the total wave
function g(r„ri, ) in the following form to express the ex-
plicit dependence on z„zh and on the relative distance

~ 23' 24
e h'

q(r, rh )=F (z )Fg(zg )cy(r),

where @(r) is the wave function describing the internal
state of an exciton, F, (z, ) is the first electron subband
wave function, and Fh(zh ) the first hole subband wave
function. The two wave functions in the z direction are
determined by the following two Schrodinger equations:

H, F,(z, ) =E,F, (z, ),
where mp is the free-electron mass, and p+ is the trans-
verse reduced mass of the electron-hole pair in the x-y
plane.

We can scale all lengths in terms of the exciton Bohr
radius a+=eofi /p+e and the energies in terms of Ryd-
berg constant R+ =e p+/2eofi =e /2eoa+ to obtain the
dimensionless form of the Hamiltonian in Eq. (2),

where
2

2(m, )i L,

F, (z, )=
1/2

2

L,
sin

m'z

L,

(9b)
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and

H&F&(zI, )=EI,FI, (zI, ), (9c)

based on a trial wave function of the following form:

qj(p, P,z„zh ) =F,(z, )F'& (z& )N(p, P), (13a)

where
2

where

2(m~ )I Lh

1/2
&zh

sin
LI

2
F„(zz ) =

LI

(9d)

F, (z, ) = A, exp( —a,z, )sin(mz, /L, ),
+g (zg ) ~ 1 exp(AzI, )sin( uzi, /Lh )

while

4(p, g)=C, exp( —5,p —A, ,p )

(13b)

(13c)

(13d)

For narrow potential wells considered here, effects of the
coupling between neighboring subbands on exciton bind-
ing energies are expected to be small, therefore it is
sufhcient to assume an exciton to be associated with a sin-
gle electron subband and a single hole subband.

Next we express the exciton wave function N(r) in
terms of Gaussian orbitals and use a variational calcula-
tion to determine the expansion parameters and the exci-
ton binding energy

describes the internal motion of the exciton. Here, a„P„
5I, and A, I are variational parameters and A I, 8I, and CI
are normalization constants. We discuss and compare
our results with those of Zhang and Bajaj' in the next
section.

B. Perturbation approach

For the perturbation method, we rewrite the total
Hamiltonian [Eq. (6)] as follows:

C&(p, g;z =z, —
z& ) = g c;R;(p, P)g';(z), H =Ho+H'=H, +HI, +Ha+H (14)

where c, are the expansion coefficients, R;(p, P) and g;(z)
are, respectively, the basis functions in the x -y plane and
in the z direction,

imP
R (p P) — pl lexp[ ((( +P)p ]&2m.

(m =0, +1,+2, . . . ), (11a)

where H, and Hh are given in Eqs. (7a) and (7b), H~ cor-
responds to a two-dimensional motion of a particle of
mass p+ in the presence of a magnetic field in the z direc-
tion,

0 A 8 8 I r' 2H~0 =— p + +yA~L + p
2I + Vdp ~S p' ~4' 4~+

g, (z) =exp [ —(a,'+ 5)z ], (1 lb) (15)

E~ =E,+E~+y —E . (12)

As mentioned in the Introduction, Zhang and Bajaj'
have calculated the exciton binding energies of both the
heavy-hole and the light-hole excitons for the type-II sys-
tem in the presence of magnetic field applied parallel to
the direction of growth, by using a variational approach,

where P and 5 are the variational parameters and a; and
a,'. (i =1, . . . , n) are sets of constants that can be deter-
mined by expanding hydrogenic wave functions in series
of anisotropic Gaussian orbitals. ' ' The parameters P
and 6 are varied to adjust the Gaussian basis functions to
minimize the total energy E. The Hamiltonian for the
exciton corresponds to an anisotropic hydrogen problem,
which is rejected in the choice of the trial exciton wave
function.

One observes that the system is invariant under rota-
tions about the z axis (magnetic-field axis), i.e., the z com-
ponent (m) of the total angular momentum is a good
quantum number. We then solve for the eigenvalues and
eigenfunctions of the Hamiltonian in Eq. (6) using a stan-
dard variational approach by minimizing the total ener-
gy. In the absence of the Coulomb interaction, the total
energy E is just the sum of E„E&,and the Landau level
energy y. The Coulomb interaction between the electron
and hole lowers E and leads to the formation of the exci-
ton. The exciton binding energy E~ is defined as

and H' is a perturbation for the system

2

eo[p + (z, —zi, ) ]'~ (16)

For a ground state, the energy perturbation series can be
written as follows:

Ep tbEP +DE E00+EI +E2+ (17)

where

Ho'A, o
=Eo,o (t'o, o

E, =&q, ,,lH'Iy„&,

(18a)

(18b)

00 nm

nm E 0 E~m
(18c)

etc.
The solutions for the unperturbed part H0 are exactly

known. The electron and hole motion in the z direction
is a one-dimensional problem with infinite potential bar-
riers [see Eqs. (9a) and (9b)], while H~ corresponds to a
two-dimensional (2D) particle motion in a uniform mag-
netic field and has been discussed by Landau and
Lifshitz. The eigenvectors for the unperturbed Hamil-
tonian H0 are
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=F,(z, )Fh(zh )f„(p,p) Eo =E.+Eh+E~

4
L,Lh

1/2 m'Z

sin
L,

7TZh
sin y'„(p, y), 2(m )iL, 2(m ~ )(Lh3 2 2 2

where

1

2' [1+~ I)

(19)

4
L,Lh

Ei =2%g ym

2

(21)
where n =0, 1,2, . . . and L„+!~!(p/2a, ) are the associ-
ated Laguerre polynomials, while

I
m

I

~ n .For the
ground state [lowest subband electron, subband hole, and
the lowest Landau level (n =m =0)], the first-order per-
turbation correction to the ground state energy is

1/2

X n.1
2' !(n + ImI )!'

' 1/2
L 0 7TZe 77ZhXf 'dz, f dz sin

'
sinh L

X exp( —p2/4~2 )plmlL ~l (p3/2~~ )

and the eigenenergies are given by

(20)

Xexp(P )erfc(P), (22)

where P=(z, —
zi, )/2'~ a, ~0 and erfc(P) is the comple-

mentary error function. In the second-order perturba-
tion theory we have calculated analytically the correc-
tions up to the first three leading terms

I & go, olH'I @i,o) I'
2—

Eo,o Elo EOO E20 Eoo E30

The expressions for the matrix elements are given as
1/2

(23)

&@o oIH'Iq, o) = —2% 4 e 0 7TZe 17Zh
dz, dzi, sin sin — [exp(P )erfc(P)(P + —,

'
) —P/3/m. ],L Lh o L& L, Lh

&Po,oIH'IA, o) = 2&+
1/2

4
L,Lh

X f 'dz, f dzhsin
'

sin
"

[exp(p )erfc(P)(P /2+30 /2+ —', ) (P/2+~)( ~+& )]

and

& Po oIH'I/3 o) 2%+
1/2

4
L,Lh

(24b)

T

0 7TZ &Zh
X z, dzh sin sin

X [exp(P )erfc(P)(lg /6+5@'/4+15P /8+ —,', ) —(P/63/n. )( —'„'+7P2+I3')) . (24c)

The binding energy for the exciton is given by

E = —E —E (25)

III. RESULTS—DISCUSSION

We have calculated the values of the binding energies
E~ of the heavy-hole and the light-hole excitons as a
function of AlAs-layer thickness (or CxaAs-layer thick-
ness) using variational and perturbation approaches, for

various magnetic-field strengths. The values of the vari-
ous physical parameters involved in the GaAs-A1As
QW's that have been used in our calculations are
(m, )i =1.1mo, (m, ), =0.19mo, y&=6. 93, ye=2. 15;27
for heavy-hole mass [(m+ )& =0.38mo, (m+ ), =0.11mo];
for light-hole mass [(m )&=0.089mo, (m ), =0.21mo].
The reduced mass in the x -y plane for heavy-hole exciton
is p+ =0.07mo and for the light-hole exciton p=0. 1mo.

In Figs. 2. and 3 we display the dependence of heavy-
hole exciton binding energy Ez as a function of the A1As
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FIG. 2. Binding energy (E&) of a heavy-hole exciton as a
function of A1As-layer thickness for GaAs-layer width Lz =20
0

A for several values of the magnetic field. Perturbation ap-
proach, ———.Variational calculation,

(electron) layer width for two different GaAs-layer
thicknesses (20 and 28 A, respectively), for various values
of the magnetic field. For B =0, smaller A1As widths in-
crease the exciton binding energy, due to the approach of
electrons and holes closer to the interface. The variation-
al approach, gives good results for very small magnetic
fields, by using Gaussian eigenstate expansion for the trial
wave function. Finite magnetic fields compress the exci-
tonic wave function by reducing the cyclotron radius
compared to heavy-hole exciton Bohr radius (a+=65
A); especially for B-76 kG, which corresponds to y= 1

or a+ =a„ the crossing point between strong and weak
fields. The variational and perturbation results are quite
close to each other at large fields (B) 100 kG). For small
fields (20~B ~76 kG), the perturbation method still
holds quite successfully (maximum difference between the
two methods -0.3 meV), while for very small fields
(B & 10 kG), the perturbation method fails to reproduce
results close to variational ones (for example, for B =5
kG and GaAs width of 20 A, the difference between the
results of the variational and perturbation methods varies
from 1.7 meV for A1As width I., =40 A to 0.4 meV for
90 A). This is not surprising since at low magnetic fields
the wave function of the exciton is more hydrogenic than
Gaussian in character.

In Figs. 4 and 5, we display the light-hole exciton ener-

gy Eii versus the A1As- (electron) layer width for two
0

different GaAs-layer thicknesses (20 and 28 A, respective-
ly), for various values of the magnetic field. Again the be-
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FICx. 3. Binding energy (E&) of a heavy-hole exciton as a
function of A1As-layer thickness for CxaAs-layer width Lh =28
0
A for several values of the magnetic field. Perturbation ap-
proach, ———.Variational calculation,

FICx. 4. Binding energy (E& ) of a light-hole exciton as a func-
0

tion of A1As-layer thickness for GaAs-layer width Lq =20 A for
several values of the magnetic field. Perturbation approach,———.Variational calculation,
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FIG. 5. Binding energy (Ez ) of a light-hole exciton as a func-
0

tion of AlAs-layer thickness for GaAs-layer width LI, =28 A for
several values of the magnetic field. Perturbation approach,———.Variational calculation,

havior of the exciton binding energy is essentially similar
to that for the heavy-hole exciton. The y=1 case corre-
sponds to B —155 kG. The crossing of the perturbation
results over the variational ones in low magnetic fields,
with increased magnitude relative to variational ones (less
than 0.1 meV), is attributed to the way the Ett is calculat-
ed by the variational method, and does not have any
physical meaning.

We compare our results in the case of B =0 with those
of Duggan and Ralph, using the same physical parame-
ters. Our values are larger than theirs, because in their

case, the exciton trial wave function @(p,P, z) is propor-
tional to exp( —5p) and thus has only one variational pa-
rameter. For finite magnetic fields, we compare our re-
sults with those of Zhang and Bajaj' and find that our
values are slightly smaller than theirs.

Hodge et a/. " have measured the energy of 1s —+2p+
transition of a heavy-hole exciton in type-II GaAs-A1As
QW's in the presence of a magnetic field using photoin-
duced far-infrared absorption spectroscopy. It is not pos-
sible for us to compare our results directly with those of
Hodge et aI. ,

" since we do not calculate the energy of
the 2p+ level of a heavy-hole exciton. However, we find
that the values of the binding energies of the 1s state of
the heavy-hole exciton that we calculated, for the values
of GaAs- and A1As-layer thicknesses and magnetic fields
used by them, are somewhat lower than their measured
values of 1s —+2p+ transition. This is partly due to the
fact that we assume infinite potential barriers in our cal-
culations and ignore the eft'ect of the electron and hole
wave-function overlap, which enhances the binding ener-
gies.

IV. CONCLUSIONS

We have calculated the binding energies for both the
heavy-hole and light-hole excitons in type-II GaAs-A1As
QW's in the presence of a magnetic field applied parallel
to the direction of growth, for various A1As and GaAs
quantum-well sizes. We have used two methods —a vari-
ational approach and a perturbation method —and have
assumed infinite potential barriers. For a given set of
A1As- and GaAs-layer widths, the exciton binding energy
increases with increasing magnetic field. We compare the
results from both methods and find that these are quite
close to each other even for small magnetic fields.
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