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Resonant Raman scattering in quasi-two-dimensional InSe near the Mo and M, criticai points
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A theory of Raman scattering in quasi-two-dimensional crystals is presented, emphasizing resonance
enhancement at the excitonic transition appropriate to the Mo and M& edges. The effect of electron-hole
Coulomb interaction leads to metamorphism of the critical points. Our experimental results on quasi-
two-dimensional InSe crystal show double resonant structure for both incident- and scattered-photon en-
ergies near the direct exciton energy. The theory provides a good fit to the experiments both above and
below the excitonic transition after inclusion of the electron-hole interaction.

I. INTRODUCTION

InSe and GaSe belong to the group of III-VI semicon-
ductors in which each layer' is structurally identical and
composed of selenium atoms on either side of a doub1e
plane of gallium or indium atoms. The large difference in
the relative strength of the intralayer and interlayer
forces leads to quasi-two-dimensional ' character of
GaSe and InSe. InSe forms in the same three different
polytypes as GaSe.

The lowest direct and indirect band gaps in InSe are at
1.256 and 1.187 eV, respectively, at 300 K. According to
Abutalybov and Belle, the low-energy side of the absorp-
tion spectrum corresponds to a hyperbolic exciton
formed near the M& saddle point. The energy of the M&
edge in InSe is 2.77 eV at 300 K, and the binding energy
of the hyperbolic exciton was found to be 0.35 eV.

The vibrational properties of InSe have been stud-
ied ' by infrared and Raman spectroscopy. The Ra-
man investigations exhibit polar, nonpolar, and second-
order phonon modes of InSe.

Resonant Raman-scattering (RRS) studies in InSe near
the excitonic transition have been reported" ' in the
literature. These experimental results were compared
with simple theories'"' appropriate to three-dimensional
Van Hove singularities. The nature of the singularities is,
however, dimension dependent and quite difFerent in two
dimensions. It is therefore worthwhile to formulate a
theory of RRS at critical points in two-dimensional semi-
conductors, taking into account the dimensionality-
related aspects in Raman scattering (RS), particularly the
resonant nature of the intermediate scattering states.

In this paper we present a theory of RRS at Mo and
M& critical points of two-dimensional semiconductors for
free electron-hole (e-h) pairs as intermediate scattering
states. This theory is extended to incorporate e-h
Coulomb interaction. The calculated Raman amplitude
shows a double-resonance structure corresponding to in-
coming and outgoing photon resonance near the continu-
um (MO, M, edges) for the noninteracting case.

A more realistic treatment of the Coulomb e-h interac-
tion leads to metastable (hyperbolic) exciton resonances
near the M& edge. A typical double-resonance structure
associated with these resonances appears in the Raman-
scattering amplitude. In addition to resonance scatter-
ing, scattering in the continuum states takes place near
the Mo and M& edges. The effect of the e-h interaction is
to broaden the resonance structure and smear out the
singularity between cog and cog+coo This leads to the
metamorphism of the critical points.

We also present our experimental results on RRS in a
quasi-two-dimensional InSe layered semiconductor near
the excitonic transition energy stressing the resonance na-
ture of the scattering process. In InSe we have observed
the double-resonance effect. Our experimental results
agree well with the theory both below and above the exci-
tonic transition energy after including the e-h interaction.
Comparison between experimental results and theoretical
calculations shows that hyperbolic excitons in InSe act as
the intermediate scattering state.

II. THEORY OF RAMAN SCATTERING
NEAR THE VAN HOVE SINGULARITY- Mo EDGE

A. Free electron-hole pairs

Consider Raman scattering in two-dimensional (2D)
crystals near the Mo edge assuming free electron-hole (e-
h) pairs as intermediate scattering states. The Raman
amplitude in two dimensions at the Mo edge analogous to
that in three dimensions' is

A (co)= d k
o ~ (co„co+iI )(t—ok co+coo+i I—)

where k is the 2D wave vector. I is the damping factor
associated with the lifetime of the intermediate scattering
states. co and coo are the energies of the incident and scat-
tered phonons, respectively. The momentum dependence
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of the scattering matrix elements has been neglected in
Eq. (1).

Assuming parabolic bands,

hk
CO

—CO +k g (2)

where co is band gap at the Mo point. Thus Eq. (1) be-
comes

max 1
A (co) = dcok

0 (cok co—+i I )(cok co—+coo+iI )

yi
tan

600 X)
—tan

X2
(4)

for all values of co, where

co + I cocilg +(co& —2')ci)0

(coo —co) +I
I cog

y2=
(coo —co) +I

Similarly, scattering at the M3 edge can be calculated
by using a negative effective mass, so that

h
CO

—
CO k 2

k g 2 P

Hence the results at the M3 edge are the same as for
the Mp edge, but with a negative sign.

Simple integration of Eq. (3) gives the Raman amplitude
at the Mp edge as

A (co) = [ln(x, +y, )'~ —ln(x2+y2)'~ ]
1

C00

+ , +E P(x,y, z) =0 ,
1

e(x +y +z )'
(6)

with the condition Pl& =@72=m &0 ~3)0 where e is
the dielectric constant of the crystal, m is the reduced
mass of the electron and hole, and P(x,y, z) is the en-
velope function of Wannier exciton. E is the energy ei-
genvalue measured from the bottom of the conduction
band.

The eigenfunctions have the form

4 =P(x,y;g)5(z —g),
where P is the solution obtained from Eq. (6). After sub-
stituting z =0 in Eq. (6) the Schrodinger equation (6)
reduces to a "two-dimensional hydrogen atom" and the
solution of the equation contains discrete as well as con-
tinuous solutions. It is known that at the Mp edge, the
principal effective mass has two positive components.
Hence Eq. (6) will give the exact solution at the Mo edge.
The solution of Eq. (6) results in bound states with bind-
ing energies

E„(0)=,n =1,2, . . . .
e (2n —1)

The value of the envelope function for these resonant
states are

in momentum space. (ii) It is singularly strong for a
small momentum-transfer process within a single band.

According to the first property, the efFective-mass ap-
proximation gives the excitonic effects correctly. The
second property rejects a rather singular behavior of the
solution of the effective-mass equation. The effective-
rnass equation' can be written as

a'
2' QX

B. Exciton efFects: Coulomb interaction

So far, the interaction between the electron and hole
has been neglected. We have used Coulomb interaction
to incorporate the effect of e-h interaction, which is more
realistic than the Slater-Koster interaction and gives an
adequate description of discrete and resonance levels.

The Coulomb interaction is distinguished by two im-
portant properties (i) It is weak when connecting
Bloch pair states from different bands or distant regions

and for the continuum states,

( )l2
exP( 1')

cosh/

where

y= —vrlE„(0)l'~ /2(co —co )'~

(10)

and co is the MD point energy. Equation (1), the Raman
amplitude, therefore becomes

16
A (co)= g

m& (2n —1) [~,—~—IE„(0)1+iI jl~, —~+~,—IE„(0)1+iI j

msx
~ ~

~

pE 01'
o ~ (cok co+i I )(co—„co+coo+i—I )

Here lpE(0)l is the envelope function of the exciton in the continuum state.
Using Eqs. (2) and (10), Eq. (11)becomes
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16
A (co) =g

„me (2n —1)3 [co —co —IE„(0)I+iI ][co —co+coo —IE„(0)I+il ]

max (1—
tanhy )+ dcok

0 (coi, co—+i I )(cok co+coo+iI )
(12)

Taking the upper limit of the above integral as IK,„=co, the integral can be evaluated with the help of contour
shown previously. ' The first term of the integral is the no e-h term given by Eq. (4). The value of the integral for all
values of ~ is evaluated as

1 sin 0 i
No e-h term[given by Eq. (4)]+ tan A

coo [(co—
cos) +I ]'

sinOz—tan
)2+ p2]1/4

l cos02+ tanh
[( )2+ I 2]l/4

cosOi—tanh
[( )2+ I 2]1/4 (13)

where

9,=—tan, 0,= —tan
1 i I 1

2 co co& 2
r

CO C00 67g 2

For incident-photon energies in the vicinity of the exciton energy, the contribution from the discrete state is dom-
inant and the amplitude becomes

16m 1

ne (23n —1)3 [co —co —IE„(0)I+il ][co —co+coo IE„(0)I+il ]
(14)

10-
---- ——no-e-h

In teractione-h

8-
C:

6-

cu 4-

For photon energies far away from the metastable reso-
nant energies, the Raman amplitude is given by Eq. (13).
Figure 1 shows the Raman intensity of a typical two-
dimensional semiconductor GaSe at the Mp edge. The
dashed line corresponds to the noninteracting e-h pair
and is evaluated using Eq. (4) with h co =2.06 eV,
h Mp =30 meV, and h I = 5 meV. The solid line is ob-
tained by considering the Coulomb interaction between
an e-h pair and is evaluated using Eqs. (12) and (13) tak-
ing IE&(0)I =0.05 eV and @=6.5.

The value of constant C has been chosen arbitrarily in
both cases. The noninteracting case shows a double-
resonance behavior corresponding to incoming and out-
going photon resonances near the continuum (Mo edge).
Resonance enhancement is observed near the discrete hy-
drogenic exciton energies. In addition to the resonance
scattering, scattering due to the continuum states also
takes place near the Mp edge. The sharp nature of the
resonance scattering (co,„and co,„+coo) due to hydrogenic
excitons is evident from Fig. 1. Furthermore, it is clearly
seen in Fig. 1 that the effect of e-h interaction on Raman
amplitude is rather weak near the singularity (Mo edge).
At the M3 edge, the principal effective masses are nega-
tive and the Coulomb interaction behaves as a repulsive
interaction. Thus no bound states appear.

III. THEORY OF RAMAN SCATTERING
NEAR THE SADDLE POINT SINGULARITY' M ] EDCirE

A. Free electron-hole pairs

Equation (1) can also be written in 2D as

~ex ld )9
fd

9,) 2 (co) = dk dk
o ~ (cok co+i I )—(coi, co+coo+i—I )

0 I

1.98 2.0 2.02 2.04 2.06 2.08 2.10 2.12

Energy (eV) For the M& saddle point in 20, we assume

(15)

FIG. 1. First-order Stokes-Raman spectrum of a typical 2D
semiconductor at the Mo edge. The dashed line corresponds to
noninteracting e-h pairs. The solid line is obtained by consider-
ing Coulomb correlated e-h pairs. The fitting parameters are
described in the text.

h ( k.' —ky')
COk =CO +

2m
(16)

where k and k are the wave vectors in the x-y plane.
Equation (16) has been written in the above form to take
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into account the signs of the effective masses along the
different principal directions. It is known that at the M&
saddle point the principal effective mass has one positive
and one negative component.

Then Eq. (15) can be written as

A possible theoretical approach to the theory of metasta-
ble excitons is in the literature. ' ' We, however, ap-
proach this problem using the method of separation in
parabolic coordinates. The two-dimensional hydrogen-
atom effective-mass equation with Coulomb potential can
be written as

~ ~

m» (~k ~g ) (ky max ky min)
A (p1)= . desk .

p (cok —co+i I )(cok —ci)+cop+iI )

(17)

h

2m ] Q+ 2m 2

1 f(x,y) =Eg(x,y),er

From Eq. (16) one sees that

0 if Q)k ) CO&

2m(m, —~„)'"
h

if 67k (M&
(18)

E &0. (21)

For a Coulomb field, the separation of variables can be
written in parabolic coordinates, which are defined as

x =(gg)'/ cosP, y =(g'2))'/ sing,
z= —,'(g —7)), r=(x +y +z )'/ =

—,'(/+2)),
Since k „is constant, it is replaced by E. The second

term of Eq. (17) will be a slowly varying function of co

near co, which we call C (a constant). Therefore, Eq. (17)
becomes

or, conversely,

r =
—,'(g+g), g=r +z, ri=r —z . (22)

A (co)= —C

f (COk COg )+K desk .
~, (mk co+i —I )(co1, co+cop—+i I )

The principal effective mass at the M& saddle point in
20 has one positive and one negative component so that
the effective-mass equation in parabolic coordinates can
be written as

(19) a a@
2m, g+~ ag

h 4
2m2 g+g Bq Bg

7l

The above integral will be evaluated with the help of
the same contour discussed in Sec. II. The poles are at
cok =~—iI and mk =co—~o —i I . Then the Raman am-
plitude at the M& edge for free e-h pairs for all values of co

becomes

K sinOz
A (co) = —C+

~p [(6) cop cog ) + I

2+, ,
1(=IzIli .

The separation is accomplished by substituting

4(k n)=f1(k)f2(n»
so that Eq. (24) can be separated into g' and g:

(23)

(24)

sinO&

[( )2+1 2]1/4
df1 m1

fl dg g i2+ m, IEIg

2h2

iK cosO)+
[( )2+ I 2]1/4

df, m2IElg+
f2 dq dpi 2h2

(25)

where

cosO2

[(co—cop —
cog ) + I ]'/ (20) where v is the separation constant and is determined by

the boundary conditions. Thus the equations for f, and

f2 are

O =—tan
1

1

d df,
dg dg

m, IEIg

2h

m)
+U f, =O

eh
(26)

O =—tan
1

2 2 CO COO COg

B. Exciton eft'ects: Coulomb interaction

Coulomb interaction between e-h pairs at the saddle
point leads to metastable (hyperbolic) excitons. The na-
ture of energy surfaces are different at the saddle point
which will complicate the theory of metastable excitons.

m2IEIg
v f2=0 .

2A

r

df,
y +

y dy dy y
f, =O,1

4
(28)

d df2
(27)

d'g

With the condition m z
' =0 and m

&

=m & 0, only Eq.
(26) will contribute to the solution. Therefore, the energy
levels may be determined by substituting y =a/, so that
Eq. (26) becomes
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where

and

2mIEI
h

1 Pl

eh

(29)

(30)

C&(x,y) = t'ai„(x;y)P„(y), (36)

where g is the solution of Eq. (21) and p is to be found
from the one-dimensional equation

We know that the Schrodinger equation in two dimen-
sions is given by Eq. (6},and so one can calculate its solu-
tions for a finite mass m2. This can be done by the adia-
batic approximation. We therefore put

yL" +(1 y)L'—+(A, ,
—

—,')L =0 . (31)

The terminating solutions are the associated Laguerre
polynomials and they are L„(y), where

1

n 2 (32)

The asymptotic behavior is dominated by the factor
e +—' ~, where we must take the negative sign in the ex-
ponent. Substituting f, (y)=e ' ~L(y) into Eq. (28), we
obtain an equation for L:

1 a2
+E„P(y)=EP(y),2' 2 Qy

(37)

which also gives the energy spectrum. The function E is
the potential energy for the "particle" m2, if m2 &0, and
is given by Eq. (33). The WKBJ estimate (which cannot
be applied for energies close to the top of the barrier)
gives the line shape using the WKB approximation.

Then the corresponding analytic expressions are, for
E &E„( 2m/9—e ),

is a positive integer of zero. Combining Eqs. (28), (29),
and (31), the energy levels are given by Iy (0) '= Iy, (0) ' Im, I

—1/2
Q2 E+12' (38)

E. =I E. I= —— 2@7

e (2n&+I)

1/2

and the normalized wave function for
dimensional ' hydrogen atom is given by

n, —ImI!
(r)=

~a (n, + —,') [(n, + ImI!)]
—1/2p m~L 2~m~

( } im P
(n)+~m() p e

(33)

a two-

(34)

2

E+1
—1/2

1/2
Im, I

X exp
3 Pl

' 3/2

E+1
2@i

(39)

and for E (E„(—2m /9e ),

8 2

Iy, (0) '=
ere (2n, +1) (35)

where r(g, ri, o) is denoted by r, p = r/a A, , a = eh /m, and
X1=n1+ ~.

Thus the corresponding wave functions in our case will
be

The results are similar to that of Velicky and Sak. As
Im2 increases, the adiabatic approximation becomes
valid, and the intensity of these singularities, rapidly de-
creases. With the help of Eqs. (11), (17},and (39), the Ra-
man amplitude for interacting e-h pairs at the M1 edge
can be written as

I /2

cok + 1 exp2' 3

(cubi, co+i I )(coi, —coo+i I—)

K(coi, —co )
P12

m
+I di'ok

8 2
A(io)= g

me (2n, +1) [co —co —IE„(0)I+iI ][io io+ioo —IE„(0)I—+il ]
' 1/2

m2I e cgk +1
Pl 201

' 3/2

(40)

where cok =Ek/h and the Raman amplitude h is taken as unity. The value of the integral is evaluated and the Raman
amplitude becomes, at the M1 edge,

A (co)=C+no e-h term [given by Eq. (20)]+ 1 1

[co —co+coo —IE„(0)I+iI ]

+ ( T cosO, cos82sin82 —T sinO, cos82cosO~+ T sin82cosO, cos82+ T sinO, sin82sinO~ —T'cosO', cosOzsin83
Bcop

—T'sinO', cosOzcos82 —T'sinOzcosO', cos82 —T'sinO', sinOzsinO& )

KA+ ( T cosO, cos82cosO&+ T sinO, sin82cosO&+ T sinO, cos82sinO~ —T cosO, sin82sinO&
Bcop

—T'cosO', cosOzcos82 —T'sinO&sinOzcosO&+ T' sinO&cosOzsinO&+ T'cosO'&sinOzsin83) (41)
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for all values of co. Here

8m

me (2n&+1)
1/2

3 ' =exp[ B /3—r z cos(38@)],
T r

—1/2r —1/2 g—r1 r2

r =[(co —co) +I ]'

r2=[(Ceo+ I) +(CI ) ]'

C=e /2m,
1 1 CI

2 2 C + 1

8~ =B /3r 2 sin(382),

Tr ~
—1/2 r —1/2g ir—r1 r2

ing Eqs. (40) and (41). The damping factor is chosen as
I =5 meV for both cases. The noninteracting case shows
a double resonance corresponding to incoming and out-
going photon resonances near the continuum (M& edge).
Incorporation of the e-h interaction via the Coulomb po-
tential leads to metastable (hyperbolic) exciton reso-
nances near the M1 edge. Typical resonance structures
associated with these resonances appear (co,„and
co,„+coo) in the RRS amplitude. This is analogous to the
resonant scattering owing to hydrogenic excitons near
the Mo edge, as discussed in Sec. II. In addition to this
resonance, scattering due to continuum states takes place
near the M, edge. This situation is similar to that of the
dual relationship between the local and band aspects,
which results in the metamorphosis of the critical
points. ' ' The effect of the e-h is to broaden the reso-
nance curve and smear the singularity between co and
co +coo. At the M, edge (Fig. 2), the effect of the e-h in-
teraction is more prominent compared to the Mo edge
(Fig. 1) because of the nature of the singularity.

IV. EXPERIMENTAL PROCEDURE

3"=exp( B /3r '2 —cos382),
1 1 I 1 1 CI

0, =—tan 02= —tan
2 co& + coo co 2 Cco Ccoo+ 1

and

83= [B/3r'~~ sin(382)] .

Figure 2 shows the Raman intensity of a typical two-
dimensional semiconductor at the M1 edge. The dashed
line corresponds to the noninteracting case. 3 (co) is
given by Eq. (20) for the M, edge. The solid line
represents the effect of e-h interaction and is obtained us-

——--—no-e-h
in teraction

A single crystal of InSe was grown by using the
modified Bridgman technique from high-purity elements.

Resonant Raman-scattering experiments were done in
the backscattering geometry using standard techniques.
The scattered light was analyzed by a double monochro-
mator and the signal detected by photon-counting elec-
tronics.

Resonance near the excitonic transition energy was
studied by using various lines of an argon-ion laser and
temperature tuning the gap. For temperature tuning
the gap, the samples were mounted in a closed-cycle cry-
ostat and the temperature was accurately measured using
a calibrated gold-Chromel thermocouple. The incident
laser power was kept below 100 m%' to avoid sample
heating effects. The lifetime broadening of the phonon
modes does not vary appreciably with the temperature,
and hence the damping factor is constant in this tempera-
ture range. The absorption-corrected Raman eKciency
was normalized to the 520-cm line of silicon, which
takes care of the m dependence.

~ 19-
I

C5

~ 17-
Vl

~ 15

E
ex ~0& ~ & '~+~ '

il & 9 q /

11
1.98 2.0 2.02 2.04 2.06 2.08 2.10 2.Q

Energy (eV)

FICs. 2. First-order Stokes-Raman spectrum of a typical 2D
semiconductor at the M& edge. The dashed line corresponds to
noninteracting e-h pairs. Coulomb interaction is used to incorp-
orate the eftect of e-h pairs and is represented by solid line. The
fitting parameters are described in the text.

V. RESULTS AND DISCUSSION

Figure 3 shows the resonance Raman spectrum at 77 K
of Bridgman-grown InSe using the A, =4880 A line in the
backscattering geometry. The main features observed
here are at 180, 203, 213, 230, 406, 412, and 430 cm
The first-order phonons are observed between 100 and
200 cm ' and the second-order spectrum extends from
380 to 450 cm '. In Table I the observed phonons are
listed along with other published results. The features at
203 and 213 cm ' were originally assigned to E'(TO) and
E'(LO) modes, and their presence implies E-polytype. In
fact, the total number of five modes in the first-order
spectrum also confirms the c-polytype nature. The sixth
mode, expected at 17 cm ', could not be observed be-
cause of Rayleigh diffusion. The modes at 118, 180, and
230 cm ' are the nonpolar modes and the modes at 203,
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77K

Theory e-h interoc tion

Expt. [o o o~, (l„)=15meV

~ex q ~ex+~o
I/
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2.65
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0
FICx. 5. Near-resonance Raman spectra of X=5145 A at 300

0
K and for A. =4880 A at 77 K. 06'-resonance Raman spectra for
X=5145 A at 77 K and for X=4880 A at 300 K.

Figure 5 shows two examples of near-resonance spec-
0

tra: one excited by the 5145-A line of the argon-ion laser
at 300 K and the other by the 4880-A line at 77 K. The
5145-A line is about 10 meV in energy below the E

&
exci-

0
ton, and the 4880-A line is 5 meV above at the respective
temperatures. It is to be mentioned here that the polar
modes vanish fast for laser energies away from resonance.
Hence the data acquired would be insufhcient to plot a
realistic resonance curve. The resonant behavior at 200
and 230 cm ' can easily be reconcilde with predictions of
Martin and the experimental observations ' reported
on forbidden modes. That is, near resonance when q-
dependent scattering predominates, infrared active modes
that are normally forbidden can become Raman active.
In InSe the E'(LO) and E'(TO) phonon modes are exam-
ples of forbidden phonon modes that become active when
resonance is approached and q-dependent scattering
predominates. Such a selection-rule breakdown has also
been predicted by Martin and observed previously
in other compounds.

The Raman eKciency is evaluated with corrections for
absorption by taking absorption data from published
work.

The resonance curves for the three nonpolar modes at
117, 180, and 230 cm ' are plotted in Figs. 6, 7, and 8,
respectively. In order to thoroughly study the resonance,
the Raman spectrum was recorded using argon-ion laser
lines and temperature tuning the gap. By varying the
temperature between 300 and 77 K, it was possible to
tune the exciton gap from 2.42 to 2.535 eV.

Kuroda and Nishina" have reported the resonance be-

FIG. 6. Resonance curve of InSe at 77 K for hoop=15 meV.
The solid line shows the e-h interaction using Eqs. (40) and {41),
taking hcog=2. 88 eV, ~E, (0)~ =0.345 eV, and I =5 meV. The
open circles represent the experimental points. The Raman in-
tensity is plotted on a log&p scale.
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FIG. 7. Resonance curve of InSe at 77 K for hct)p=22 meV.
Other parameters are same as in Fig. 6.

havior of nonpolar modes. In order to explain their re-
sults, they used the usual theory of Zeyher, Ting, and Bir-
man' and attributed the E& excitonic peak in InSe to
three-dimensional Mo excitons. However, these authors
have not considered the e6'ect of dimensionality on the
M& edge, which would be reflected in a resonant Raman
experiment. The excitonic continuum as well as the
bound states should be involved in the process as the res-
onant intermediate states. Their experimental results
(Fig. 2 of Ref. 11) did not show double-resonance behav-
ior.

A careful examination of their results would show that
the number of experimental points in the region of our in-
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FIG. 8. Resonance curve of InSe at 77 K for hco0=28 meV.
Other parameters are same as in Fig. 6.

terest, viz. , 2.52 —2.60 eV, are too few. Hence it is possi-
ble that the fine structure of double resonance would have
been missed and because of which their resonance peak
appears highly asymmetric. Based on the asymmetry and
apparent antiresonance seen in their results, they chose a
hydrogenic Mo exciton as the intermediate state, whereas
the absorption measurements of Abutalybov and Belle
clearly identified the formation of hyperbolic excitons
near the M

&
saddle point. Furthermore, in GaSe,

which is similar to InSe in many respects, a double reso-
nance is observed.

In our experiments and theory, we have concentrated
on the problem of exploring the resonant nature of the E

&

energy gap. We have formulated an approximate theory
to calculate the Raman amplitude at the M, edge in two
dimensions, both for free e-h pairs as well as for Coulomb
correlated pairs as intermediate scattering states. A de-
tailed discussion of the theory is given in Sec. III.

Together with the experimental points, our theoretical
predictions of the resonance behavior has also been plot-
ted in Figs. 6—8 for the nonpolar phonon modes. The
solid line is plotted using the above equations [Eqs. (40)
and (41)j, taking hen =2.88 eV, @=6.5, hI =0.006 eV,
K = I, and E, (0) ~

=0.345 eV for interacting e-h pairs,
which shows the double-resonance behavior correspond-
ing to incident- and scattered-photon energies equal to
the E& excitonic energy. Experimentally, also, we have
observed the double resonance which matches well with
our theory. Dimensionality plays an important role in

the Raman-scattering process, which is clear from the ex-
cellent agreement of the experimental and theoretical re-
sults. From the results obtained in this study, we contend
that metastable (hyperbolic) excitons at the M, edge act
as intermediate scattering states in the Rarnan process.

VI. CONCLUSIONS

We have presented a detailed theory of resonant Ra-
man scattering near the critical points in two-dimensional
semiconductors. A representative sample from a quasi-
two-dimensional layered semiconductor was chosen for
the experiments, emphasizing the dimensionality-related
aspect of the RRS process.

For two-dimensional semiconductors, the Raman am-
plitude is calculated at Mo and M, singularities for free
as well as interacting e-h pairs. The calculated Raman
amplitude at all singularities for free e-h pairs shows a
double-resonance behavior at co and co +coo correspond-
ing to incoming and outgoing resonances. Double-
resonance behavior is also observed near the discrete ex-
citon energies co,„and co,„+coo (coo is the phonon energy)
at the Mo edge for Coulomb interaction between
electron-hole pairs leading to a bound state. Further-
more, in addition to this resonance, scattering due to con-
tinuum states near the Mo edge is also observed. At the
M& critical point, no bound state has been reported previ-
ously. The Coulomb interaction between e-h pairs gives
an adequate description of discrete as well as continuum
states. This interaction leads to the existence of metasta-
ble (hypberbolic) excitons near the M, edge, and the reso-
nance behavior is analogous to that in the Mo edge with
interacting e-h pairs.

The experimental resonance curves for nonpolar modes
in InSe near the excitonic transition E& show a double-
resonance structure corresponding to co, and co„+coo.
Earlier workers had interpreted their results based on
Raman-scattering theory, considering three-dimensional
hydrogenic Mo excitons as intermediate scattering states.
These theories grossly neglect the e6'ect of dimensionality
on the M, edge, which would be rejected in RRS experi-
ments. The results of our theoretical treatment of the
RRS amplitude at the Mi edge in two dimensions, which
considers the excitonic continuum as well as the bound
states (hyperbolic excitons), agree well with the
aforementioned experimental resonance curves, em-
phasizing the hyperbolic excitons as the intermediate
scattering states. The polar modes of InSe are observed
near resonance only. Away from resonance their intensi-
ty decreases drastically.
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