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Hydrodynamic electron-transport model: Nonparabolic corrections to the streaming terms
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This paper presents a hydrodynamic model suitable for studying hot-electron transport in semicon-
ducting materials with nonparabolic conduction bands. The model presented is based upon a unique
derivation of the moments of the Boltzmann-transport equation for the streaming (collision-independent)
terms. This derivation implements an efficient and compact mathematical formalism appropriate for
electrons under the influence of high electric fields and nonstationary conditions. The theoretical inves-

tigation also introduces a distributional form with nonparabolic properties to precisely define the result-
ing nonparabolic streaming parameters. The final set of model equations is exhibited in a fashion to
clearly show the correction factors to the more familiar hydrodynamic model applicable for the
constant-effective-mass case. In general, the hydrodynamic (or conservation) model contains pure trans-

port terms that are treated as being independent of the specific dissipation mechanisms and collision
terms to directly account for the influence of scattering. Since the collision terms are almost always
treated phenomenologically using a relaxation-time approximation, our formulation of the streaming
terms should significantly improve the overall accuracy of the approach. In addition, this paper presents
the results of an extensive investigation of the assumed ansatz distribution and resulting nonparabolic-
model parameters using an elaborate Monte Carlo model. The Monte Carlo technique was used to gen-
erate comparison electron distributions and exact values for the nonparabolic transport parameters for
stationary and nonstationary electronic structures. In all cases, excellent agreement was found between
the Monte Carlo —calculated parameters and the derived nonparabolic-model terms. The Monte Carlo
calculations also revealed that the ansatz distribution used in the derivation represented a significant im-

provement over the more familar displaced Maxwellian. Therefore, this model should prove very valu-

able for studying electronic-device structures operating under high-bias conditions.

I. INTRODUCTION

During the past two decades there has been an in-
creased use of hydrodynamic conservation models to in-
vestigate nonstationary and nonequilibrium electron dy-
namics in submicrometer semiconductor devices. '

These models, referred to by some' ' as the hydro-
dynamic equations due to their similarity to the Euler
equations of fluid dynamics' ' used in classical hydro-
dynamics studies, are based upon higher moments of the
Boltzmann-transport equation (BTE). The popularity of
the hydrodynamic electron transport theory is due to the
physical and practical attributes of the approach. The
hydrodynamic models have the capability to include non-
stationary and hot-electron effects' and hence are superi-
or to simple drift-diffusion (extreme thermal equilibrium
approximation and local-electric-field-dependent case)
models. While Monte Carlo methods that solve the full
BTE can easily incorporate complicated band structures
and detailed scattering rates, hydrodynamic models re-
quire much less computation time to generate solutions
and possess macroscopic terms which offer important
physical insight. Thus the hydrodynamic approach ofFers
much flexibility for future theoretical electron device
studies.

Stratton introduced the general conservation or
momentum-energy balance approach to investigate hot-
electron transport in semiconductors. The analysis per-

formed by Stratton utilized a spherical harmonic expan-
sion with the relaxation-time approximation to define a
nonequilibriurn distribution which was only slightly an-
isotropic. This analysis replaced the nonequilibrium dis-
tribution by a Maxwellian distribution function in some
terms of the BTE. Thus some of the streaming terms in
the final transport equations were suppressed. Blo-
tekjaer ' extended the theory, using a more general
analysis which retained all terms of the moment equa-
tions, and derived relations applicable to a two-valley
semiconductor. These previous investigations were appl-
icable to semiclassical transport and assumed homogene-
ous materials with parabolic conduction bands.

Since the early work of Stratton and of Blotekjaer, the
hydrodynamic approach has been utilized extensively to
study various transport phenomena in many different
Si, ' ' CxaAs, ' ' and heterostructure" ' electron
devices. The particular material, device configuration,
and bias conditions under consideration have led to a
variety of acceptable simplifications and to a hierarchy of
approximate electron-transport models (for example, see
Sandborn, Rao, and Blakely and references therein).
Also, much efFort has been directed toward developing
numerica1 techniques to solve the hydrodynamic trans-
port model self-consistently with Poisson's equation for
many semiconductor structures. This has included
methods for solving the problem with and without time
dependency and in multiple space dimensions as well
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as an interest in special mathematical problems such as
shock waves ' and acceptable boundary conditions.

Recently, investigations into complex electronic struc-
tures have led to a dramatic evolution of the hydro-
dynamic electron-transport theory. Widiger et al.
developed a hydrodynamiclike model suitable for study-
ing high-electron-mobility transistors which included
both hot-electron effects and conduction outside the
quantum subband system. This model was based on an
approximate form of the first four moments of the BTE
similar to that of Stratton. Azoff' incorporated the
heterojunction energy-band rules of Marshak and Van
Vliet to the hydrodynamic transport equations and used
this model to study Al„Ga, As/GaAs heterojunction
bipolar transistors. This model was based on the first
three moments of the BTE with a Fourier law relation
used to terminate the moments and generate an approxi-
mate form more valid for the general nonequilibrium
transport case.

Grubin and Kreskovsky' constructed a set of quan-
tum balance hydrodynamic equations applicable for elec-
tron transport in mescoscopic structures. Their model
was derived from the general moment equations of Stros-
cio using the displaced nonequilibrium Wigner distribu-
tion function of Ancona and Iafrate. In their paper, the
first two quantum balance equations were applied to a
resonant tunneling diode and solutions were generated
which showed the occurrence of a negative differential re-
gion. Later, Woolard et al. presented solutions for the
full quantum balance equations applied to an ultrasmall
electron device analogous to that of Grubin and Kreskov-
sky. These results showed that the quantum potential,
which was incorporated through density gradients, par-
tially canceled the effects of the barrier potentials to per-
mit carrier transport even though a classical solution did
not exist.

There has also been interest in improving the accuracy
of hydrodynamic models for high-field applications where
electron energies may become very large and the electron
gas may reside far from equilibrium. Stewart and Chur-
chill have recently introduced a fully nonparabolic hy-
drodynamic model for describing hot-electron transport
in GaAs. This model attempts to account for nonpara-
bolicity and general distribution functions which become
important for the extreme nonequilibrium or hot-electron
transport case. However, this analysis includes the intro-
duction of heuristic effective-mass parameters which are
necessary to relate average momentum to average veloci-
ty as well as relating an effective scalar temperature to
thermal and displacement kinetic-energy components.
Furthermore, it is necessary to derive this effective mass
from stationary Monte Carlo calculations. Also, Azoff
has developed a model for electron transport in nonpara-
bolic degenerate semiconductor heterostructures. This
analysis, which simultaneously addressed the issues of
position-dependent energy bands, high-field energy-band
effects, and degenerate statistics, is based on the first four
moments of the relaxation-time approximation
Boltzmann-transport equation. However, the results
presented were primarily restricted to the thermal equi-
librium limit with many transport terms derived from ap-

proximate thermodynamic principles such as electronic
heat capacity and the isothermal approximation. Also,
the choice of moment operators and subsequent approxi-
mations for this nonparabolic analysis lead to a less than
optimum form for comparing the results for the nonpara-
bolic case to the general parabolic hydrodynamic trans-
port equations.

Except for the last few examples, most of the current
hydrodynamic transport models either directly or in-
directly assume electron transport occurs in parabolic
conduction bands and that this ensemble of electrons
have the form of a displaced Maxwellian k-space distribu-
tion. However, neither of these assumptions is valid for
most high-mobility compound semiconductors (such as
GaAs) under moderately high electric fields. Previ-
ously, we presented a hydrodynamic model that ac-
counted for both nonparabolicity and nondisplaced
Maxwellian distribution functions. This model made the
extreme heuristic assumption that the effective mass,
temperature tensors, and heat Aow vector could be de-
scribed by stationary Monte Carlo —generated parameters
which only possessed energy dependence. Subsequently,
simulations using this model indicated that including a
dependence on the displacement component of the ki-
netic energy was important both physically and in regard
to generating stable numerical solutions to the problem.
Hence the goal of this paper is to develop a more general
transport model which is less dependent on externally
generated transport parameters and which approximates
hot-electron transport well in nonparabolic semiconduc-
tor conduction bands.

This paper presents an alternate formalism for deriving
a nonparabolic hydrodynamic transport model that can
model hot-electron transport in semiconductors. Section
II presents an approach for deriving this model. The
model equations are developed by applying a unique set
of moment operators [@o(k)=1; a constant,
@,( k ) =u(k ); the nonparabolic velocity 4&2( k )
=

—,'m(k)u(k) u(k)=E(k); an approximation to the par-
ticle energy] to the collisionless Boltzmann-transport
equation. The operators, used in this analysis, represent
a significant improvement in the development of the hy-
drodynamic transport model since they lead to a more
compact mathematical form. This resulting form can be
manipulated more easily and reveals clearly the allowable
simplifying approximations. Together, the operators and
acceptable approximations lead to a model that is pri-
marily in terms of the familiar averages; electron concen-
tration, average electron velocity, and average electron
energy. The remaining integral terms involve only aver-
age velocity, momentum space velocity, and a momen-
tum space effective-mass term. This compact nature is
utilized later to develop an appropriate physical and
mathematical closure for the system.

In this analysis, specific collision terms are omitted.
This is done to permit a concise focus on the streaming
(collision-independent) terms which evolve from the ap-
plication of nonparabolic conduction bands. In general,
macroscopic models (hydrodynamic, drift-diffusion, etc. )

used to approximate electron dynamics in semiconduc-
tors contain pure transport terms which are considered in-
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dependent of the specific dissipation mechanisms.
In fact, dissipation does play a role in determining the
final form for some of the streaming terms. The effects of
scattering on these terms are introduced through certain
characteristics of the final electron distribution function
(see Sec. III). This fact prohibits an exact macroscopic
treatment for arbitrary electron-transport phenomena.
Fortunately, electron transport can be adequately
modeled, in many device structures, by establishing ap-
proximate collision-invariant streaming terms. ' This
approach allows the question of how nonparabolic bands
and specific scattering mechanisms affect the average loss
terms to be addressed as a completely separate issue.
Therefore this course is taken to simplify the current pre-
sentation. The collision terms, which are almost always
treated phenomenologically using a relaxation-time ap-
proximation, have been developed for a nonparabolic
multivalley system (GaAs) and presented elsewhere. '

The system of equations, which result from Sec. II, re-
quires an additional mathematical closure before it can be
used to study electron transport. In Sec. III, an
intuition-based distribution function is proposed as a con-
stitutive (essential) relation to close the moment equa-
tions. This ansatz nonparabolic distribution function,
which is derived in velocity space for mathematical con-
venience and approximates some of the characteristics of
the true nonparabolic distribution function, is then ana-
lyzed and used to develop a set of transport parameters.
These resultant transport parameters are shown to de-
pend only on the nonparabolicity parameter and physical
quantities: electron concentration, average electron ve-
locity, and average electron energy.

Throughout Secs. II and III, efforts are made to retain
a mathematical form that is similar to the full hydro-
dynamic transport equations applicable to parabolic
bands and a displaced Maxwellian distribution function.
This more basic model, which has been widely utilized to
study electronic devices, has become very familiar to the
scientific community interested in transport in semicon-
ductors. This similarity of the present model to the more
familiar form should assist in illustrating the primary
effects of nonparabolicity on the hydrodynamic transport
equations and on how nonparabolicity will affect macro-
scopic electron transport.

The results from two independent Monte Carlo trans-
port models ' are used in Sec. IV to evaluate the non-
parabolic transport parameters. Both Monte Carlo mod-
els were used to study transport in GaAs and included
most of the important scattering mechanisms. These
models were used to investigate electron transport in
both stationary (uniform electric field) and nonstationary
(ballistic diode) environments. The results of these stud-
ies show that there is excellent agreement between this
nonparabolic transport model and the Monte Carlo cal-
culations. Hence this nonparabolic transport model
presents a viable alternative to studying realistic
electronic-device structures operating under high-bias
conditions.

II. GENERAL MOMENT EQUATIONS

Consider the collisionless Boltzmann transport equa-
tion in terms of the phase-space variables (r, k, t). The

developments presented here are independent of the
specific scattering phenomena which will be addressed
later. Hence the BTE is

af F
r g k+u V f+—V f=O,

where f(r, k, t) is some arbitrary electron distribution
function. Invoking the efFective-mass theorem (also
called the quasi-free particle approximation ) for elec-
tron motion defines the electron moment as p=Ak and
identifies the electron group velocity as

Br 1=u(k)= —V&E(k) .
fjt k

The driving force on the electron is F=Bp/Bt and the
final form of Eq. (1) is established.

The overall goal is to study moments of the BTE, Eq.
(1), for the case of nonparabolic conduction bands. Thus
the first step is to develop a general moment equation.
This is achieved by multiplying Eq. (1) by an arbitrary
vector (or scalar) operator 4&(k) and integrating with
respect to k to obtain

d k+ f C&u V,f d k+ f@—Vkf d k=O .

By noting that N is a function of k alone and invoking
the assumption that f approaches zero rapidly enough in
the limits of integration such that f Vi,(@f)d k is negli-
gible, one obtains the general moment equation

f4f d k = —V, f C&u f d k+ —ffV„@d k (4)

in terms of the driving force F, k-space-dependent elec-
tron velocity u(k), and an arbitrary vector moment
operator @(k). Equation (4) represents the mathematical
form required to develop the nonparabolic conservation
or hydrodynamic transport equations.

For this nonparabolic model, the Kane energy-band
dispersion relation for nonparabolic bands will be uti-
lized. This relation is given by

Ak =E(k)[1+aE(k)] .
2m

The specific choice of operators will determine what aver-
age physical quantity is conserved in each moment equa-
tion. For the first (or zeroth order) moment, let @0(k)= 1

in Eq. (4). This gives

8
at ffd k= —V, fufd'k.

This is the familiar continuity equation

Bn = —V, (nv),
Bt

where n = ff d k is the conduction-band electron densi-

ty and v=(1/n ) Ju f d k is the average electron veloci-
ty. The continuity equation is unchanged by the nonpar-
abolic band-structure description.

Traditionally, to generate the second (or first-order)
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moment of the BTE, one lets 4,(k) =p=iiik (or the para-
bolic band crystal momentum expression p raised to first
order) to develop a conservation-of-momentum equa-
tion. However, when considering nonparabolic bands,
choosing another factor for the second moment leads to
an improved, more compact, mathematical form. This is
true primarily due to the eventual need to define the mod-
el equations in terms of an average velocity (the full
ramifications of this approach will be clearer after the de-
velopment of the third moment equation). Hence the re-
sulting equation can be manipulated more easily and sim-
plifying approximations can be seen more clearly. Since
there is a clearly defined velocity from Eq. (2),

C&, (k) =u(k)

is chosen here as the second moment operator. The use
of the nonparabolic velocity u(k) for the first-order mo-
ment operator is a significant improvement in the devel-
opment of the hydrodynamic transport model. Applica-
tion of the Kane dispersion relation results in

2oA k, k

2Qg2k2
m

)fc

. =2am*u;u~ &2am*lul

(15)

For lul =5.0X 10 cm/s, m *=0.6X 10 ' kg, and
a=0.61 eV ' one has lA(k)k;k~l &0.12. Clearly, the
last matrix in the sum of Eq. (14) represents a higher-
order perturbation on the tensor of Eq. (12). Therefore
the off-diagonal terms, which would lead to an additional
level of complexity, will be neglected and the remaining
diagonal terms will be treated to second order in k to re-
sult in the following simplification:

Vi,u(k) = [I] . (16)

the set [x,y, z]. Therefore, from Eq. (9) these terms may
be bounded as

lA(k)k, k, l

@,(k) =u(k) = A'k

m(k)
(9)

(10)

where from Eq. (5) and the definition for electron velocity
' 1/2

em(k)=m* 1+
m

Using Eq. (16) in Eq. (11) leads to

m(k)
—ff Vi,u(k)d k=Ff d k=n

where

m
(17)

Using Eq. (9), @i(k)=u(k) in Eq. (4) results in

fu(k)f d k= —V, f u(k)u(k)f d k

+—.ffVku(k)d'k .

To simplify Eq. (11), consider the last term on the right-
hand side. According to previous definitions, the in-
tegrand contains the tensor

—V f u(k)u(k) f d k = —V ~

[p, ]
+nvv

m
(19)

where vv is a dyadic product and the effective velocity
pressure term is

d k.
m(k)

The first term on the right-hand side of Eq. (11) is in the
identical form as the parabolic band or classical case and
can be manipulated in the same manner to obtain

V„u(k)

where

1+A (k)k.' A (k)k„ky A (k)k. k,

A(k)k k 1+A (k)k A(k)k k,

A(k)k, k„A(k)k, k 1+A(k)k,

(12)

[P„];J=m*ff[u;(k) —v;][u~(k) —v. ]d k .

However,

V, (nvv)=vV, (nv)+nv V,v;
thus

—V, fu(k)u(k)f d'k

(20)

(21)

20.A

2o.A' k

[P,]= —V, vV, (nv) —nv V,v . —

Equation (12) can be written as

k

V„u(k) = [I]+A(k) k~k„

k, k

kk kk,
k

krak,

k, k k,

. (14)

a uk d k= nv =n +va av an
at at at at

(23)

which can be combined with Eq. (7), Bn/Bt = V, (nv), — .
to obtain

Expanding the first term on the left-hand side of Eq. (11)
yields

Any one of the terms in the last matrix of Eq. (14) is «
the form A(k)k, k, where i,j can assume any value of

a u(k)f d k=n —vV ~ (nv) .av
at ai
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Combining Eqs. (17), (22), and (24) culminates in the
second moment equation given by

.V, .[P,] .
nm*

(25)

The second moment of the BTE given by Eq. (25),
which has been derived using the nonparabolic velocity
u(k) and acceptable simplifications, has the identical
form to the parabolic or constant effective-mass case, '"
with the exceptions that m * replaces m * and the
definition of P„utilizes a more complicated definition of
the particle velocity u(k). As in the parabolic case, addi-
tional requirements must be made to simplify P„(and m '
for this nonparabolic model) and these will be discussed
in Sec. III.

The third (or second-order) moment is usually pro-
duced by choosing @z(k)=E(k)=(m*/2)lul (or 2m*p
for parabolic bands; thus second order in momentum p)
to result in an energy conservation equation. For non-
parabolic bands, E(k) is the positive root of
(fi k ) /(2m '

) =E(1+aE ). This leads to a very trouble-
some formulation when one attempts to define the mo-
ment equations in terms of familiar physical averages.
Thus a slightly more transparent path is taken. Energy is
chosen as the third moment operator; however, the ap-
proximation E,(k) =E(k) is chosen to once again pro-
duce an improved mathematical form more conducive to
analysis and simplification. The chosen operator is
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FIG. 1. Evaluation of E„ the approximation used for the
particle energy, vs E for values of conduction-band nonparabol-
icity parameter.

I+(k)1 =am* ul'~O. O6 (31)

for the same set of typical parameter values as before.
Therefore, approximating Eq. (29) to third order in k
yields

Thus the last term in Eq. (29) may be bounded by per-
forming an analysis similar to that of Eq. (15). Doing this
leads to

@2(k)=E,(k)= —u(k) u(k),m(k)
(26)

—ff VtE( k) d' k=F.f u(k)f d'k=F v .
F

(32)

which has a familiar kinetic-energy form [(m /2)u ] and
is second order in u(k). Before continuing, the error in
using this approximation may be bounded by noting that

The second term in Eq. (28) can be manipulated in the
same manner as the classical or parabolic case to obtain

—V, f u(k)E, (k)f d k = —V, (v-[P ]+q)

k) 1+aE(k)
1+2aE(k) (27) nv V,w ——wV, (nv) . (33)

For a typical value of a=0.6 eV ', Eq. (27) yields
E, =0.812E for E=0.5 eV. Therefore this approxima-
tion is better than 80% accurate up to energies of 0.5 eV.
Figure 1 shows the approximation to the energy for
several values of a. The agreement is sufficient for our
purposes since above 0.5 eV the Kane dispersion relation
does not accurately predict the true band structure.

Using Eq. (26) as an approximate definition of electron
energy, the third moment of the BTE becomes

fE,(k)f d k= —V, fu(k)E, (k)f k

[P~];1=fm(k)[u;(k) —u;][u.(k) —u ]fd k

and the effective heat-Bow vector is

(34)

q, = f [u, (k) —u;][u(k) —v] [u(k) —v]f d k .

Here the definition nw= JE,(k)f d k has been used as
the total average electron kinetic energy, with the ap-
proximation E,(k) =E(k). In Eq. (33), the effective ener-
gy pressure term is

+—ff Vt,E, (k)d k .

Concentrating on the integrand of the third term one has

The first term of Eq. (28) becomes

a fE(k)fd k
anw aw+ an

at Bt Bt Bt
(36)

V„E,(k) =Au(k)[1+%(k)],

where

(29)
which can be combined with Eq. (7), Bn /"dt = V, (nv), —
to obtain

—aA k

2aA km*
m

—2aE(k) [1+aE(k) ]
[1+2aE(k) ]

{30)

Bt fE,(k)f d k =n —w[V, .(nv)] .
at

(37)

Using Eqs. (32), (33), and (37) reduces the third moment
equation to
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8pl = —V, (nv),
Bt

Bv F= —v V,v+
Bt nm*

(39)

(40)

Bl8 = —v V w+F v ——V (v [P ]+q),1

Bt fl
W

where

n=ffd k,
nv= f u(k)f d k,

nw= f u(k) u(k)f d3k,m(k)
2

(41)

(42)

(43)

(44)

BM 1= —v V,w+v. F——V, (v [P„]+q) .
Bt n

From Eqs. (7), (25), and (38), the nonparabolic hydro-
dynamic collisionless transport equations for conserva-
tion of particles, average momentum, and average energy
in Lagrangian form' are

equations.
The use of a predefined distributional form is often

viewed as being more restrictive and less general than
some of the previous alternatives. Yet many derivations,
which seek to develop models applicable for more gen-
eralized distributions, partially implement closure rela-
tions with properties @rouen true only for specific distri-
butional forms. ' Extending the electron-transport
model in this manner has merit and leads to results which
are more physically accurate. However, mixing assump-
tions in this manner can obscure regions of validity for
the complete model. Defining a specific form of the distri-
bution function is the most complete approach and easi-
est to evaluate from both a physical and mathematical
point of view. Therefore this is the approach considered
here.

The distribution most frequently chosen to describe
nonequilibrium transport phenomena is the displaced
Maxwellian function. For the case of parabolic conduc-
tion bands this distribution function, in momentum
space, is

d k,
m(k)

[P„]=m*f [u(k) —v][u(k) —v]f d'k,

(45)

(46)

nA
DM(k)=

(2vrm *k~ T, )3~
exp

2m *k~ T,
(49)

[P„]=fm(k)[u(k) v]—[u(k) v]—f d'k, (47)

q= f [u(k) —v][u(k) —v] [u(k) —v]f d k . (48)
2

Before this system of equations can be applied to the
study of electron transport additional assumptions must
be invoked to express Eqs. (45)—(48) in terms n, v, and w.
This mathematical closure entails the use of specific fun-
damental physical properties to evaluate these parame-
ters. Throughout this section efforts have been made to
express these parameters in a mathematical form that is
as compact as possible. It is clear that the integral
definitions consist primarily of terms involving u(k) and
difFer from the definitions for the parabolic case only by
the introduction of the nonparabolic mass m(k) and the
specific definition of the particle velocity u(k). This
property will be utilized in the following section to devel-
op approximate expressions so that this nonparabolic
form of the hydrodynamic equations may be used to
study electron dynamics in realistic electronic structures.

III. NONPARABOLIC TRANSPORT MQDEI.

The preceding equations represent a general nonpara-
bolic hydrodynamic transport model for electron trans-
port in a single valley of GaAs. Additional assumptions
or relationships are necessary to close the system of equa-
tions before they can be used to describe transport phe-
nomena. Specifically, one must either ignore one or more
higher-order terms in the formulation, ' have some
previous knowledge for the equations of state, ' or as-
sume some form of the electron distribution function irj
momentum space. These are all acceptable methods of
simplification and can lead to the same unique system of

where kz is the Boltzmann constant, T, is the tempera-
ture of the electron gas representing the spread of the dis-
tribution, and kd is the displacement from k=O of the
Maxwellian distribution. The previous distribution ig-
nores any effect that Fermi-Dirac statistics may have on
the total number of available electrons. Since this work is
directed toward transport in conduction bands and it is a
simple task to modify the normalization coefficient to in-
clude these Fermi effects they will be ignored throughout.
This Maxwellian approach' has been applied often in the
analysis of such problems; however, for the case of non-
parabolic bands Monte Carlo calculations indicate that
such a distribution leads to a less than adequate treat-
ment of the transport parameters of the hydrodynamic
model. 39

In this derivation a unique treatment is proposed for
closing the general moment equations for electron trans-
port in GaAs. To articulate the basis of this approach,
consider a form of the displaced Maxwellian distribution
VDM( u) transformed into velocity space such that
VDM(u)d u =fDM(k)d k or, specifically, VDM(u)= JDM f(u '(k)). Here the inverse function u '(k)
represents the function u '(k)=k=g(u) where g(u) is
the correct mapping from momentum space to velocity
space. Also, JDM is the appropriate Jacobian transforma-
tion from momentum space to velocity space. Defining
this velocity space distribution in such a manner allows
parametric definitions of the form I=f i(k)fDM(k)d k,
similar to Eqs. (45)—(48), to be expressed in velocity space
as I= ji(u '(k))VDM(u)d u. Therefore, for the case of
parabolic bands where the relationship between velocity
space and momentum space is linear, u(k) =(erik)/m*
and

~ JDM ~

=(m */A'), this corresponding displaced
Maxwellian distribution in velocity space is
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&DM(u) ="
B e

3/2

exp
—m*lu —vl'

2kB T,
(50)

where v now represents the average velocity as well as
the displacement under consideration in velocity space.
Both Eqs. (49) and (50) are symmetric about their dis-
placements within their respective spaces and the average
velocity v is equal to (irikd )/I', therefore Eq. (50) does
represent a completely consistent transformation of Eq.
(49) for the case of parabolic bands.

One would expect that, under the conditions of non-
parabolic bands where the effective mass of the electron
depends on the precise location in the conduction band,
the use of constant m* would be insufficient. Also,
another dilemma exists in defining a single temperature
of the electron gas since it has been shown that two dis-
tinctly different temperatures tensors T„and T occur for
the case of nonparabolic bands. Thus stationary Monte
Carlo calculations and physical intuition suggests the fol-
lowing ansatz distribution:

BQ

ak,

BQ

ak,

Jnonpar

QQ BQ BQ„

ak. ak, ak„

QQ BQ BQ

ak„hk, Bk,

(53)

Using the definition of u(k) given by Eq. (9) in Eq. (53)
results in

about k=O in momentum space to a finite region about
u=O in velocity space.

For the case of nonparabolic bands, defined by relation
(5) and a resulting nonlinear momentum space velocity
u(k) given by Eq. (9), the appropriate factor is J„,„„

54=
Jnonpar where

m(v, T)
2mkB T

Xexp
—m (v, T )lu —vl'

2kB T (51)

Jnonpar

fi

m(k)

1+C (k)k„C(k)k ky C(k)k„k,

C(k)k k„ 1+C(k)k C(k)k k,

C(k)k, k C(k)k, k 1+C(k)k,

as a constitutive relation to close the Inoment equations
for the case of nonparabolic energy bands. Here a single
effective temperature T„ is still utilized. However, T,
with a distinct w subscript, has been chosen to replace T,
because —', k~T (here T is defined from diagonal ele-
ments of the energy pressure [P ]) approximates the
effective thermal energy well for the stationary transport
case at moderate values of average energy. In addition,
m (v, T ) has been introduced because, based on physi-
cal considerations, we expect a nonconstant average
effective mass which should depend strongly on the
spread or thermal component T of the true electron dis-
tribution and on the displacement in velocity space v.

In applying Eq. (51) to the integral definitions
(42) —(48), it is correct to use V„,„„(u)d u

=f„,„~„(k)d k, since V„,„~„was postulated in velocity
space from a distribution which contained this transfor-
mation property. However, the issue of transformating
between momentum and velocity space for the case of
nonparabolic bands involves very complicated nonlinear
transformations. Thus it is instructive to consider this is-
sue briefly. Assume for the moment that a correct form
for the distribution in momentum space is known and
denote this distribution as f„,„~„(k). To preserve the
property V„,„„(u)d u =f„,„„(k)d k so that transform-
ing integral definitions consists just of inverting the i(k)
in I= J i(k)fDM(k)d k, a new nonlinear transformation
factor J„,p such that

&, i,„(u)= I J„,„p„lf„,„p„(u '(k) ), (52)

is needed. In Eq. (52), u '(k)=k=g(u) is assumed to
exist and to be a single-valued function of u. This can be
shown to be true for transformations from a finite region

(54)

where

C(k)=— (55)

The transform defined by Eq. (54) is extremely com-
plex. Also, it is obvious that completing the remaining
determinate operation and performing the necessary
functional substitution will introduce cross-coupled real-
space transformation factors. Therefore, to gain more in-
sight in this investigation, the near equilibrium case will
be considered where most of the electrons are near the
conduction-band minimum. For this case the off-
diagonal terms may be neglected and Eq. (54) can be ap-
proximated to lowest order in k to obtain

3

Jnonpar m(u '(k))
(56)

In order to proceed further more information about
the distribution in momentum space appropriate for non-
parabolic bands is necessary. The concept of a Maxwelli-
an function, where the distribution assumed is of the
form (n/l„)exp[ —E(k)/(kii T, )] (where I„ is the ap-
propriate normalization factor), will now be applied to
generate a test distribution in momentum space to gain
additional insight. Doing this and using the approximate
definition for electron energy from Eq. (26) results in a
simplified illustrative distribution, under displacement kd,
of
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f„,„„(k)= expI„
—m(k —kd)u (k —kz)

2k~ T,
(57)

bution. Equating m (v, T ) to the definition of the in-
verse average effective mass of Eq. (45),

Using Eq. (57) as a test function, the transformation Eq.
(52) yields

IIOIIPM r 3
771 a u

m(u '(k))

yields the recursive definition

(59)

~nonpar( u )

3
n m(u '(k))

fi

m (vT )= m (v, T„)
2~k~ T

X exp
—m(u„'(k —kd))u (u„'(k —kz))

2k~ T,

(58)

exp
—m (U, T )~u —v~'

2k~ T

m(u '(k))

where for this distribution u '(k) represents the function
u '(k)=k=g(u) and u„'(k) represents some undefined
function of the form u„'(k) =k —kd=g(u —v).

Examination of Eq. (58) reveals that the exponential ar-
gument is modulated by a function m(u„'(k —kq)),
which resembles an effective-mass term with velocity dis-
placement dependence. Also, the effective normalization
function contains an effective-mass term which has veloc-
ity dependence. The simplified V„,„~„derived here does
not exhibit the exact form of the ansatz distribution func-
tion defined by Eq. (51). However, the previous analysis
does lend theoretical support to the idea of using the in-
tuitively derived V„,„„ofEq. (51) as a tool to investigate
nonequilibrium electron transport for the case of nonpar-
abolic conduction bands. Indeed, later it will be shown
that this distribution leads to excellent results for non-
equilibrium transport in nonparabolic conduction bands.

Now that the basis of the V„,„„(u)distribution func-
tion, Eq. (51), has been considered through a simplified
but rigorous analysis, some of its properties will be
presented before proceeding. The distribution is sym-
metric in velocity space about a displacement of the aver-
age velocity v. Though the spread in velocity space is
symmetric, the amount of spread depends in a nonlinear
way on temperature T and displacement v. Specifically,
the dependence of the spread is partially determined by
the free function m (v, T ). This distribution does meet
the expected and necessary requirements of yielding the
average electron density n upon evaluation of
jV„,„„du and the average electron velocity v upon
evaluating (1/n )J uV„,„~„d u Also, . V„,„~„(u) con-
verges to VDM(u) as m~ I*.This last quality is desir-
able because the Maxwellian-based distribution VDM(u) is
considered to be a good approximation for the case of
small perturbations from equilibrium and dominate
electron-electron scattering.

At this point the first question to address is how to
define m (v, T ). One way would be to study either ex-
perimentally obtained or Monte Carlo —generated elec-
tron distributions in velocity space. However, since the
postulation and inclusion of m (v, T ) in the distribution
function was based on the idea of a nonconstant efFective
mass, a more interesting approach is to approximate
m (v, T ) by average effective mass of the entire distri-

(60)
Here m(u '(k)) is defined using Eqs. (10) and (9), which
to fourth order in u become

1

m(u '(k))

r

1 e
1 —am*/u/' — (m*)'(uf'

Vl 2

The preceding formula resulted from the recursive
definition of Eq. (60) and the method of defining
m (v, T ) merits further investigation. Within the
framework of this nonparabolic model m (v, T„)is a free
parameter which one may arbitrarily choose. Consider
the simple definition of

m (v, T )=m*(1+A ak~T +X am*tv~ ), (63)

where the result from Eq. (62) has been used to define an
effective normalized lower-order form for m (v, T ) with
A and M as fitting parameters. Using (63) in the
definition for m results in the approximate formula

m *(v, T )=m*(1+3ak~T +(7.5 —3A )(ak~T )

+am "/v/') . (64)

From this result one can observe that the first-order re-
sult for I * is independent of the definition of m„(v, T )
and represents a perturbational effect on the second-order
terms in T„(here higher-order terms have been excluded,
hence the disappearance of X„). Also, since

( 1/n )fI (u '( k ) )V„,„„du

(1/n) f V„,„„„/m(u '(k))d u

to second order in T and u, the last derivation has also
resulted in an approximate expression for the transport
parameter

(61)
The above formulation has been written in terms of ve-

locity to simplify the integration process required here
and later in the paper. Performing the integration in Eq.
(60) results in the approximate expression of

m (v, T ) =m *(1+3ak~ T +7.5(ak~ T )'+am '
I v I ') .

(62)
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m *(v, T )=m,"„(v,T )=m (v, T ) (65)

will be utilized.
Combining the proposed distribution of Eq. (51) with

the preceding result supplies the complete constitutive ie-
lation to close the moment equations of Sec. II. Applying
these relations to the energy pressure tensor [P ] results
in

[P ]=nk~T 7(v, T )[I], (66)

m,*„=(1/n)fm(u '(k))V„,„~„d u

(this parameter will be required later in the derivation).
Hence, throughout this work the definitions

m *(v, T„)=m*[1+3ak&T +7.5( ak&T )

+am*tv ], (76)

with T,tt(v, T )=T V(v', T ).
Equation (75) is a nonparabolic form relating the aver-

age energy of the electron gas to its effective thermal and
kinetic-energy components. It is interesting that this
equation is identical to the classical case except T,z re-
places T, and m * is substituted for the constant mass
m *. This equation, as stated earlier, provides the final re-
lation necessary to close the general moment equations.
To summarize the previous developments of this section,
the following equations:

where [P„]= nkvd T [I], (77)

711V'(v, T )=
7'

I1+2am" ~vi +5a k&T + .

(67)

Approximating 'T(v, T ) to second order in v and T
without cross terms yields a simplified form of

[P ]=nk&T (1 +2 ak&T +am*tv~ )[I],
I Iq=5a (k&T ) 1+21a k&T nv,
Pl I

along with the rearranged form of Eq. (75)

(79)

'T( v, T ) = ( 1 +2a k~ T +am *
~
v

~
)

and an energy pressure tensor of

(68)
2

N 2

1 —4aw

1+am "/vf'
(80)

[P ]=nk&T (1+2ak&T +am*/v/ )[I] . (69)

[P„]= nkvd T [I) . (70)

Again applying Eq. (51) and the definition for the average
distributional mass to the velocity pressure tensor [P„]
yields

supply all that is necessary to express the hydrodynamic
transport model for nonparabolic conduction bands in
terms of the quantities: electron concentration n, average
electron velocity v, average electron energy w, and the
space-time variable (r, t). Applying the preceding rela-
tions reveals the collisionless nonparabolic hydrodynamic
transport model equations to be

m* m*
(ksT ) 1+21a ksT„nv .I I (71)q=5a

Using the same approach on the definition of heat-Aow
vector q results in

2

8n = —V, (nv),
at
Bv F

v V~V+
m*p

(81)

V, [nv(w —
—,'m "~v~')],

3nP71

(82)
A relation can now be developed to eliminate T from
the formulation by studying

Bw = —v V,w+F v — V, [nv(co=y)(w ——'m "~v~ )],at 3n—1

n 2
(72)

—1

—3k' T V'(v, T )=—f iu —vi f d u .
n 2

(73)

The preceding expression can also be expanded to yield

~u
—

v~ f d u =w+ v.v —m,*„v v
1 m(u '(k)) 2 3 m *

n 2 2
(74)

to second order in v and T . Using the definition of Eq.
(65) leads to the final constitutive relation

which is the expression used to define the classical tem-
perature of a gas except with m(u '(k))=const. Per-
forming the same integration steps as used to simplify the
energy pressure tensor results in

with nonparabolic correction terms

IJ(v, w )=1+2am(v, w)(w —
—,'m ivy )

+ [e(v, w)] (w —
—,'m*/vj ) +am "/v/

10m

v(v, w)= e(v, w)
p(v, w)

co(v, w)=e(v, w)[1+—', ae(v, w)(w —
—,'m*~v~ )

+am */v/'],
10o.

y( v, w ) = [v( v, w ) ] (co —
—,
' m *v v )

(83)

(84)

(85)

(86)

m '(v, T )
w =

—,'k~T, tt(v, T„)+ ~v~
2 he-

X [1+14av(v, w )( w —
—,'m 'v. v) ], (87)
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(88)

The nonparabolic model equations above have been
written in a form so that for the parabolic case a =0, it is
easy to observe that p=v=~=1 and y=0. Then the
nonparabolic model conveniently reduces to the more fa-
miliar classical hydrodynamic equations in Lagrangian
form.

IV. TRANSPORT MODEL PARAMETER EVALUATION

The nonparabolic hydrodynamic model derived in Sec.
III ignored any specific form of scattering mechanisms.
This was done primarily to simplify the analysis and to
allow for a clear focus on the transport parameters which
evolve from the collisionless BTE for nonparabolic bands.
To evaluate the results of the preceding section one could
assume a form for the scattering mechanism and then
solve the resulting system of equations with appropriate
boundary conditions (several of the present authors have
performed such a study ). Results for electron current
could then be used to judge the macroscopic feasibility of
the nonparabolic model. However, the issue of choosing
accurate forms for scattering terms is a complicated one
and the specific form has a large inAuence on the results
obtained. Therefore a different initial approach will be
followed. The specific approach will be to calculate the
resultant nonparabolic parameters I, [P„],[P ], and q
of the hydrodynamic model for various structures using
an elaborate Monte Carlo model. Since the results of Sec.
IV presented formulas for each of the model parameters
in terms of average velocity v and average energy w, the
values predicted by these formulas can easily be com-
pared to those from the more elaborate and detailed
Monte Carlo model. Taking this approach will give an
excellent gauge of the accuracy of the terms of the model
without the possible errors introduced by using incorrect
forms for the loss mechanisms.

The first test applied was to generate the electron dis-
tribution and nonparabolic parameters, directly from
their integral definitions (45)—(48), for a time steady-state
constant field structure over a variety of electric-field
values using Monte Carlo techniques. For these station-
ary investigations, two independent Monte Carlo mod-
els ' were used to analyze electron transport in GaAs.
Both of these models utilize single-particle Monte Carlo
procedures to improve computational accuracy and
e%ciency. The models incorporate three valley analytical
band structures and included all the significant scattering
mechanisms with polar optical intervalley scattering. In
addition, both models used the same material and physi-
cal parameters.

Under these stationary conditions, as can be observed
directly from Eqs. (39)—(41) or indirectly in Eqs.
(81)—(83), only the value of m * will affect the final solu-
tion for transport. This is true because all the other
terms are space differential in nature. However, as will
be shown, these terms do have finite values which vary
widely over the cases considered. Also, for these condi-
tions, all the displacement terms (terms of form am *tv~ )

in Eqs. (76)—(79) are found to be negligible. Hence this is
an excellent test for the accuracy of the derived nonpara-
bolic model parameters and their dependence on energy
temperature T . The test also reveals how well T is
determined by its dependence on total kinetic energy w
and the displacement kinetic-energy term (m*/2)~v~ via
Eq. (80). An investigation into the true electron distribu-
tion is also very important since V„,„„is instrumental in
determining the final formulas for the nonp arab olic
terms.

The results of these stationary investigations, with the
two independent Monte Carlo models in agreement, are
presented in Figs. 2 —5. Figure 2 exhibits the resulting
Monte Carlo generated distribution, the ansatz distribu-
tion V„,„„,and the displaced Maxwellian distribution
O'DM along the direction of applied field, in velocity space,
for two values of electric field. Here the Monte Carlo dis-
tributions were obtained by sampling electrons in a
different velocity volume element from the three-
dimensional velocity space. In the calculations, a limit-
ing velocity v, is used to define the size of the element in
the directions other than that of the electric field. Also,
v, was chosen small enough to clearly and accurately
show the velocity distribution and large enough for prac-
tical simulation time.

Figure 2 clearly indicates that the corrected electron
distribution V„,„~„ is a distinct improvement over the
displaced Maxwellian. Using PDM results in a general
tendency, for any select average velocity and energy, to
overspread and place too many electrons in the tail of the
distribution. Conversely, the improved distribution
V„,„„retains more electrons closer to equilibrium. This
result seems correct for the situation of an energy-
dependent effective particle mass (or nonparabolic con-
duction band) and is verified by the Monte Carlo generat-
ed distribution.

The stationary results for a variety of electric-field
values, corresponding to the nonparabolic transport pa-

0

0.8.

a
0.6--

0.4--

g
02"

Cz
-1.0

I

-0.5 0 0.5
Velocity ( 10 cm/sec )

FIG. 2. Normalized I -valley velocity distribution functions
resulting from the constant electric-field values of 1.0 and 5.0
kV/cm. The profiles are exhibited along the direction of net
average velocity (along direction of applied field). All distribu-
tions shown are consistently normalized to contain an identical
number of electrons.
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rameters, are presented in Figs. 3—5 and are plotted
versus the average electron energy for each case. In each
instance, the nonparabolic transport parameters predict-
ed by the hydrodynamic model were calculated using the
Monte Carlo values for average velocity v and average
energy m since they are fundamentally dependent on
these variables.

In general, the predictions supplied by the nonparabol-
ic parameter formulas are in excellent agreement with the
results calculated by the Monte Carlo model. Figure 3
shows that the values for the average effective mass N *

predicted by the hydrodynamic model are essentially
equal (less than 1% difference) to those calculated by the
Monte Carlo model up to 0.4 eV. Figure 4, which gives
both the momentum pressure [P„] and the energy pres-
sure [P ], clearly shows that these tensors are approxi-
mated well by a diagonal matrix. Furthermore, the diag-
onal elements for both are in very good agreement with
the predictions made by the hydrodynamic model. Final-
ly, Fig. 5 shows the comparison between the hydro-
dynamic model's values for the heat-How vector q and
those calculated by Monte Carlo. These results also
agree very well, which leads to a very important con-
clusion. The nonzero expression for the heat-Row vector
was derived here from erst principles for the nonparabol-
ic conduction-band case. This treatment represents an
original nonequilibrium analysis for the heat-Aow vector
which is usually based upon equilibrium thermodynamics
arguments. However, it should also be noted that for
highly nonstationary conditions this term may need to be
determined by higher moments of the BTE before it is ac-
curate for transport simulations.

While the previous stationary results are very positive,
by themselves they are not sufficient to ensure the appli-
cability of the present model to arbitrary electron-device
structures. Realistic device structures, operating under
moderately high biases, always contain regions where
transport occurs under nonstationary conditions. Hence
additional calculations were performed to determine the
accuracy of the nonparabolic model subject to these con-
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FIG. 4. Velocity and energy I -valley pressure tensors, nor-
malized by nk&, vs average electron energy. The off-diagonal
terms are omitted because they are negligible (an order of mag-
nitude smaller) compared to diagonal terms. These results were
calculated for stationary transport conditions.

ditions. The n +-n -n + ballistic diode, a simple prototype
submicrometer structure which has been extensively stud-
ied, ' was chosen as a test device.

A self-consistent ensemble Monte Carlo model was
used to calculate the nonparabolic parameters for several
strategically selected locations within this device as illus-
trated in Fig. 6. Specifically, locations were selected
which would exhibit different types of nonstationary
transport. At location (1) the electron gas is relatively
cool with a low average energy, while the average veloci-
ty is slightly ballistic. Conversely, at location (3) the
average energy remains high and the average velocity is
low. Finally, location (2) represents a case where both
gas parameters are elevated and are experiencing
significant spatial gradients.

The results of these nonstationary studies are presented
in Figs. 7—10 where the various transport parameters are
plotted as a function of applied bias. Summarizing the
results, the transport parameters predicted by the hydro-
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FIG. 3. Average I -valley e6'ective mass m * normalized by
near-equilibrium mass value of m *=0.57X 10 ' kg and plot-
ted vs average electron energy w. These results were calculated
for stationary transport conditions.

FIG. 5. I -valley heat-Aow vector along the direction of ap-
plied electric field, normalized by n, vs average electron energy.
The other vector components are omitted because they are
negligible compared to field direction component. These results
were calculated for stationary transport conditions.
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FIG. 6. I -valley average velocity and energy profiles through
a submicrometer GaAs n+-n-n+ ballistic diode structure biased
at 0.8 V. The structure consists of 0.5-pm-long source and col-
lector regions doped 10' cm with a 0.5-pm active region
doped 10' cm . The diagram also indicates three locations
(X=0.53, 0.85, and 1.03 pm) where the nonparabolic model
transport parameters were investigated using the Monte Carlo
method.
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FIG. 9. Normalized I -valley energy pressure, at three loca-
tions within the ballistic diode, plotted as a function of applied
bias. P represents the average of the three diagonal com-

av

ponents which were found from Monte Carlo calculations to be
approximately equal. Off-diagonal terms were negligibly small.
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dynamic model are in very good agreement with the
direct Monte Carlo calculations. In fact, the agreement
for all parameters is within lo%%uo for the majority of the
biases studied. In fact, the difference only rises slightly
higher to approximately 20% (for the heat-flow vector) at
low biases where the accuracy of the Monte Carlo statis-
tics is in question. The results agreed both qualitatively
and quantitatively for all three locations and at all biases.
Hence all the results indicate this nonparabolic hydro-
dynamic model can accurately approximate electron
transport in realistic semiconductor devices which exhib-
it nonlocal electron transport effects.

V. CONCLUSION

FIG. 7. Normalized average I -valley effective mass, at three
locations within the ballistic diode, plotted as a function of ap-
plied bias.

This paper has presented a unique derivation for a non-
parabolic hydrodynamic transport model. This approach
utilized moment operators to reveal simplifying assump-
tions and to arrive at more compact mathematical formu-
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FIG. 8. Normalized I -valley velocity pressure, at three loca-
tions within the ballistic diode, plotted as a function of applied
bias. P, represents the average of the three diagonal com-

av

ponents which were found from Monte Carlo calculations to be
approximately equal. Off-diagonal terms were negligibly small.

FIG. 10. I -valley heat-flow vector along the direction of ap-
plied electric field, at three locations within the ballistic diode,
plotted as a function of applied bias. The other components
were found to be negligibly small.
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lation. This formulation was then used to postulate an
improved ansatz distribution to close the moment equa-
tions and result in a model and nonparabolic transport of
electrons in realistic semiconductor conduction bands.
When combined with appropriate dissipation terms, this
simplified model offers a computationally efficient method
to model electron conduction in semiconductors. This
type of model, which sacrifices some physical detail, leads
to a more manageable mathematical problem with the
potential of rapid solution generation using numerical
methods.

Additionally, this paper presents an extensive Monte
Carlo —based investigation into the applicability of this
new model. The model parameters were tested in both

stationary and nonstationary environments. In both
cases the results are excellent. Hence this model should
prove useful in investigating electronic-device structures.
The model offers a method to better approximate electron
transport with the potential of faster simulation times as
compared to the more computationally intensive Monte
Carlo technique.
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