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Interband transition rate in GaAs
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Starting from a quantum-kinetic Boltzmann equation, the scattering rate for interband transition pro-
cesses in GaAs is calculated numerically, taking into account a realistic band structure with correspond-
ing Bloch wave functions. We compare with approximate solutions for this scattering rate such as the
Keldysh or the Bethe formula, which are frequently used in simulations for high-field electron transport
in solids. Based on the parameter-free numerical results, a fit formula for the impact ionization rate in
GaAs is derived.

I. INTRODUCTION

The theoretical description of electronic transport, e.g.,
in semiconductor devices in the submicrometer range
where very high electric fields can occur or in those
operating on the basis of highly energetic (hot) electrons,
requires knowledge about the high-field behavior of the
electronic distribution. The electronic distribution func-
tion is usually determined from a quantum-kinetic trans-
port equation that includes the different collision rates
for, e.g. , electron-electron, electron-phonon, and
electron-impurity scattering in the respective collision
term. The field heating of the electron distribution is
generally balanced by inelastic phonon scattering pro-
cesses that yield an average carrier energy and determine
the shape of the nonequilibrium distribution function.
Electrons from the high-energy tail are responsible for in-
terband transition processes. Especially at very high
electric fields, this process becomes effective in limiting
the energy gain of the electrons due to the electric field
and determines essentially the critical field strength of the
so-called breakdown. Therefore, this scattering mecha-
nism has to be treated rigorously for the case of
quantum-kinetic transport in very high electric fields.

In this paper we will deal with the special problem of
interband transitions in GaAs. There have been theories
developed' with this topic that, however, contain ad-
justable parameters such as the threshold energy for ion-
ization. An analytical solution for the impact ionization
rate has not been in reach up to now, essentially because
of two reasons. First, for the high-energy region that is
relevant for interband transitions, a realistic band struc-
ture has to be considered. Second, the momentum-
dependent interband transition matrix elements have to
be determined using wave functions that are consistent
with the band-structure calculations.

We have calculated numerically the interband transi-
tion rate in GaAs taking into account a pseudopotential
band structure and the corresponding wave functions.
We have applied a special integration method using spe-
cial points, to make this numerical problem tractable.
Details of the calculation are given in Sec II. The numer-
ical result for the interband transition rate is compared in
Sec. III with different approximate solutions such as the
Keldysh or the Bethe formula, ' which are frequently
used in simulations of high-field transport in GaAs. "'
The results obtained from our numerical treatment of the
problem indicate that the Keldysh formula is valid near
the threshold energy and that the interband transition
rate decreases for large energies, as predicted by the
Bethe formula. We believe that our numerical results can
give well-founded hints for the decision of a long-
standing issue, namely whether a "soft" or a "hard"
threshold is the relevant behavior for the interband tran-
sition rate, at least with respect to GaAs. In addition, we
derive a simple fit formula for this scattering rate that
may be used for calculations of the electron distribution
function in GaAs for high electric fields, if all the other
scattering mechanisms are also taken into account.

II. INTKRBAND TRANSITION RATE

We will start with the quantum-kinetic Boltzmann
equation for the electron distribution function f (k, t ),

f,(k, t)+eE.Vqf, (k, t) =I„g(k),
at

where E is the electric-field strength. The collision term
I«&1(k) is related to the self-energy, which is usually cal-
culated by means of the Green's-function technique
within the random-phase approximation, '

0 j f J d3k, d3k3d3k4]&e&'e&'~ v(k, —k3)~ek'ek') ['

X5(E (k))+E (k~) E (k3) E (k4))[f (k3)f (k4) f (k))f (k~)]
(2)
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The integrals are extended over the Brillouin zone, where Q is the crystal volume, and 0'k', E, (k; ) denote wave func-
1

tion and energy of an electron with the wave vector k; in the band v;, respectively. For interband transition processes,
the initial states belong to the conduction (1) and valence band (2), whereas the final ones are conduction electron states
[(3) and (4)j. V(k) is the Coulomb potential and f (k) the nonequilibrium distribution function. In the case of insula-
tors and semiconductors with nearly empty conduction bands, we can simplify Eq. (2),

I„ii(ki)=I„))(E)= —r (E)f (E), (3)

where

0 —1

r(E)= 9 g f d k, 5(E (ki) E)—
17

l

X g f . . f d'k, d'k, d'k3d'k4)()I)k')pk'~ V(ki —k3)~'p 'II„')
(

vl) .. ) v4

x5(E, (k, ) —E)5(E (ki)+E, (k2) —E (k3) —E, (k4)), (4)

denotes the interband transition rate averaged over all
directions in k space. Equation (4) was solved by Kel-
dysh expanding the integrand near the threshold energy
and neglecting the dependence of the matrix elements on
the momenta k3,k„of the final states. Baraff developed a
theoretical approach to the field dependence of the ion-
ization rate, which yields the results of Wold' and Shock-
ley in the limiting cases of high and low fields, respec-
tively. However, this theory contains several adjustable
parameters such as the threshold energy or the phonon
scattering rate for best fitting the experimental ionization
coefficients.

Kane' solved Eq. (4) within the constant matrix ap-
proximation allowing for exchange processes and consid-
ering a realistic band structure as well as the dielectric
function e(q, co) for Si. The remaining integrals over 5
functions were evaluated by a Monte Carlo method.
Geist and Gladden' supposed a parabolic band structure
for Si and they could then solve most of the integrations
in Eq. (4) analytically. Their results indicated only small
modifications of the ionization rate for energies between
the threshold and the plasmon energy compared to that
of Kane.

We have done a full numerical calculation of r (E) for
GaAs using the band structure and the matrix elements
corresponding to the true electron wave functions. The
interband transition rate obtained numerically is com-
pared to the usual Keldysh and Bethe formula' and,

A pseudopotential calculation' ' yields the energy ei-
genvalues in the different bands E,(k) and the corre-
sponding eigenfunctions as a plane-wave expansion with
the coefficients az (k),

@v(r)= —eik.ru (r)= a(v)(k)ei(k+G). r1 1

&n '" &n G

where u k(r) are the Bloch factors. The Cx's range is four
or six shells in the reciprocal lattice, which means
~Cx~ ~8(2~/a) or ~Cx~ ~12(2m. /a), where a is the lat-
tice constant. A screened electron-electron interaction
potential in the Born approximation,

e 1V(q)=
Gp q +K

T

m, e 3n,
ATE'6pA

K

' 1/3

a=12.9,

with n, being the valence-electron density of GaAs, leads
to the following representation for the matrix element in
(4):

furthermore, to the results of an approximately parabolic
band structure. The contribution to the transition rate
resulting from umklapp processes will also be investigat-
ed.

A. Numerical treatment

I & +k', qk', I V(k, —k, ) Iq, '+ ')I'= 1 8

Q &p K'

2

rf 2 2 +v v (kl)k3)+v v (k2~k4) 5K', k +k —k —kK+k, —k3 +~ ' ' "' 4 3 4 1 2

The Bloch integrals are given by

B',)(k,k')= —d r e' 'u*„(r)u .„.(r) .1

After integrating over the momentum 5 function, the transition rate, Eq. (4), can be written as
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r(E)= g f d k, 5(E (k)) E—)(2~)6, Bz
1

x g f f f d k, d k, d k4
BZ BZ BZ

V)y ~ ~ ~ y Vg

2

B', ,' (k, ,k3)B', '(k3+k4 —k„k4)
K+k, —k3 +~

X5(E, (k, ) E)—5(E, (k, )+E (k3+k~ —k, ) E„—(k~) E, (—k~))

2 2

X
6p

(9)

The sums over the band indexes v&, v3, v4 each involve the
first 27 or 59 conduction bands, whereas the v2 sum runs
over the four valence bands of GaAs. Umklapp processes
are described by additional contributions due to the
reciprocal-lattice vector K in the matrix element [Eq.
(7)]. In the case of ~K~=0 we have normal processes.
Our considerations will be restricted to normal processes
and umklapp processes up to third order.

The ninefold integration in Eq. (9) is treated numerical-
ly using a special point method. Then each integra-
tion over the Brillouin zone is approximated by a weight-
ed sum over values of the integrand at special points k;
according to

Qp f d kf(k)= —ggp f(I' k;), .
(2m ) sz n p.. kJ

(10)

with the normalization condition for the weighting fac-
tors p;

QP, =1, P, &0.

B. Approximate solutions

Two alternative analytical formulas for impact ioniza-
tion are well known. The Keldysh formula results from
an expansion of the integrand of Eq. (4) near the thresh-
old. Therefore a reasonable description of the ionization
process in the case of higher energies cannot be expected.
Keldysh obtained the following "soft" threshold behav-
ior:

Qo is the volume of the primitive cell. If f (k) does not
fulfill the symmetric properties of the respective lattice
point group, the sum must be extended over all n symme-
try operations P of this group. In order to make a nu-
merical treatment possible, we approximate both energy
5 functions in Eq. (9) as Lorentz profiles like

5(x)=—1
~ X +'g

The special choice of the parameter q does not essentially
affect the results. We take g=0.2 eV in accordance with
Kane, ' who replaced the 5 functions by rectangles of
unit area and width of 0.1 eV for primary energy and 0.4
eV for energy conservation, so that the energy conserva-
tion was satisfied to within 0.2 eV.

r(E)= '

0, E (Eth

C E Eh.
(1 la)

We consider the upper three valence bands by calculating
the contribution of each band with its effective mass and,
therefore, its corresponding threshold energy. For the
effective masses of the valence bands we take
m,* = —0.68m, and m,* = —0. 12m„whereas

7

m, =0.07m, is the conduction electron mass. The value
of E =1.36 eV was obtained from the band-structure cal-
culation.

Alternatively a Bethe-like formula' for the transition
rate,

« ~Eth

r(E)= B E—lnE E,h
E —Eth

(1 lb)

is used, ' which represents a "hard" threshold behavior
and where the fit parameter 8 =2.5 X 10' eV/s gives the
magnitude of the transition rate. Because this formula
was evaluated by means of the Born approximation, it
seems to be more appropriate in the range of higher ener-
gies. The threshold energy was determined in the just-
mentioned way using the effective mass of the uppermost
valence band.

A further approximate calculation of the interband
transition rate [Eq. (4)] has been carried out within the
framework of Geist and Gladden' applying the parabolic
band model. The matrix element was treated by consid-
ering not only its dependence on the initial electron ener-
gy but taking into account the full k dependence of the
interaction described by a screened Coulomb potential
(see Sec. II A). In the free-electron approximation the
Bloch integrals were rewritten as 5& p. After a straight-
forward calculation we got two remaining integrals
which were solved numerically. Similar to the treatment

The parameter C=1.19X10' s ' can be determined by
a straightforward application of Keldysh's approxima-
tion. The threshold energy was calculated within the
parabolic band approximation analytically, taking the
Fermi energy at the top of the valence band,

3 —2m„*/m, *

1 —m„*/m,*
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The latter statement is underlined by comparing with
the parabolic band approximation introduced in Sec.
IIB. In spite of the simple assumptions, however, the
agreement with the numerical results and the Keldysh
formula is very good, in accordance with the results of
Kane' and Geist and Gladden. ' Furthermore, the
inAuence of higher bands can be neglected in this low-
energy range, as one would expect.

The numerical results indicate that in the high-energy
region (E )20 eV) the Bethe formula' yields the correct
asymptotic behavior for impact ionization. On the basis
of these findings, we propose a simple fit formula for the
interband transition rate which interpolates between the
two analytically known cases for energies near the thresh-
old and for high energies:

0, E (Eth

r(E)= .
C

E —Eth

1+~E'~Eih

(12)
E)Eth

th

where P is an arbitrary parameter which may simulate
both a soft threshold (low P, low E,h) or a hard threshold
(large P, large E,h ). The choice of a large P together with
an optical-phonon scattering rate of [r,~,(E,h )]
=3X10' s ' as in Refs. 11 and 12 yields a hard thresh-
old as well as impact ionization rates much greater than
10' s ' near the threshold, both in contradiction to our
numerical results.

We have also investigated the inhuence of umklapp
processes up to third order in an extra calculation. The
inclusion of umklapp processes yields ionization rates
which are three to four times higher and the respective
curves show the same shape as discussed before. The cor-

For the threshold energy we take E,h =2.85 eV (see Sec.
IIB). This fit shows a good overall agreement with the
numerical results. For the parameter 2 we choose 0.08
to get the Bethe-like behavior for high energies. The pre-
factor C = 8 X 10' s ' is of the order of the proportional-
ity constant, which can be extracted from the original pa-
per of Keldysh. This prefactor is usually treated as a fit
parameter and often identified with the optical-phonon
scattering rate at the threshold energy, "'

C= P

responding fit parameters for Eq. (12) are then A =0.03
and C =2 X 10' s '. Therefore, umklapp processes have
to be included when dealing with the complete interac-
tion of electrons in solids at high fields.

IV. SUMMARY

The interband transition rate for GaAs was obtained
from a numerical evaluation of Fermi's golden rule,
neglecting the coupling with phonon processes. A pseu-
dopotential band structure was considered for both ener-

gy conservation and matrix elements. We obtain
sufficient convergence of the numerical procedure. The
results show a Keldysh-like, soft-threshold behavior for
the ionization rate at low energies, and a Bethe-like de-
crease at higher energies. The intermediate regime inter-
polates with some scatter at variance with the approxi-
mate integration scheme. Based on this behavior, a sim-
ple fit formula is proposed connecting the two asymptot-
ic, analytically known results that may be used for future
calculations of the nonequilibrium electron distribution
function in GaAs. Then, from an improved understand-
ing of the competing scattering processes in semiconduc-
tors such as electron-phonon scattering or impact ioniza-
tion, additional insight into the high-field behavior of
electronic transport may be gained.

Our procedure can immediately be generalized to allow
for exchange processes in the matrix elements and for
screening effects beyond the static limit chosen here.
Furthermore, avoiding the average over the incident
momentum ki in Eq. (4), the orientation dependence of
the interband transition rate can be investigated, which
was experimentally observed for GaAs (Ref. 19) and Si.
Especially, the wave-vector dependence of the ionization
threshold, which was found to play a major role in high-
field transport in Si (Ref. 21), may be of some importance
in GaAs, too.
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