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EfFect of the anisotropic form factor on the phonon-electron interaction
and phonon transport in As-doped Ge
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Usually the phonon-electron relaxation rates in doped semiconductors are calculated by taking a
spherical approximation for the conduction-band minima. In the present work we have revoked this ap-
proximation and obtained more general expressions for the phonon-electron relaxation rates. Using
these expressions, we have calculated the phonon conductivity of As-doped germanium and shown that
our approach improves the theoretical value of the phonon conductivity by 30—40%%uo even at 10 K.

I. INTRODUCTION

Despite the consistent effort of many workers, ' there
is no unique quantitative explanation for the phonon con-
ductivity of doped semiconductors at temperatures
greater than 4 K. In fact, the phonon transport in doped
semiconductors is restricted mainly due to phonon
scattering by charge carriers and the usual theory for
phonon-electron relaxation rate overestimates the pho-
non conductivity ' beyond this temperature. This hap-
pens due to the reason that the form factor appearing in
the phonon-electron relaxation rate has a sharp cutoff for
high-frequency phonons which consequently cannot be
scattered by electrons. This obviously makes it impossi-
ble to explain the higher-temperature data of the phonon
conductivity. While Singh and Verma' assumed the pres-
ence of internal strains, Sharma, Roy, and Radhakrish-
nan, on the other hand, successfully used the Mikoshiba
model to interpret the results of phonon conductivity in
p-type Ge in the whole temperature range. Recently,
Puhl, Sigmund, and Mair have shown that the dynamic
Jahn-Teller effect also gives rise to an extra time-
dependent factor in the phonon relaxation rate which in
turn may explain the phonon conductivity at higher tem-
peratures. As reported by the authors, this effect is, how-
ever, quantitatively not important in the case of As-
doped Ge.

In fact, all the above-referenced models are based on
the spherical approximation originally introduced by
Hasegawa' for the crucial factor called the form factor
[Eq. (5)]. According to this approximation the ellipsoidal
energy surface of the donor electron is replaced by a
spherical one. By doing this the calculation of phonon-
electron relaxation rates is very much simplified because
the form factor becomes independent of the valley with
which it is associated. In the present work, therefore, we
wish to investigate the effect of the previous approxima-
tion for the form factor on the phonon-electron relaxa-
tion rate and then calculate the phonon conductivity on
the basis of the corrected form factor in the case of As-
doped Ge. We have shown that, due to this correction,
the theoretical value of the phonon conductivity can be
improved by an amount 30—40%%uo even at 10 K without

using any of the models used in Refs. 1 —3.
In Sec. II we have given the relevant modifications in

the theory to obtain the general expression for the
electron-phonon relaxation rate with desired background.
Section III gives the results of the calculations as well as
a thorough analysis of the obtained results.

II. THEORY

A. Phonon conductivity

According to Holland, " the Callaway model' shall be
modified to give the following expression for the phonon
conductivity:

3 1 Q~)T 4ex

6~'A', , v~ o (e —1)'r '(x)

where A, = 1 stands for longitudinal and A, =2, 3 are for the
transverse modes, x =(fico~&lktt T), ktt is the Boltzmann
constant. U&, the phonon velocity, cu &, the phonon fre-
quency, and 7 —7b +Tpp +Tp ph+7ph ph is the total
phonon relaxation rate. rb =v&/L„L, is the Casimir
length +pt ~ ~qp +ph —ph + ]~q+T for longitudinal
phonons and ~ph ph BtcoqpT for transverse phonons
and all these expressions can be found in Ref. 8. Here we
will concentrate our discussion only about the phonon-
electron relaxation rate, ~, ph, which is mainly responsible
for the decrease of phonon conductivity in the tempera-
ture range 2—10 K.

B. Phonon-electron relaxation rates

According to Cheung and Barrie, ' the phonon-
electron matrix element for the phonon in the branch A,

and wave vector q can be written as
1/2 4

Q'~"„=i g OJ „(q)AJ„(q,A, ) .
2p VU&

where j stands for the four valleys of the conduction-
band minima in n-type Ge, m and n represent the elec-
tronic states. v& is the phonon velocity. Also, 2 J „(q,i, ),
the deformation-potential matrix, is
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~mn(q ~) =Ed&il.~mn+& eA(q) D ei(q) (3)
(j) ~(j)

TABLE I. Values of k:lr for different values of j in ger-
manium.

in which Ed and E„are the dilatation and shear deforma-
tion potentials, ei(q) are the phonon polarization vectors
defined by Hasegawa, ' and

(4)
A.

(
~

)where k'~' are the unit vectors pointing towards the bot-
tom of the 'th valley of the conduction band. The direc-
tions of k'~ and the value of the normalization constants
a'~' for Ge have been reported in Ref. 5. Values of the
dyad (k'~:lr'~') for different j have been given in Table I.
In expression (2), 81 „(q), the form factor, is the most im-
portant term in reference to the present work. It depends
on the wave function of the impurity electron as well as
the wave vector q of the phonon which causes the transi-
tion. Since we are interested in the low-temperature
range, the impurity electron is supposed to be in the
ground state only and in that case 0' '„ takes the follow-
ing form:

2
-—2

8J„„(q)= 1+

with

y =a (qn +q )+b q,

q„, q„, and q, are the components of the vector q when

the z axis is defined as being from the origin to the jth
minimum of the valley.

a and b are the longitudinal and transverse Bohr radii.
The values of a and b are defined' by

a =tri(2m, Ep) '~ b =(m, /mI)' a .

Eo =0.0127 eV is the experimental value of the ionization
energy for the Is state, mI and m, are the longitudinal and
transverse effective masses at the conduction-band mini-
ma, respectively. For Ge, m, and mI are given by
m, =(0.0813+0.002)mp and m& =(1.60+0.008)mp.

The matrix element of Eq. (2) is based on the electron-
phonon Hamiltonian initially given by Hasegawa. ' Here
the small intervalley terms have been neglected in com-
parison to the larger intravalley terms. In order to sim-
plify this matrix element, a spherical approximation for
the form factor was introduced' with the following as-
sumption:

~(])~(]) ].k:k
3

~(2) ~(2) 1k:k
3

w(3) w(3)k:k
3

w(4) w(4)k:k
3

1 1 1
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a2(q2 +q )+b q, ( lltq )2

Q~"„=i(Aq/2pVU )'~ Mq (8)

The general form of the phonon-electron relaxation rates,
in which we are basically interested, can now be written
for various processes in terms of Mq„ in the following
ways.

1. Elastic scattering

a* is the effective Bohr radius. This approximation
reduces the form factor to the simple form
8i, i, (q)= I 1+(qa*/2) I, which is independent of the
valley. Thus in Eq. (2) the form factor can be drawn out
of the summation sign and the factor AJ „(q,A, ) can be
easily summed up over the four valleys. After this, one
can smoothly proceed to derive the expressions of
phonon-electron relaxation rates for elastic, inelastic, and
absorption processes and arrive at the results of Suzuki
and Mikoshiba.

In the case of gerrnaniurn the anisotropy of the form
factor, however, is too large and the spherical approxima-
tion cannot be very much justified. Therefore we would
like to revoke this approximation and keep the general
form of the matrix element in Eq. (2) intact. We define

M'i~ = g 8J „(q)A ~ „(q,A, )
j=1

and write

and

a e (a 2b )1/3 In the second-order Born approximation the total tran-
sition probability per unit time for the scattering of pho-
non q to q' for this process" is

=2~ M( Mqp M) Mqp
w(q —+q')n&(1+n& ) = 2 5(ci)& i cp&g) fp(T) g . +

g2

+f, (T)
n, n'=1 A~„+46—ir

~n'm ~mn+
iScoqg l I

Mq"pM $„
Rco ~

—46+i I

n'm mn

Ace g
—iF (a* a )q q' . (9)
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Here as stated earlier m and n are restricted only to the fourfold "impurity-electron ground state, " which splits up
into a singlet and a triplet state separated by the chemical shift 4b, . The first term of Eq. (9) represents the elastic
scattering off the singlet state and the second term that for the triplet state. I is the "level width. " fo(T) and fi(T)
are the occupation probabilities, at temperature T, for the singlet and triplet states, respectively. Taking the angular
average of the matrix the above expression can be written in the form

4m
~

(4b, )

g2 q 2' qi [(g )2 (4g)2]2+4(4g)2I 2

X [2[f0(T)+f,(T)][&(M(f, ) &&(M)0) &+&(M)2 ) &&(M)o ) &+&(M(3" ) &&(M)o ) &]

+fi(T)[(4b/%co 2) +1][ &( Mf, ) &&(M)o ) &+&(M(i ) &&(M'L ) &+&(M)2 ) &&(M'g) &

+&(M$ ) &&(Mb')'&+&(M( )'&&(M'g)'&+&(M(,'"')'&&(M),')'&]j .

In this expression all the cross terms like & (M'g )(M)o ) & have been neglected in comparison to the squared terms like
&(M)o) &. Here &(M'g) &=(1/4ir) fdQ(M'g) . After going through a few steps it is easy to write the single-mode
relaxation rate for the elastic process as

—1
e

coque. 1 2(4b, )

4irp v v [(irico ) —(4b, ) ] +4I' (4h)

X [[&(M(, ) &&(M'g) &+&(Mg ) &&(Mg) &+&(M$ ) &&(M'g) &]

X2[C,(T)+C,(T)]+[1+(4b/%co z) ]C,(T)[&(Mttz ) &&(ML ) &

+&(M)3 ) &&(M'L ) &+&(M(f, ) &&(M)o ) &+&(M]3 ) &&(M'g) &

+ & (M)" )'& &(Mg )'&+ & (M)'"')'& &(Mg )'&]] (10)

where C, ( T) and C, ( T) are the density of donor electrons in the singlet and triplet states, respectively.

2. Inelastic scattering

No resonance occurs in the case of an inelastic process defined by Kowk. Therefore in the denominator of the transi-
tion probability level width can be neglected. Thereafter, proceeding in a similar manner as for the elastic process, we
can obtain the relaxation rate for the inelastic process by the electrons in the triplet state in the following form:

C, ( T)coque (4b, /iri+ coque)
l8 54' v&

1

4A+Aco g

X [&(M(fi')'& &(M'g) &+ &(M(f3')'& &(M&')'&+ &(M(f')'& &(M)')'&

+ & (M $,
' ' )'

& & (M), )' & + & (MI5,
' ' )'

& & (M'g )' &+ & (M$,
' ' )'

& & (M$, )' & ]

X 1 —exp 1 —exp
—4h —Am qA,

k, r

3. Thermally assisted phonon absorption scattering

This kind of phonon scattering process, according to the classification given by Kowk, is due to the electrons in the
singlet state. In the off-resonance region, i.e., m z(4h/A and coque) 4lak/A, the following expression for the relaxation
rate is obtained.
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C, ( T)co~i„~4h /fi co—~i, ~

4~p2v ~& ~ v &5

X[((MI%3 ) )((M'g) )+((M(fl ) )((M'g) )+((M)3 ) )((M)0) )

+((M)2 )')((M'b ) )+((M$( )')((M'g) )+((M)2 ) )((M)0) )]

i6COqp
X 1 —exp—

k~T
exp

4h —%co ~qA,

k~T
(12)

~qX ~qX
1 —exp —fi

pv~ kg T C, (T)

(13)

Near the resonance fico i,-4b, we rep—lace Eq. (12) for the
absorption process by

low-frequency phonons, on the other hand, it underesti-
mates the same for phonons of higher frequency. This
can be explained by comparing the exact form of the
form factor with the one obtained through the spherical
approximation. This comparison can be easily seen if we
write the exact form factor as

2 2
2 2

0~ (q) = 1+ (a b—)—
mn 4 2

(14)

III. RESULTS AND DISCUSSION

Using Eq. (1) we have calculated the phonon conduc-
tivity in As-doped Ge for As samples No. 1, No. 2, ' and
No. 3, ' with donor electron density 2. 1 X 10', 6.3 X 10',
and 2.7X 10' cm, respectively. The values used for the
various physical constants and parameters are as follows:
p=5. 35 g/cm', Ul

——5.37X105 cm/sec, U2
——3.28X105

cm/sec, A =2.40X10 sec, B&=6.89974X10 sec,
B,=1.0X10 " K, 45=4.23 rneV, Ed= —2.0 eV,
LC =0.4592 cm for As sample Nos. 1 and 2 and is 0.428
cm for sample No. 3. E„has been taken to be 19.0 15.0,
and 18.0 eV for sample Nos. 1, 2, and 3, respectively.

These calculations show the effect of the anisotropy of
impurity-electron wave functions on the phonon-electron
relaxation rate as well as the phonon conductivity. The
three phonon and the point defect scattering strength pa-
rarneters have been taken to be the same ' as that in the
case of pure samples. The value of the chemical shift 4h
has been experimentally determined by Reuszer and Fish-
er' in As-doped Ge. The only parameter used for the
adjustment of theoretical and experimental results is the
deformation-potential constants. This parameter is ad-
justed at T=2 K and then calculations are performed at
other temperatures. The angular average for the matrix
element is done over the solid angle dQ by numerical
methods as it is not possible to do this analytically. Fig-
ure 1 shows the phonon conductivity obtained from the
experimental measurements, ' ' the present calculation,
and the calculations based on the Suzuki and Mikoshiba
(SM) model. Figure 2 shows the comparison of the pho-
non relaxation rates obtained from the present calcula-
tion and the SM model for the typical value of the shear
deformation-potential constant. It is observed that while,
on the one hand, the spherical approximation for the
form factor overestimates the elastic relaxation rate for

The above-written form can be obtained from Eq. (5) and
(5a) by taking the z axis along the direction of k .

As expected from the behavior of the relaxation rates
Fig. 1 shows the present approach improves the theoreti-
cal interpretation of the experimental data both in the
lower- and higher-temperature regions. We have been
able to explain the thermal-conductivity data exactly in
between 1.5 and 5 K. Even at 10 K the theoretical values
are improved by 30—40% over the theoretical values ob-
tained by the SM model which could successfully' explain
the experimental data only in the temperature range 2 —4
K. This is a considerable improvement and permits us to
conclude that the spherical approximation is not a good
approximation due to the large anisotropy of the form
factor in doped germanium. The discrepancy still
remaining in between the theoretical and the experirnen-
tal data above 6 K can be because of any of the following
reasons.

(i) First of all, we would like to comment that the ex-
act wave function for the impurity electron is not known.
In the presence of the stress due to impurity, the anisot-
ropy of the impurity wave function may became larger
than that it is expected from the usual effective-mass
theory. A larger anisotropy will improve the results fur-
ther.

(ii) The donor impurity may give rise to difFerent force
constants for the nearest neighbors resulting in a new
point defect scattering of phonons. Some authors' '

have tried to explain the phonon conductivity data on the
basis of this type of scattering. According to our infor-
mation, no quantitative theory has been given for the
justification of the added point defect scattering so far.
Since the aim of the present paper is to investigate the
effect of the form factor only, we have not made any at-
tempt to find out how much increase in the anisotropy of
the hydrogenic wave function of the impurity electron
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due to the internal stress or the addition of point defect
scattering will explain the experimental data.

(iii) We would also like to discuss the role of Ed, the
dilatation deformation potential in electron-phonon re-

laxation rates. In the SM model Ed does not appear in
the final expression of the phonon relaxation rate because
in the spherical approximation the first term of the
deformation-potential matrix becomes zero when surnma-
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FIG. 1. Lattice thermal conductivity K obtained by the present calculations, SM model, and the experiment for As samples (a) No.
1, (b) No. 2, and (c) No. 3. Solid line shows the present calculations: dashed line is for the SM model with E„=16.5. 13.5, and 15.5
eV for sample Nos. 1, 2, and 3, respectively and a =36.69 A.
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FIG. 2. Relaxation rates of the incoming longitudinal phonon as a function of angular frequency co in As sample No. 1. Solid line
represents the present calculations: the dashed line is for the SM model (a) T=7.0 K, elastic process: (b) T=7.0 K, absorption pro-
cess with E„=16.0 eV, Ed = —6.0 eV.

tion over all the valleys is done. In the present case, this
term has to exist because this has to be multiplied first
with the valley-dependent form factor and then summed
up over all the valleys. In our calculations for the
thermal conductivity we have chosen Ed = —2 eV. This
value is larger than that reported earlier. ' According
to Markiewicz, however, the value of Ed should be
larger than that reported in the literature because of the
screening efFect. A positive value of Ed would give a still
better explanation to the phonon conductivity results. It
is interesting to note that Cheung and Barrie' have also
taken a positive value of Ed in n-type Si in order to ex-
plain the shift of the donor energy levels with tempera-
ture. They have not given any theoretical justification for
such a choice.

(iv) Further, as suggested by Sota, Suzuki, and For-
tier, phonon frequency dependent values of Ed and E„
can also remove the remaining discrepancy in between
the theoretical and experimental values of the phonon
conductivity. Such an exercise will not be illogical as the
deformation-potential approximation had never been sup-
posed to be a very sophisticated technique. However, in

the absence of any quantitative justification for the varia-
tion of Ed and E„with phonon frequency, right now we
have not made any attempt to explain the experimental
result on the basis of this idea.

We would, however, in the end, like to emphasize that
for the calculation of electron-phonon relaxation rate the
use of the correct form factor is essential in those cases
wherever the conduction-band minima are highly aniso-
tropic. After the correct form factor has been used, the
remaining discrepancy can be explained on the basis of
one or more efFects described either in the previous mod-
els or in the text of this discussion. It would be interest-
ing to see which of the above-mentioned reasons are
proved to be most suitable for explaining the phonon
conductivity in the entire temperature range.
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