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Acoustic mode with time-dependent phase velocity in photoexcited semiconductors
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Using the Boltzmann equation, we study the collective modes of a photoexcited electron-hole plasma
in a direct-gap, small-electron-mass semiconductor in which the electron distribution is evolving with
time. In this situation, we find that there exists an acoustic mode of the electron-hole plasma with a
time-dependent phase velocity. The phase velocity is approximately given by co~ z /q„, (t), where co~ I, is
the hole plasma frequency and q„,(t) is the screening wave vector of the electron distribution f, (v, t ).
As the electron distribution cools, the q„,(t) increases and hence the phase velocity of the mode de-
creases with time.

There has been considerable interest in studying the ul-
trafast dynamics of carriers in semiconductors by pho-
toexciting electron-hole plasmas and probing these plas-
mas on the picosecond and femtosecond time scales. '

Measurement of these dynamics yields information on
the carrier-phonon and carrier-carrier interactions,
which are important in determining the characteristics of
semiconductor devices. Recently, some effort has been
directed at studying the transport properties of photoex-
cited systems in the femtosecond time scale, ' where in-
teresting transient effects due to the evolution of the car-
rier distribution functions can be seen. This activity has
motivated us to study theoretically the linear response,
and in particular the acoustic collective mode, of
electron-hole plasmas in photoexcited semiconductors
(with holes that are much more massive than the elec-
trons) which are not in steady state. We note that this
work is different from previous theoretical efforts and
experimental observations of acoustic modes in photoex-
cited plasmas, where the carriers were assumed to be in a
quasiequilibrium steady state. We find that in the non-
steady-state photoexcited system, the acoustic mode has a
phase velocity that changes as a function of time

In an acoustic mode, as the hole density deviates from
its uniform value, the lighter and more mobile electrons
quickly respond to cancel out (or screen) the potentials
created by the holes. However, due to thermal or quan-
tum fluctuations, this screening is imperfect, and there is
a residual, screened Coulomb interaction between the
holes which causes the holes to oscillate. The dispersion
relation for this mode, in a collisionless electron-hole
plasma, over the full range of q is approximately
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where to &=(4mencl. rom)' is the hole plasma fre-

quency and q„, is the electron screening wave vector
[which is equal to (4me no/eoktt T, )'~ for a Maxwellian
distribution]. For small wave vectors (q «q~, ), co(q) is

approximately linear in q, with a phase velocity of
v~ =to(q)/q =to~ &/q„, . The q„, is determined by the
electron distribution. Therefore, if the electron distribu-
tion evolves with time, q„, and hence u& also change
with time.

In this paper, we use the Boltzmann equation
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r)t Bx m t)„

+v. + =I [f ]

(f is the distribution function of component a, and I is

the collision term) to study the collective modes of a bulk
non-steady-state photoexcited system comprised of light
electrons in the conduction band and holes in the valence
band. We solve exactly the electron and hole distribution
functions for the photoexcited system, within a simple
collision model. Then, to study the collective modes, we
add a small perturbation to these "unperturbed" distribu-
tion functions, and to linear order, we calculate the sub-

sequent time-evolution of the electron and hole densities.

COLLISION MODEL

The main energy-loss mechanism for the carriers in
III-V semiconductors such as GaAs is the emission of
longitudinal-optic phonons because both the scattering
rates and the frequencies of these phonons are large (e.g. ,
in GaAs the scattering time is -2 X 10 ' s, and phonon
frequency is 36 meV). Therefore, we model the scattering
by assuming that the carriers only emit dispersionless
longitudinal-optic phonons of energy E, . In this scatter-
ing model, which is similar to models used by others, the
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electrons cascade down from one level to another, each
level being F.,~ removed in energy from the next (see Fig.
1). We ignore absorption of phonons (i.e., we assume that
the lattice is at T=O), which is an adequate approxima-
tion for temperatures that are small compared to the De-
bye temperature (-400 K for GaAs). We also assume
that the holes are collisionless and are initially at rest.
The rationale for this assumption is that for a typical
case, the initial energy of the holes is small (e.g., in GaAs,
when electrons are photoexcited to 0.3 eV, the initial hole
energy is -40 meV) and therefore after one optic-phonon
emission, which occurs quickly' ( —100 fs), the holes
possess very little energy and cannot scatter further be-
cause they are below the optic-phonon emission thresh-
old.

To keep the calculation simple, we assume that the
conduction and valence bands are parabolic. We also ig-
nore intervalley scattering, and therefore our results are
only valid for photoexcitation energies below the satellite
valleys (e.g. , 50.3 eV in GaAs). We do not explicitly
treat carrier-carrier scattering, which becomes impor-
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tant for densities greater than 10' cm . However, we
will argue that electron-electron scattering will not cause
the acoustic plasma mode to disappear.

UNPERTURBED DISTRIBUTION FUNCTIONS

Within our collision model, the distribution functions
for the photoexcited system in the absence of perturba-
tions, f o(v, t), are as follows. " The holes are assumed
to be at the valence-band edge at t =0, and hence the dis-
tribution function of the unperturbed holes is simply
fz o(v, t)=n05(v) Imm. ediately after photoexcitation, all
the electrons are concentrated on an energy shell E„
above the conduction-band edge. Since the optic pho-
nons in our model are assumed to remove energy in quan-
ta of E, , if the system is not perturbed by other forces
the photoexcited electrons are only found in discrete lev-
els indexed by j=0, 1,2, . . . , N corresponding to the
number of optic phonons emitted by the electron. There-
fore, the electron distribution function for the unper-
turbed system is

n05(u —u )f, o(v, t)= g PJ(r) (3)
j=p 4&U~

where u. = [2(E,„jE,&)/m—, ]'~ is the electron velocity
in the jth level. The coefficients PJ(t) give the fraction of
the photoexcited electrons populating level j.

The P (t)'s are determined by electron scattering. The
rate of change of the population, dPJ. (t)/dt, is equal to
the rate at which particles are scattered in from the level
above minus the rate at which particles are scattered out
to the level below. Since the optic-phonon emission rate
is fairly constant over a large energy range, ' we assume
that the scattering rate y is the same for all levels. With
this collision model, the populations are

Eop /Q
~~n~~

pllollcn
emissions

P, (t)= . (4)

THE PERTURBED SYSTEM

FIG. 1. Photoexcited carriers in a direct-band semiconduc-
tor, with mz ))m„(a) immediately after photoexcitation, and
(b) scattering with the lattice, according to our model. (a) shows
that, at the time of photoexcitation, the electrons have much
more kinetic energy than the holes because the electrons are
much lighter than the holes. (b) schematically shows our
scattering model, in which the electrons emit optic phonons and
lose energy in the quanta of the energy of the optic phonons,
E,~. In the absence of any perturbations, the electrons are
confined to levels with energies of E„—jE,~. The electrons
cascade down the energy levels until they reach the bottommost
level. The holes are assumed to have zero kinetic energy (since
they have much less kinetic energy than the electrons) and are
assumed to be collisionless because they are below the optic-
phonon emission threshold.

We study the behavior of the acoustic collective mode
by perturbing the holes in the system and calculating the
linear response of the system to that perturbation. Per-
turbations of the electron and/or hole distributions cause
charge-density perturbations in the system, which result
in electrostatic forces which in turn induce more pertur-
bations of the electron and hole distributions. The time
evolution of the perturbations is given by the Boltzmann
equation, Eq. (2). We assume a small spatially sinusoidal
initial perturbation in the distribution

f (v, x, t)=f 0(v, t)+f, (v, t)e'q

(a=e, h) .

Substituting Eq. (5) into Eq. (2), keeping only terms to
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lowest order in the perturbation and usin
es

af. ,
(v, t )+iq vf. i(v, t )

4mi[nh, (t) —n, i(t)]ee Bf
ma Bv
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electron scattering, which was roughly simulated in Fig.
2(b), will not cause the mode to disappear.

For a more quantitative discussion of this acoustic
mode, we denote the ith time at which the hole density
goes through zero as t; (i =0, 1,2, . .. ), and we define the
angular frequency of the oscillation at time (t;+ t;+, ) l2
to be m(t;.+,—t,. ). This is a rough measure of the "instan-
taneous" frequency of oscillation. These frequencies were
taken from Fig. 2, and are shown as circles in Fig. 3.

We can understand the behavior of the oscillation fre-
quencies shown in Fig. 3 by assuming that the instantane-
ous oscillation frequency, co(q, t), is given by the form in
Eq. (1), with q„, given by the screening wave vector for
the electron distribution at time t. The q„, for the

f, 0(v, t) given by Eq. (3), assuming that the electrons are
collisionless, is'

0.6

50 100 'l50
time qvpt

o

200 250 300

(7)

Since the population of the lower levels (where the elec-
tron velocities are smaller) increases with time, q„, in-
creases with time. The increased screening weakens the
interaction between the holes, causing the acoustic-mode
frequency to decrease with time.

Inserting Eq. (7) into Eq. (1), and using the expressions
for the occupation fraction, P~(t), given by Eq. (4), we
produce solid curves in Fig. 3. There is good agreement
between the points obtained from the curves in Fig. 2,
and the solid line, except that these points consistently lie
below the solid line. This discrepancy can be qualitative-
ly understood by noting that weak damping of a simple
harmonic oscillator decreases the frequency of oscillation
by an amount proportional to the square of the damping.
Since the electrons scatter inelastically, they effectively
act as a damping mechanism, and therefore the oscilla-
tion frequency from our calculation (which includes in-
elastic electron scattering) should be slightly lower than
oscillation frequency given by Eq. (1) (which assumes
that the electrons are collisionless). The discrepancy is
slightly larger in the N = 16 case than in the X= 8 case,
which is consistent with the damped simple harmonic-
oscillator model, since the scattering rate (and hence the
effective damping) for the X= 16 case is twice that of the
N = 8 case. However, the quantitative dependence of the
suppression of the oscillation frequency does not seem to
be given by this model.

We also performed calculations for the same parame-
ters as in the N=8 case, but with different wave vectors.
Except for an overall change in the frequency of oscilla-
tions with q, the behavior of the oscillations is qualita-
tively the same, i.e., the period of the oscillations de-
creases down as the electrons cool. Equation (1), together
with Eq. (7), is a good functional predictor of the oscilla-
tion frequency for all q tested. Therefore we conclude
that, for small q, the acoustic mode in this model system

FIG. 3. The oscillation frequency vs time, of the modes
shown in (a) Fig. 2(a) (solid circles) and (b) Fig. 2(b) (open cir-
cles). The periods of the oscillations were determined from the
time taken for the amplitude of the hole density to pass from
one zero to the next. The solid lines are the oscillation frequen-
cies for (a) (bold line) and (b) (thin line) calculated using the col-
lisionless plasma and static screening theory. This theory
overestimates the oscillation frequencies because it does not
take into account the electron scattering, which damps and
slows down the oscillations.

(and presumably for real photoexcited systems) has a
time-dependent phase velocity that is given by
v&(t) =co~ I, /q„, (t).

A possible way of experimentally observing this mode
is through a femtosecond transient grating experiment. '

In this type of experiment, a spatially periodic distribu-
tion of carriers is created by absorption from the interfer-
ence pattern produced by two coherent light pulses. A
third time-delayed pulse can then be used to probe the
carrier density as a function of delay time.

To conclude, we used the Boltzmann equation within
an optic-phonon emission model to show that a well-
de6ned acoustic mode exists in a photoexcited intrinsic
semiconductor that is still evolving in time. The phase
velocity of the acoustic mode decreases with time, since it
is inversely proportional to the electron screening wave
vector, which increases as the electrons cool from optic-
phonon emissions. We can understand the quantitative
features of the change in the phase velocity with time by
a naive theory which assumes that the electrons are col-
lisionless and screen the holes statically.
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