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Interface plasmon modes of coupled semi-infinite superlattices
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The energy dispersion relation of the local interface plasmon modes of two coupled semi-infinite

periodic arrays of quantum wells separated by a distance d has been calculated. An exact solution is ob-
tained when the two semi-infinite superlattices have equivalent periodicities and dielectric constants, but
different densities. For the separation equal to zero limit, one interface plasmon mode is found. This
mode exists only for wave vectors greater than a critical value depending upon the ratio of the densities
of the two superlattices. For finite separation, two interface plasmon modes are found corresponding to
the symmetric and antisymmetric combinations of the individual superlattice plasmon modes. These
modes are found to exist only for separations less than some critical value depending upon the ratio of
the separation distance to the superlattice periodicity.

I. INTRODUCTION

In recent years, there has been a large research effort in
the physics of quantum-well structures resulting from re-
cent advancements in crystal-growth techniques present-
ed by molecular-beam epitaxy and metalorganochemical
vapor deposition. Additional structures and phenomena,
involving quantum confinement, reduce dimensionality,
and superlattices, have been predicted and experimentally
observed. Extensive investigations have also been carried
out on the collective excitations of an infinite semicon-
ductor superlattice consisting of a periodic array of
doped quantum wells. ' For an infinite superlattice, the
two-dimensional plasmons excitations of the individual
quantum wells are coupled together by the long-range
Coulomb force. Because of the periodicity of the super-
lattice, Bloch-type propagating wave solutions for the
plasmon dispersion were shown to exist. In the case of a
semi-infinite superlattice, Giuliani and Quinn investi-
gated the possibility of surface plasmon modes. They
predicted the existence of surface plasmons between a
semi-infinite superlattice and an adjoining bulk material
if the dielectric constants of the two were different. Sur-
face plasmons were found to exist only for wave vectors
larger than some critical wave vector depending upon the
ratio of the dielectric constants.

In this work, we investigate the local interface plasmon
modes of two semi-infinite semiconductor superlattices
separated by a distance d. In general, the two superlat-
tices can have different periodicities, densities, and dielec-
tric constants. The formalism that we present in this pa-
per pertains to the general case, although we specialize
the results to the case where the dielectric constants and
the periodicities of the two superlattices are the same, but
the superlattices have different densities. In this limit, we
have obtained exact solutions for the interface plasmon
modes. The different densities of the superlattices give
rise to two distinctly different continuum plasmon bands
for the individual superlattices. The coupling of plasmon
excitations of the superlattices results in a unique set of
interface plasmon modes. In the case considered here

with equivalent dielectric constants, the isolated semi-
infinite superlattices do not have Giuliani-Quinn-type '

surface plasmon modes which require dielectric discon-
tinuities.

II. THEORY

In this paper, we calculate the energy dispersion rela-
tion for the local interface plasmon modes of two semi-
infinite semiconductor superlattices separated by a dis-
tance d. The system we are studying is depicted in Fig. 1.
In the figure, we show two semi-infinite superlattices; the
one on the left-hand side (superlattice labeled 1 in region
1) has periodicity b and the one on the right-hand side
(superlattice labeled 3 in region 3) has periodicity a. The
two semi-infinite superlattices are separated by a distance
d. The quantum wells of each superlattice are uniformly
doped and have an equivalent two-dimensional electron
density (three-dimensional dopant density times the well
width), n& for superlattice 1, and n3 for superlattice 3.
Region 1 has dielectric constant e„region 2 has e2, and
region 3 has e3. The quantum wells are labeled with the
index j. The wells are assumed to be far enough apart so
that wave-function overlap is negligible. In addition, the
model is specialized to the case where the quantum-well
widths approach zero giving rise to arrays of two-
dimensional electron sheets. This model has been suc-
cessfully used in the past for the plasmon eigenmodes of
the infinite and semi-infinite superlattices. ' The effects
of finite well thickness on-the plasmon dispersion relation
of the superlattice were previously investigated and
shown to be only a few percent correction to the zero-
width results.

To find the interface plasmon excitations, one solves
Maxwell's equations coupled to the density response of
the two-dimensional electron sheets. The density
response to an applied potential is treated within the
framework of linear response theory. We apply the
boundary conditions of continuity of the tangential com-
ponent of the electric field and discontinuity of the nor-
mal component of the displacement vector by 4~@ across
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ty of the normal component of the displacement vector
by 4' in region 3 gives

E3 .e +E3 e =E3 +)+E3+ '~3' — '~3' +

+ + 1P3a EP30
(E3j +1 E3j+1 ) ( 3j 3j

4qrp[( j + 1)a]
7

x=O
where p(j) is determined from linear response theory to
be

Region 1 Region 2 Region 3
p3(j) = ie y3(q, tt))(E3+ +E3 )

FIG. 1. Two superlattices of quantum wells with periodici-
ties a and b separated by a distance d.

each interface. For a p-polarized electromagnetic wave,
the solution for the electric field in region 3 (z )d) must
be of the following form in order to satisfy Maxwell's
equations:

E =0,
i (qy tat)(E+ —' 3 +E— ' 3~)—e 3.e 3 e

Here y3(q, ct)) is the susceptibility of the two-dimensional
electron gas. In the random-phase approximation
(RPA) y3(q, ct)) is given by

X3(q, ~)=2 g
Ep+q 6p CO

where the subscript on g refers to the specific semi-
infinite superlattice. For co))quf, where Uf is the Fermi
velocity, y3(q, co) is to a good approximation

p
—1 i(qy t)(tEa—+ ') 3 E — 13

)z= q

in region 2 (0 & z & d),

n3q
X3(q, ~)=

f21 CO

(10)

i(qy tat)(E+ —' 2~+E — ' 2~)

12
—1 i(qy a)t)(E+ '—j2 E — '12~

2e 2e

(2)

Using the decaying solution ansatz of Eq. (5) in Eqs. (6)
and (7), we find

[e ' (1+y3)—e ' ]E3+o

and in region 1 (z &0),

E —i ( qy tat)(E+-y=e ) je ) je

p
—1 i(qy tat)(E+ ti tz—E — ti 1~)

l,j

(3)

where

—[e ' (1—y3) —e ' ]E,„=0,

4mie
»X3(q ~) .

e3p3 q

(12)

(13)

E+,— E+,—
&j &o e

cx3Jo
3j = 3o

(4)

(5)

where u& and a3 are the inverse decay lengths in the
respective superlattices. Applying the continuity of the
tangential component of the electric field and discontinui-

where P„ is related to q by P„=e„co /c —q, n refers to
the specific region, and j labels the quantum well. For
the semi-infinite superlattices, Eq. (1) is defined for
ja & z & (j + 1)a in region 3, where z is measured from ja
and the j =0 well is at z =d. Likewise, in region 1, Eq.
(3) is defined for jb &z & (j—+ 1)b where —j is taken to
be positive, z is measured from —jb, and the j =. 0 well is
at z =0. Here, the z direction is along the superlattice,
and the x and y directions are perpendicular to the super-
lattice (along the quantum wells).

To solve for the interface plasmon modes of the cou-
pled semi-infinite superlattices, we make the ansatz of de-
caying solutions in regions 1 and 3 of the form

2D 2 sinh(qa)
cosh(qa) —

—,'(x3+ 1/x 3 )
(14)

where x3 =e ' is the inverse decay factor into superlat-
tice 3. co 3 is the single-well two-dimensional (2D)
plasmon dispersion energy,

2&n 3e q
2

( 2D)2
E3m

(15)

where n3 is the two-dimensional density of the quantum
well. Identical equations are obtained for the superlattice
plasmon 1 where every symbol with subscript 3 is re-
placed with subscript 1. Equation (14) is the same equa-
tion previously derived for the bulk superlattice plasmon
energy except that the wave vector k along the superlat-

Solving Eqs. (11) and (12) simultaneously, the relation for
co, the plasmon energy, is determined to be

sinh(qa)
Ct) —

Cty& 3 )
cosh(qa) —cosh(a3a)
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tice is replaced by i times a. ' If one replaces cosh(aa )

by cos(ka), then one obtains a band of plasmons along
the k direction (the direction of k is along the superlattice
axis, whereas q is parallel to the two-dimensional sheet of
electrons). This corresponds to traveling-wave solutions

1 cx3Ja
where Eq. (5) becomes E3 ' =E3+0 e ' . For a well-
defined excitation, the plasmon dispersion for the local
mode plasmon must lie outside the bulk plasmon bands.
The edges of the bulk plasmon bands are determined by
cos(ka) equal to plus or minus one.

Applying the boundary conditions at the interfaces of
region 2, at z =0 and d, gives the additional equations

its for which we have determined exact solutions that we
now discuss.

III. ANALYSIS AND RESULTS

A. The separation between the superlattices is zero

el[x I
—cosh(qb) ]= —e3[x 3

—cosh(qa) ] . (23)

First, we consider the limit where d is exactly zero, and
the superlattices have equal periodicities and equal
dielectric constants. That is, d =0, a =b, and e, =@3.
Then Eq. (22) reduces to

Ei+o+Ei 0 =E2+ +E2

E2
(E2+ —E2 )+(EI+0—E, 0)= —y, (E2++E2 ),

(16)

(17)

In this case, Eqs. (20)—(22) can be readily solved. Al-
though the superlattices have equal periodicities they are
still nonequivalent since their densities are different (p is
arbitrary), and consequently, the bulk plasmon bands
have different bandwidths. In this limit, Eqs. (20)—(22)
result in a cubic equation to be solved for x3 with the
only physically acceptable root

(E+ —E —
)

E'3

where

2
cosh(qa), (24)

y3(E3,0+E3,0) (19)
P= ( eI le3 )( n 3 In I ) = ( n 3 jn I )

Equations (11) and (12), the corresponding equations for
superlattice 1, and Eqs. (16)—(19) must be solved simul-
taneously for the interface plasmon modes. In order to
investigate the bare plasmon modes uncoupled to the ra-
diation field, it is appropriate to take the nonretarded
limit, co «qc. Solving these eight equations in this limit,
after some amount of algebra, leads to the following
equations to be solved: 2

cosh(qa) . (25)

The other roots are x3 =eq' and x3 =e ', and are not al-
lowed since both x

&
and x3 must be greater than unity in

order to have a decaying solution (for x3 =e q', x, =e
which is less than unity and consequently not allowed).
The solution for x, corresponding to x3 of Eq. (24) is

1
x3 + 2 cosh(qa) =y3sinh(qa)

X3

1x I + 2 cosh(qb) =y, sinh(qb),
x)

[x I
—cosh(qb) . +—(cosh(qd)

sill ll( qd ) 2

sinh( qb ) e I

X [x3 —cosh(qa)] . +—cosh(qd)
sinh(qd) e2

sinh(qa)

(20)

(21)

E)E3

2cosh(qa)„;, —1=P . (26)

For P= 1, interface plasmons exist for all qa [that is,
(qa)„;, is zero]. For P=2, (qa)„;, is 0.962, for P=4,
(qa)„;, is 1.567. As P increases, so does the required
(qa)„;, for the existence of the mode. Using x3 in Eq. (14)
leads to an explicit solution for the plasmon dispersion,

The constraints on x& and x3 lead to the condition that
qa must be greater than some critical value of (qa)„;, in
order for a localized solution to exist. For p~ 1, (qa),„;,
must satisfy

where y3 is defined by Eq. (13), and x, =e ' and
a3ax 3 e ~ The solution of these equations results in a

fourth-order equation in x3 that in general has an analyt-
ic solution, although rather complicated. After obtaining
x3, substituting into Eq. (20) gives the energy of the local-
ized plasmon excitation. It is also necessary to solve for
x, [determined by substituting x3 into Eq. (22)] since to
have a physically acceptable solution, one must show that
both x& and x3 are larger than positive one or less than
minus one. In the general case of arbitrary periodicities
and dielectric constants for the two superlattices, Eqs.
(20)—(22) are solved numerically for the four roots for x3.
However, there are a number of interesting physical lim-

2 2D 2 ( I +2P)»nh(qa)cosh(qa)
CO —

CO& 3
2Pcosh (qa) —

—,'(P+1) (27)

For P=l (equivalent densities, n, =n3=n), this corre-
sponds to a superlattice with the quantum well at x =0
having a density of 2n. In this case, Ref. 10 showed that
a local mode exists with an energy dispersion given by
Eq. (27) for p= l. This mode is directly analogous to a
local phonon mode" in a vibrational superlattice where
one mass is difFerent from the others. For the local
plasmon mode (P=1), we find, xi =x3=cosh(qa) and
co =(03, ) 2coth(qa).

For arbitrary P and in the limit of large qa (the wells
become isolated),



1108 WALTER L. BLOSS

1/24'(n, /I2)e

1 eqa
1+P

In this limit, the plasmon dispersion simplifies to

co =(co, ) (I+P) .

(29)

(30)

2.0

1.0

Since P=n3/n, this is just the result for a single isolated
quantum well with density n

&
+n3 as expected.

In Fig. 2 we plot the interface plasmon energy versus
qa for 13=1, 2, and 4. The regions between the dashed
lines in the figure correspond to the energies of the con-
tinuum of the bulk plasmon states for the isolated super-
lattices. For P=2 and 4, the upper pair corresponds to
the bulk plasmon modes associated with superlattice 3,
the lower pair with superlattice 1. For P= 1, the continu-
um of bulk plasmon states is the same for both superlat-
tices. The energies are measured in reduced units of

relative to superlattice 1. In the d equal zero limit, only
one interface plasmon mode exists. This corresponds to
the symmetric mode arising from the coupling between
the two superlattices. For P= 1, we find a local mode at
the quantum well located at z =0 as discussed above.
For @=2 and 4, the interface plasmon mode exists only
for wave vectors larger than (qa)„;,. The (qa)„;, values
for the existence of a decaying solution occur at 0, 0.97,
and 1.57 for P=1, 2, and 4, respectively, in agreement
with Eq. (26). Below, we show that for finite d, two inter-
face plasmon modes exist, corresponding to symmetric
and antisymmetric modes.

B. Identical saperlattices separated by Anite distance

Next we consider another physically important limit
that also has an exact solution. We consider two
equivalent semi-infinite superlattices with identical
periodicities a embedded in a media with equal dielectric
constants, doped with the same carrier densities but
separated by a distance d. That is, a =b, E'&=62=6'3 and
13=1, but d is arbitrary. In this case, we can also solve
Eqs. (20)—(22) exactly. The resultant quartic equation
has two unphysical solutions for x 3, x 3

=e ' and
x 3 e '. The quadratic equation can then be solved for
x 3 and subsequently x I, using Eq. (22), with the results

CX)Q A3Q e +e
xi =e =x3 =e

qa( qd+ 1 )
(31)

2.5

2.0

1.0

0.5

3.5
3.0
2.5
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r
I

ee
~ eP ee ~

~e+r ~en~~ z~ eSP

r
/=2rr
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I I I

2qa+ qd

co'=(ad~I ) (I+e q )
e q' —1

(32)

where the plus sign is for the higher-energy mode (sym-
metric mode) and the minus sign is for the lower-energy
mode (antisymmetric mode). For d equal to zero, Eq.
(31) reduces to our previous results of Sec. III A. From
the condition that x3 must be greater than unity or less
than minus one in order to have a decaying solution, we
find that localized plasmon modes exist only for d (a.
The distance between the superlattices must be less than
the superlattice periodicity. For the lower-energy modes,
x& and x3 are negative indicating that the solution is of
the form ( —l)~ times Eqs. (4) and (5). This indicates that
the phase changes by ~ every lattice spacing. The equa-
tion for the energy of the interface plasmon excitations is
found to be

1.5
1.0

0.5

~eO ~~we
~se ~

rr
/=4rrr rr

I I I I

where the plus sign is the higher-energy mode and the
minus sign the lower-energy mode. If we specialize to the
case where a )&d, the superlattice periodicity is much
larger than the separation and we find

qa

FICz. 2. Plots of the interface plasmon energies vs qa for
P= 1,2, 4, and zero separation.

and

qa

x —x
qd+ 1

2 —
(

2D )2( 1+e —qd)

(33)

(34)
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2
(

2D )2qdpl (36)

These results agree with those of Das Sarma and Madhu-
kar' who considered the case of two quantum wells cou-
pled together by the long-range Coulomb interaction.
They found a low-energy acousticlike mode (co propor-
tional to q) identical to Eq. (36). For the quantum wells
of the superlattices far apart compared to their separa-
tion (a ))d), our results correspond exactly to the two
coupled-quantum-well results.

In Fig. 3 we plot the interface plasmon energies versus
qa for separations, d =0.01a, O. la, 0.5a, and 0.7a. The

2.0-

1.5

For qd approaching zero, the plasmon dispersion for the
higher-energy mode becomes

2 2( 2D)2
Gap )

and for the lower-energy mode,

upper and lower energy interface modes arising from the
symmetric and antisymmetric linear combination of iso-
lated superlattice plasmon eigenstates are evident at all
separations depicted in the figure. For d =0.01a, the
upper mode is very close to the d =0, P= 1 mode of Fig.
2. However, a low-lying acousticlike excitation is now
observed in agreement with Eq. (36). This mode vanishes
for d equal to zero as observed in Fig. 2. As d increases
the upper mode decreases in energy and the lower mode
increases towards the continuum states. There is no
(qa)„;, for the equal density P=1 case; the upper mode
exists for all qa. However, as shown following Eq. (31),
there is a critical separation distance d at which both the
upper and lower modes cease to exist. At d =a, there are
no allowed interface plasmon modes. This result agrees
with the d approaching infinite limit where one has isolat-
ed semi-infinite superlattices. In this case, Giuliani-
Quinn-type ' surface plasmons for the semi-infinite su-
perlattice do not exist because there is no dielectric
discontinuity.

C. Superlattices with difFerent doping densities
and finite separation

0.5

2.0

1.5

r I

d = 0.01a
Next, we consider the case in which the semi-infinite

superlattices have identical periodicities and dielectric
constants, but difFerent doping densities (13 not equal to
unity) and are separated by a finite distance d. Again, we
have solved this case exactly. The solution to the quartic
equation resulting from Eqs. (20)—(22) for x3 can be re-
duced to the following quadratic equation, with the other
two roots being unphysical:

1.0

0.5

QX3+6X3+C =0,
where

(37)

4qa 2qa +2qd 4qa +Zqd+ 2qa +4qd (3&)

1.50

1.25

1.00

0.75

0.50

0.25

5qa+ qa +2qd+ 3qa +2qd+ 5qa +2dq 2 qa +4qd

+13( qa+Zqd+2 3qa+2qd 5qa+2qd)
7

6qa+ 4qd 2qa +2qd 4qa +2qd—e

(39)

(40)

1.50

1.25

1.00

0.75

0.50

0.25

Although the solution to the quadratic equation, ex-
pressed above, is trivial, the equation for the roots is rath-
er involved and is not explicitly given. The reader can
easily solve the quadratic for x3 and substitute this into
Eq. (14) to determine the plasmon energy co. In the limit
that qa approaches infinity and qd approaches zero, the
quantum wells are far apart and the superlattices are in
close proximity. This limit corresponds to the interaction
of two quantum wells, with densities n

&
and n3 separated

by a distance d. In this case, we find x3 for the higher-
energy mode

FICx. 3. Plots of the interface plasmon energies vs qa for P= 1

and separations d =0.01a, 0. 1a, 0.Sa, and 0.7a.

eqa

I+P '

and for the lower-energy mode,

(41)
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(1+P)e~'

2qd

With respective plasmon energies

2
( 2D)2 P

( 2D)2+( 2D)21+A
cop 3 Cop i

(42)

(43)

2
( 2D)2

1+P (44)

qg —2qde—1

and for the lower energy mode,

P qa —2qd
x& — e—1

(45)

These results for the plasmon energies agree with the re-
sults of Ref. 12 for the case of two difFerent quantum
wells interacting by the Coulomb interaction.

In the limit that qd becomes large (but qa ))qd) and
P ~ 2, we find for the higher-energy mode

0.3a. Again, we find the existence of two modes corre-
sponding to the symmetric and antisymmetric eigen-
states. The higher-energy mode exists only for wave vec-
tors greater than a critical value; (qa)„;,= l.60 for
d =0.01~, (qa)„;t= 1.84 for d =O. la, (qa),„;,=2.23 for
d =0.2a, (qa)„;,=3.06 for d =0.3a, and (qa)„;,=5.50
for d =0.4a (not shown). For d =0.5a, there is no solu-
tion for the higher-energy interface mode. The critical
value for qa is larger in this case, where the density of su-
perlattice 3 is four times the density of superlattice 1, as
compared to the ratio of two in Fig. 4. The lower mode
ceases to exist for d greater than approximately 0.6a.

The conditions determining the critical values of qa for
the existence of the interface plasmon modes can be
determined from Eq. (37). In order to have a well-defined
plasmon mode, both x

&
and x3 must be greater than posi-

tive one or both x
&

and x3 must be less than negative one.

2.5

2.0

The results for x3 for the upper mode and x& for the
lower mode are presented above because these are the
solutions that become unphysical as the separation d ap-
proaches the superlattice periodicity a. From Eqs. (45)
and (46), we see that for 13~2, x3 approaches unity, and
xi approaches minus unity when d =a/2. Although the
expansion above becomes suspect when d approaches
a/2, it does give approximately the critical value for d
for the existence of the interface plasmon modes. A pre-
cise condition determining d is given by Eqs. (48) and (50)
discussed below. Although other limiting forms follow
directly from Eq. (37), they are rather involved and will
not be presented here. In the following, we present our
numerical results for the interface plasmon excitations in
Figs. 4 and 5.

In Fig. 4 we plot the plasmon dispersion for P=2 (the
density of superlattice 3 is two times that of superlattice
1) versus qa for the separations d =0.01a, O. la 0.3a, and
0.4a. We find the existence of two interface modes corre-
sponding to the symmetric (higher energy) and antisym-
metric (lower energy) combination of plasmon eigenstates
associated with each individual superlattice. The higher-
energy mode does not exist for qa less than a critical
value. The critical value for qa, below which the higher-
energy mode ceases to exist, is (qa)„;,=0.97 for
d =0.01a, (qa)„;,= 1.09 for d =0.1a, (qa)„;,= 1.56 for
d =0.3a, and (qa)„;,=2.07 for d =0.4a. The critical qa
for d =0.0la is very close to the d equals zero results of
Sec. IIIA. Note that as the separation d increases so
does the critical value of qa. For d =0.5a (not shown),
both the upper and lower energy modes are very close to
the continuum. For d &0.5a, we find that the upper
mode ceases to exist. The lower mode ceases to exist for
d )0.65a. These conditions will be discussed further
below.

In Fig. 5 we plot the plasmon dispersion for P=4 (the
density of superlattice 3 is four times that of superlattice
1) versus qa for the separations d =0.01a, O. la, 0.2a, and

1.5
es

10
r rr

0.5 r rrr
I I

d =0.0fa

2.5

2.0

15

1.0

~P

~ ee

0.5

2.0

1.5

1.0

0.5

2.0

1.5

FIG. 4. Plots of the interface plastnon energies vs qa for P=2
and separations d =0.01a, 0. 1a, 0.3a, and 0.4a.



INTERFACE PLASMON MODES OF COUPLED SEMI-INFINITE. . .

For the upper mode, (qa)„;, is set by having x3 equal to
unity (for f3& 1). This gives

a+b+c =0, (47)

where a, b, and c are define by Eqs. (38)—(40). Solving
Eq. (47) for P,

crit + 2qd)(e q crit + e 2tid)

+crit & r t t i crit)2
(48)

3.5
3.0
2.5

20

In Fig. 6(a), we plot p vs (qa)„;, for d =0.4a, 0.5a, 0.6a,
0.7a, 0.8a and 0.9a. For d &0.5a, the curves increase ex-
ponentially following Eq. (45) as depicted in the figure for
d =0.4a. A solution for (qa)„;„above which the upper
interface plasmon is allowed, always exist for d &0.5a.
The critical values for the wave vectors as determined
from Eq. (48) agree with those found in Figs. 4 and 5. As

Again, solving for P,
crit i

( 1 + 'i crit )2

2/1
(

i~crit '
)(

3'i~crit 2qd)
(50)

In Fig. 6(b), we plot 13 vs (qa)„;, for d =0.55a, 0.60a,
0.65a, 0.70a, and 0.75a. For a given P, the solution gives
a (qa)„;, below which the lower interface plasmon mode
exists and above which it does not. If P=2, then for
d =0.65a we see that there is no solution for (qa)„;,.
Consequently, the lower interface mode is not allowed for
d &0.65a and P=2 as discussed in Fig. 4. For other
values of P, the value for d above which there is no solu-

d approaches 0.5a, (qa),„;, approaches infinity for f3&2.
For d =0.5a and for 13& 2, no solution for (qa)„;, exists
indicating that there is no allowed upper interface
plasmon mode. For 1(13(2, two solutions for (qa)„;,
exist for a given P and the upper interface plasmon mode
is allowed between the smaller and larger (qa)„;, values.

For the lower interface plasmon mode, (qa)„;, is set by
having x& equal to minus unity,

a —b+c =0 .
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FIG. 5. Plots of the interface plasmon energies vs qa for P=4
and separations d =0.01a, 0. 1a, 0.2a, and 0.3a.

FIG. 6. Plots of /3 vs {qa)„;, determining the critical wave
vector for the existence of the interface plasmon modes for vari-
ous separations d: (a) upper mode, (b) lower mode.
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tion can be determined from Fig. 6(b). As d approaches
0.50a (qa)„;, goes to infinity. For d less than 0.50a, the
lower acoustic mode is always an allowed solution.

Before concluding, we address the question of the re-
gion of validity of the long-wavelength approximation for
the susceptibility of the two-dimensional electron gas, Eq.
(10). In order for this approximation to be valid, co must
be greater than qu&. In terms of our reduced units, this
condition can be expressed as co/coo))(qa)+a, s/(2a)
where a,&=A e/me is the effective Bohr radius. In gen-
eral, for periodicities greater than the eftective Bohr ra-
dius (for the GaAs-Ga, Al„As superlattice, the
effective Bohr radius is approximately 100 A), the long-
wavelength approximation is valid. For the results
presented here, this condition is easily satisfied, except
possibly for the very low-lying acoustic plasmon modes.
Assuming that we have an acoustic plasmon solution as
expressed by Eq. (36), the above condition reduces to
d &)a,~. For situations in which this is not true, then
one must use the exact random-phase approximation (not
the ai))qu& limit) for the susceptibility as derived by
Stern. To go beyond the random-phase approximation,
higher-order exchange-correlation efFects can be included
by the standard diagrammatic approach. It is known
that exchange-correlation efFects are important correc-
tions to the subband energies and optical response func-
tion for two-dimensional systems. ' '" These effects have
been approximately included for the two-dimensional

plasmon energy by Rajagopal, ' Beck and Kumar, ' and
Johnson' and can be important corrections to the results
reported in papers which use the random-phase approxi-
mation.

IV. CONCLUSION

We have shown the existence of localized interface
plasmon modes for two coupled semi-infinite superlat-
tices separated by a distance d. For the case of equal
periodicities and dielectric constants of the two superlat-
tices, exact results for the interface plasmon modes are
derived. For d =0, only the symmetric eigenstate exists
and it exists only for qa above a certain value depending
on the ratio of the density of the two superlattices. For d
finite, two modes exist corresponding to a symmetric and
antisymmetric combination of plasmon states of the indi-
vidual superlattices. The lower-energy mode (antisym-
metric mode) is acousticlike (ui=q). As the separation d
increases, these modes merge into the continuum, and are
not allowed at a critical value of d. Conditions for the ex-
istence of the interface plasmon modes as a function of
the separation of the superlattices were derived.

For the most general case, with arbitrary parameters
for the doping density, periodicities, and dielectric con-
stants of the two semi-infinite superlattices, one must
resort to the solution of the fourth-order equation arising
from Eqs. (20) —(22).
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