
PHYSICAL REVIEW B VOLUME 44, NUMBER 20 15 NOVEMBER 1991-II

Deformation-potential theorem in metals and in dielectrics

R. Resta*
Scuola Internazionale Superiore di Studh Avanzati (SISSA), via Beirut 4, I 340-14 Trieste, Italy

and Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA),
PHB-Ecublens, CH-1015 Lausanne, Smi tzerland

(Received 26 March 1991)

Using linear response within the density-functional theory, I provide an expression of the matrix ele-
ments for electron scattering by long-wavelength phonons, both optic and acoustic. In the latter case, I
prove that the matrix elements are exactly related to the strain-induced shifts of the electronic levels by
the identity known as the deformation-potential theorem, and which had been demonstrated so far only
for metals within the rigid- or deformable-ion models. The case of dielectrics shows additional compli-
cations due to the long-range nature of the Coulomb interaction; a generalized form of the theorem is
proved in this case, where the macroscopic effects are embedded in a bulk fourth-rank tensor. The rela-
tionship to recent results on the "absolute" deformation potentials for homogeneous strain is discussed.

I. INTRODUCTION

The interaction between electrons and lattice vibra-
tions is one of the fundamental interaction processes in
solids. In 1950, Bardeen and Shockley introduced the
concept of a deformation potential to describe the in™
teraction between electrons and acoustic phonons their
main conjecture —known as the "deformation-potential
theorem" —relates the matrix elements of the electron-
phonon interaction to the shifts of the electronic levels in
crystals as functions of macroscopic strain. There have
been over the years several papers about the
deformation-potential theorem. In 1984, Khan and Al-
len provided a rigorous and general proof, which, how-
ever, holds only within the rigid-ion model; later,
Kartheuser and Rodriguez extended the proof to the
deformable-ion model. The simplicity of the result of
Refs. 2 and 4 suggests, however, that its validity should
not be limited to such oversimplified models. Once a
theoretical framework is consistently established for one-
electron levels in solids, the deformation-potential
theorem should be proved as an exact result, that does
not rely on any approximation: this is in fact the main is-
sue of the present work.

The density-functional-theory (DFT) framework is
adopted here in order to define both the electron-phonon
matrix elements and the deformation potentials. The lat-
tice distortions induce modifications of the electronic
charge of the crystal, which crucially affect the electron-
lattice interaction: here this feature is dealt with exactly,
within self-consistent linear-response theory, thus avoid-
ing any shape approximations such as within the rigid- or
deformable-ion models. The problem shows different as-
pects in metals and in dielectrics, because of qualitatively
different screening properties of the Coulomb interaction,
the case of metals being the simplest.

Starting with the metallic case, I provide a general ex-
pression for the electron-phonon matrix elements —valid
for any Bloch state and for any long-wavelength

phonon —which is formally exact in the DFT frame-
work. The matrix elements for acoustic-phonon scatter-
ing are then related to the deformation potentials for
homogeneous strain by the same identify as found—
under a rather restrictive hypothesis —in Refs. 2 and 4.

As for dielectrics, additional problems arise from the
long-range nature of the Coulomb interaction. First of
all, some phonons may be accompanied by a macroscopic
electric field: these are the longitudinal-optic phonons in
polar materials and some acoustic phonons in piezoelec-
tric material. In both such cases, the macroscopic field
provides the dominant electron-scattering mechanism,
and the usual macroscopic theory is exact (to leading or-
der in the phonon wave vector): these cases will not be
further addressed in the present work. In all of the other
cases, a theory of electron-phonon scattering is necessari-
ly microscopic, but long-range Coulomb effects are re-
sponsible for nontrivial contributions.

Even in the simplest dielectrics, i.e., in nonpiezoelectric
and nonpolar materials, the electron-acoustic-phonon
scattering is affected by long-range features. Although
this fact has been known for many years, ' only recently
has it been fully realized' ' " that the deformation poten-
tials for homogeneous strain have some fundamental
difticulties, too, which can be traced back as well to the
long-range nature of electron-ion interaction in dielec-
trics: this is the problem of the so-called "absolute'* de-
formation potentials (ADP's) for which an important ex-
istence theorem has been recently proved. '

In this work I give an exact expression for the
electron-phonon matrix elements in dielectrics, valid for
any Bloch state and for any long-wavelength phonon,
provided it does not induce a macroscopic field. These
matrix elements have in general an explicit macroscopic
(i.e., long-range) contribution; in the acoustic case, they
cannot be related to an ordinary deformation potential.
However, I show that the concept of a deformation po-
tential can be generalized by introducing a basic fourth-
rank tensor, which is a bulk material constant accounting
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for all of the macroscopic effects; a generalized
deformation-potential theorem is then proved for dielec-
trics. In the particular case of a nonpiezoelectric and
nonpolar material, the present generalized deformation
potentials coincide with the ADP's defined for homo-
geneous strain in Ref. 12. Finally, I analyze the symme-
try selection rules allowing nonvanishing macroscopic
contributions to electron-phonon scattering.

II. ELECTRON-PHONON MATRIX ELEMENTS

5VKs(r)= g ul, u, (r —R(, ),
Is

(2)

where the potentials u, (r —
R&, ), which are the basic in-

gredients of the present work, are defined as the linear
variation of the KS potential per unit displacement in the
a direction of the atom at RI„keeping all the other
atoms fixed; sum over repeated Cartesian indices is impli-
citly understood throughout. Expansions similar to Eq.
(2) have been previously used in various cir-
cumstances.

The electron-phonon matrix elements are by definition'
the elements of 5v~s between the neighboring (in k
space) Bloch states P k+q, and g z, belonging to the
same band:

&k+q~5v~s k&= gu„&k+q~v, (r —R„)~k&,

where the band index v has been omitted for the sake of
simplicity.

The above Eqs. (1)—(3)—as well as some of the follow-
ing ones —are similar in form to those of the rigid-ion ap-
proximation, ' the important difference being that the
present approach is formally exact within self-consistent
DFT: all of the screening effects are included. I also
point out that the u, (r) are the Cartesian components of
vector fields which are in general not curl-free, ' and can-
not therefore be expressed as gradients of scalar fields, as
it is instead the case within the rigid-ion or deformable-
ion models. '

Using Eq. (I) the electron-phonon matrix element are

Let us consider a solid with a frozen-in monochromatic
phonon of small momentum q, defined by the ionic dis-
placements

tq R„
u&, =u, (q)e

where l is a lattice index, s indicates different atoms in the
unit cell, and e is a Cartesian index. Such perturbation
induces a variation in the electronic Hamiltonian, whose
matrix elements between unperturbed band states govern
the electron-phonon interaction. In this work I con-
sistently adopt a DFT viewpoint, i.e., the one-electron
Hamiltonian and eigenstates are those defined by the
Kohn-Sham (KS) theory. The variation in the electronic
Hamiltonian coincides therefore with 6 VKs, the self-
consistent KS potential induced by the phonon. Up to
linear order in the ionic displacements, we may write
quite generally

expressed as an integral over lattice-periodical functions:

& k+ql5V~S Ik &
=—J «q,*+q(r)q, (r)

1

cell

X gu, (q)

—iq(r —Rl, )Xe "
v, (r —Rt ),

(4)

where the g's are the periodic parts of the Bloch KS or-
bitals, and 0 is the cell volume. Equation (4) is now re-
cast as a Fourier series, whose terms depend parametri-
cally on q:

&k+q~5VKs~k&= —ge 'u, (q)u, (q+Cx)
G, s

X dr+i+ 1 gk I'
cell

our next task is to evaluate Eq. (5) to the leading nonvan-
ishing order in q. As for the amplitudes u, (q), I per-
form the usual decomposition: '

u, (q)=u (q)+5, (q),

where the first term is the displacement of the cell as a
whole and the second term is a relative displacement.
These are also called "acoustic" and "optic" components,
respectively, because in the long-wavelength limit uG(q)
vanishes for optic modes and 5, (q) vanishes for acoustic
branches.

III. METALS

Under the hypothesis that the v's are short range (as in
metals), their Fourier transforms are analytic: we will
remain with this hypothesis throughout this section in
evaluating the low-q expansion of Eq. (5).

I start with the case of optic phonons, where the lead-
ing term is q independent: its expression, in terms of the
zone-center displacements 5, , is simply obtained from
the matrix element of the periodic potential induced by
the phonon:

&k+q~5V'~" ~k&

= & k~ 5 V„"g"~k &

=x k e' 'xe *5, U, (G) k) .
G s

I now switch to zone-center acoustic phonons: the u (q)
amplitude is then related to the macroscopic strain,
whose (unsymmetrized) tensor is

E &=iu (q)q&,
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and which is linear in q. The second term in Eq. (6) for a
zone-center acoustic phonon can be expressed via the
internal-strain tensor I as'

s aprspr '

The leading-order term in the electron-acoustic-phonon
matrix element is linear in q. Starting from Eq. (5), its
low-q expansion is performed along the same lines as for
the rigid-ion approximation; using Eq. (8) the linear term
takes the following form:

&1+ql fiv'~s'll &= e.p (&1 lp. ll &&1 lppl1 &
—&11p~pll &)im,

(10)

where the tensor in square brackets plays the role of an
effective deformation potential for electron-acoustic-
phonon scattering. The internal-strain contribution to
Eq. (10) is identical to the electron-optic-phonon matrix
element of Eq. (7), where the amplitude of optic mode is
governed by the I tensor.

IV. DIELECTRICS

( )
4me

q
i (&) 1 (2)
Qs, af@p 2 Qs, apylply

+
6 Qs, aprslplrls

where the 21-polar tensors Q'J' are well-defined linear-
response properties of the bulk; they have rank j + 1 and
will be assumed symmetric only in their last j indices.
The dipoles are nothing else than the Born effective
charge tensors; because of charge neutrality, they obey
the acoustic-sum rule'

New features arise in a dielectric material, owing to the
long-range nature of the electron-ion interaction. First of
all, one has to specify the boundary conditions used in
defining the potentials v, (r), or equivalently in defining
the charge variations f, (r) linearly induced by unitary
ionic displacements, which generate such potentials.
These quantities have been introduced by Martin in the
context of piezoelectricity, ' and subsequently used for
lattice dynamics. ' ' Following Martin, I impose the
electrical condition that the displacements are performed
at zero macroscopic field: under such hypothesis, the
f, (r) are short range and their Fourier transforms are
analytic.

It follows that the v, (q+Cx) are analytic at Cx&0; as
for the G =0 component, we notice that the leading mul-
tipoles in the induced charge densities f, (r) are either
dipoles (in polar lattices), quadrupoles (in diamond lat-
tice ' ), or octupoles (in Bravais lattices). The small-q ex-
pansion of the potentials has therefore the following non-
analytic form:

y Q(1) —0 (12)

v, (qq)=4m. e — Q,'"gp ,'Q,' 'p —QpQ——

+
6 VQs, apy s4p0y Os

(3) (13)

Starting again with the case of zone-center optic pho-
nons, I explicitly separate the Vx=0 term, where Eq. (13)
is used in performing the long-wavelength limit. The re-
sult is

The expansion of Eq. (11) includes nonelectrostatic
contributions —such as due to exchange-correlation
effects —which are expected to be analytic: this means,
e.g. , that the quadrupole Q' ' is in general not traceless,
and its trace provides indeed, after Eq. (11), the leading
(zero-order in q) short-range contribution to v, (q).

Strictly speaking, the electrical condition cannot be
formulated as a boundary condition independent of
geometry; this fact, however, does not cause any harm, '

provided our basic ingredients v, (q+Cx) are used only
for phonons which do not induce a macroscopic field in
the long-wavelength limit. Whenever a macroscopic field
is present, the v, (q+Cx) are nonanalytic even at Ca&0:
this nontrivial fact —although awkward —is a well-
established feature of dielectric screening in periodic in-
sulating media, ' and can be explained in terms of local-
field effects. ' '

Therefore the present microscopic theory does not ap-
ply either to LO phonons in polar materials, or to
piezoelectric acoustic phonons; this is not a severe limita-
tion indeed, since in these cases electron-phonon scatter-
ing is dominated by the macroscopic field, and the phe-
nomenological macroscopic theory is exact to leading or-
der. For all of the other cases, I develop a microscopic
theory starting again from Eq. (5), and using Eq. (11) in
its G=O term; the long-wavelength limit is evaluated
keeping q in the actual direction, of the phonon wave
vector. To this aim, I write q=qq and I perform a low-q
expansion at fixed q; Eq. (11) is then conveniently rewrit-
ten as
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(k+q SV~jgP'(~k) = — X g'e'AS, peg~+ X' k e'e'X e *S,,S, ,(G) k), (14)

with the usual meaning of the primed sum; the two terms in Eq. (14) will be referred to as macroscopic and microscop-
ic, respectively. The dipoles Q'" from Eq. (13) would apparently contribute a I /q term, which in fact vanishes because
of the zero-field condition. For a cubic binary material this is easily understood' either because the displacements are
orthogonal to q (in the TO case), or because of the acoustic-sum rule, Eq. (12) (in the LO case for nonpolar materials,
like diamond). The macroscopic term in Eq. (14) is identical to the result given in Ref. 9 for nonpolar semiconductors.

Both the terms in Eq. (14) are of zero order in q, but the macroscopic one displays explicit dependence upon the
direction of the phonon wave vector. The microscopic term, instead, is independent of such direction: It does not show
new features with respect to the short-range case, Eq. (7), and can be easily evaluated via, e.g., a self-consistent frozen-
phonon calculation at the zone center.

Switching now to the acoustic case, I express the macroscopic term as

gu, (q)U, (q)= g(u +iql, p upqy) ——Q,"'gp — Q,"'p—qpqy+ qQ,"'p—ysqpq qs
S S

=C, (q)q '+Co(q)+C, (q)q, (15)

where Eqs. (8) and (9) have been used in the long-
wavelength limit. The C

&
coefficients vanish because of

the acoustic sum rule, Eq. (12); the following term is

4me (&) 1 (2)Co(q) —
~ X I'

ssapQs, sy
—

—,, XQs, apy uAp&y
S S

1—g u, (q)U, (q)=E P) pysqyqs,
S

and where the fourth-rank tensor 2) is

4~e (2) 1 (3)
+apyS 2 X s, gapQqyS+ 6 XQs, apyS0 (18)

where the quantity in large parentheses is easily related
to the microscopic expression for the piezoelectric ten-
sor. ' For nonpiezoelectric materials (or more generally
for nonpiezoelectric phonons) Co vanishes; we thus
remain in Eq. (15) with the term linear in q, which I cast
as

This tensor is a well-defined bulk material property,
which accounts for all of the macroscopic effects in the
acoustic-phonon scattering; it was originally introduced
in Ref. 12 in order to deal with ADP's. ' All of the other
terms in Eq. (10) are not affected by long-range features: I
thus arrive at the final form for the electron-acoustic-
phonon matrix element:

+X' k e' 'pe * (', ,ee, (G) —i S, ,(Ci) k)
G S P

(19)

The above formulation applies either to LA or TA pho-
nons; in both cases the effective deformation potential for
acoustic-phonon scattering has a macroscopic term
which depends explicitly upon the direction of the pho-
non wave vector, via the 2) tensor in Eq. (19). Here again
we notice that the internal-strain contribution to Eq. (19)
is identical to the electron-optic-phonon matrix element
of Eq. (14), both in its macroscopic and microscopic
terms.

The macroscopic contribution to electron-phonon
scattering in nonpolar semiconductors has been previous-
ly studied by Lawaetz, his result shows a different q

dependence than in Eq. (19). The reasons can be traced
back to an incorrect long-wavelength limit, which is not
performed (see Appendix B in Ref. 9) at fixed q, as is the
case here.

V. DEFORMATION POTENTIALS

I analyze here the useful concept, ' known as the
deformation-potential theorem, that the electron-
acoustic-phonon matrix element is directly related to the
shift in energy of the relevant electronic level with an
externally imposed strain of the same symmetry as the
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acoustic phonon: I study therefore the case of homogene-
ous strain for the macroscopic system.

In the previous section I have pointed out delicate
features in performing the long-wavelength limit: in the
case of homogeneous macroscopic strain, related features
show up in performing the thermodynamic limit to the
infinite system. In order to perform such a limit, let us
start with a large, but finite system within periodic
boundary conditions: The Bloch states are therefore la-
beled with the discrete k; quantum numbers. The deriva-
tive of the band energy with respect to macroscopic
strain, for a given i, is by definition the deformation po-
tential:

and the second term accounts for internal strain. We
thus get

D.u(k, )=(k, X(puuu, .(r R„)—
1s

+(', r,uu, „(r—R„)] k, l, (22)

where the first term in square brackets is an i11-defined
operator when acting upon Bloch functions. However,
this problem is overcome via some standard manipula-
tions, ' starting from the identity R»t]=xt] —(r —R»)&,
and using the "scaling" trick:

(k; ruzu, (r —Ru) k;)= (k;Ip~plk;)/m, .
Is

(23)

The deformation potential is therefore cast as the matrix
element of a lattice-periodical operator, and the Bloch
quantum number can be safely taken as continuous:

D,u(k)=(k —p~u/m,

+g [I, ~ t]U, r(r R»)—
ls

—(r —R„)pu, ,(r —R„)] k) . (24)

In the metallic case, i.e., for short-range interactions, Eq.
(24) is easily transformed into a Fourier series; compar-
ison with Eq. (10) yields

&k+q SV„' lk&

=E q[D t](k)+&klp Ik&&klpt]lk&/m, ] . (25)

This is in fact the deformation-potential theorem, demon-
strated in the rigid-ion model by Khan and Allen, ex-
tended to the deformable-ion model by Kartheuser and

where the second equality stems from first-order pertur-
bation theory. I use now the basic decomposition, Eq.
(2), where the displacements corresponding to a homo-
geneous deformation are'

uls ~
—RIs pE~p+ I, ~pic, py,

Rodriguez, and which I have proved here to be exact in
the DFT framework for any metallic system.

The next step amounts to investigating the thermo-
dynamic limit of Eq. (24) for dielectrics, where —owing
to the long-range nature of Coulomb interaction —the
lattice sum is conditionally convergent. When transform-
ing Eq. (24) into a Fourier series, the (state-independent)
Cx=0 term is ill defined: this is in fact known as the ADP
problem in insulators and semiconductors, for which
some theoretical advances have been recently
achieved. "' The difhculty can be traced back to the
well-known fact that the average of the electrostatic po-
tential is ill defined in an infinite solid, and no absolute
scale exists for the one-electron band energies. '

We have recently demonstrated an important existence
theorem' about ADP's, which holds for a specific class
of materials and for a specific class of strain tensors. As
for the material properties, two conditions are necessary
and sufficient in order for the ADP's to be well defined: (i)
all the individual Born effective charge tensors Q,

] "p indi-
vidually vanish; (ii) the sum over s of the quadrupoles
Q,

'
]t]r vanishes. These two conditions are equivalent to

requiring that the material is nonpolar and nonpiezoelec-
tric. In such materials, the existence of the ADP's has
been demonstrated in Ref. 12 for uniaxial macroscopic
strain (along an arbitrary axis n), where the tensor has
the form c &=E& 8'&. We notice that this is exactly the
kind of strain induced by a long-wavelength LA phonon,
whose q vector is along n. For this class of strain tensors,
the ADP dF. (k) /d s is a well-defined bulk property whose
expression can be cast as

dE(k)/d E:D]
p (k)88t]+2) t]y's8'8tiRr'6s''' (26)

The proof given so far only covers the LA case, but Eq.
(27) is nonetheless correct for TA phonons as well. In
fact —as was already outlined in Ref. 12—a more gen-
eral condition on the macroscopic strain in order for the
ADP's to exist is the condition of "epitaxial geometry, "
meaning with this term that the strained system is period-
ic in all the planes perpendicular to a given direction n,
with the same two-dimensional periodicity as the un-
strained system.

The epitaxial geometry is the key point allowing the
conditionally convergent lattice sums in Eq. (24) to have

Here the band-structure (or short-range) deformation po-
tential for the k state D' &](k) is a genuine (n-
independent) bulk second-rank tensor, which can be easi-
ly evaluated from a standard self-consistent calculation
performed for the periodic solid at the strained geometry.
The macroscopic efI'ects are instead state-independent
and are accounted for by the second term in Eq. (26),
where the same fourth-rank tensor 2) as in Eq. (18)
occurs.

Comparison of Eq. (26) with Eq. (19) immediately
yields the generalization of Eq. (25) to insulators:

& k+ql~ V~s] k & =E.p[ D."p'(k)+n.p, s

+&klp Ik&&k pplk&/m, ] .

(27)
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a well-defined thermodynamic limit: incidentally, similar
reasons allow the band offsets between two semi-infinite
solids to be mell defined, although the absolute position of
each of the two band structures is not. ' Analyzing now
long-wavelength acoustic phonons, the strains induced by
the LA and the TA modes are both epitaxial: in the latter
case, the unsymmetrized strain of Eq. (8) has to be used in
Eq. (27), which nevertheless remains valid.

I now investigate the case where the conditions (i) and
(ii) given above break down: In such materials the ADP's
for homogeneous strain do not exist, ' but the electron-
acoustic-phonon matrix elements are still well defined,
and given by Eq. (27), provided only that the phonon it-
self is nonpiezoelectric. Therefore the fourth-rank tensor
2), originally introduced to cope with the ADP's —for
nonpolar and nonpiezoelectric materials only —can be
used indeed in any material for nonpiezoelectric-
electron-phonon scattering. %'ith this caveat in mind,
Eq. (27) is the generalized deformation-potential theorem
in dielectrics.

VI. SELECTION RULES

I have shown that the matrix elements for the
electron-phonon scattering in dielectrics have in general a
nontrivial dependence on the direction of the phonon
wave vector. This feature occurs —both for optic and
acoustic phonons —through a macroscopic term, which
is independent of the band state ~k). I investigate here
the selection rules for this macroscopic term only.

I start with the optical case, Eq. (14), where only the
quadrupoles Q,' 'tt~ govern the macroscopic term. If the
site s is a center of inversion, then all the even multipoles
in Eq. (11) vanish: therefore the macroscopic effect can-
not contribute to optic-phonon scattering in centrosym-
metric material. The highest-symmetry crystal structure
allowing a nonvanishing macroscopic effect is diamond,
where the quadrupole depends on a single parameter.
Suppose now that we are interested only into the auerage
of the matrix elements over the directions of the scattered
phonon: then we get, from Eq. (14),

(28)

If the sites s have tetrahedral symmetry (such as within
diamond or zinc-blende structures), then the quadrupole
traces appearing in Eq. (28) are symmetry vanishing.
Therefore only materials of symmetry lower than cubic
may show a nonvanishing macroscopic contribution to
the sphericaIIy averaged optic-phonon scattering cross
section.

I switch now to the acoustic case, where the macro-
scopic effects are given by the fourth-rank tensor 2) in Eq.
(18). For a centrosymmetric crystal, only the octupoles
Q,' '&~s contribute: these, however, are in general nonzero
in any lattice. For a site of cubic symmetry, the octupole
depends on two independent parameters, and can be
decomposed into a spherical term, plus a strictly cubic
correction: Only the latter is responsible for the actual q
dependence of the macroscopic term in the electron-

acoustic-phonon matrix elements. The term in the poten-
tial due to the spherical octupole is analytic, after Eqs.
{11)and {13),and is therefore short-range, quite similar in
nature to the Cr =0 term occurring for metals in Eq. (10).
If the site s is not a center of inversion (such as within di-
amond or zinc-blende structures), then both the quadru-
polar and octupolar terms in Eq. (18) contribute on equal
footing to the q dependence of the macroscopic term in
the electron-acoustic-phonon matrix elements.

ACKNOWLEDGMENTS

This work has been cosponsored by the Italian Consi-
glio Nazion ale d elle Ricerche under Grant No.
89.00006.69, and by the European Research Ofhce of the
U.S. Army under Grant No. DAJA 45-89-C-0025.

Electronic address: RESTA@ITSSISSA.
~Permanent address.
J. Bardeen and W. Schockley, Phys. Rev. 80, 72 (1950); L. J.

Sham and J. M. Ziman, in Solid State Physics, edited by F.
Seitz and D. Turnbull (Academic, New York, 1963), Vol. 15,
p. 247.

F. S. Khan and P. B. Allen, Phys. Rev. B 29, 3341 (1984).
3L. W. Nordheim, Ann. Phys. 9, 607 (1931).
4E. Kartheuser and S. Rodriguez. Phys. Rev. B 33, 772 (1986).
5F. Bloch, Z. Phys. 52, 555 (1928).
6Theory of the Inhomogeneous Electron Gas, edited by S.

Lundqvist and N. H. March (Plenum, New York, 1983).
P. Vogl, in Physics of Nonlineat Transport in Semiconductors,

Vol. 52 of NATO Advanced Study Institute, Series 8:Physics,
edited by D. K. Ferry, J. R. Barker, and C. Jacoboni (Ple-
num, New York, 1980), p. 75.

K. B. Tolpygo, Fiz. Tverd. Tela (Leningrad) 4, 1765 (1962)
[Sov. Phys. Solid State 4, 1297 (1963)].

P. Lawaetz, Phys. Rev. 183, 730 (1969).
M. Cardona and N. E. Christensen, Phys. Rev. B 35, 6182
(1987);36, 2906(E) (1987).

~'C. G. Van de Walle and R. M. Martin, Phys. Rev. Lett. 62,
2028 (1989); C. G. Van de Walle, Phys. Rev. B 39, 1871
(1989).

I2R. Resta, L. Colombo, and S. Baroni, Phys. Rev. B 41, 12358
(1990);43, 14273(E) (1991).



DEFORMATION-POTENTIAL THEOREM IN METALS AND IN. . . 11 041

R. M. Martin, Phys. Rev. B 5, 1607 (1972).
~4M. A. Ball, J. Phys. C 8, 3328 (1975); 15, 229 (1982).
~5C. Falter, M. Selmke, W. Ludwig, and K. Kunc, Phys. Rev. B

32, 6518 (1985); C. Falter, W. Ludwig, M. Selmke, and W. E.
Pickett, J. Phys. C 20, 501 (1987).
R. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B 1, 910
(1970).
R. Resta, Phys. Rev. B 27, 3626 (1983).

~sA. Baldereschi and R. Rests, in Ab Initi-o Calculation of Pho
non Spectra, edited by J. T. Devreese et al. (Plenum, New
York, 1983), p. 1.
The partition into macroscopic and microscopic is arbitrary

as far as the Cx=O nonelectrostatic contributions at low ~q~

are concerned. Here a choice different from Ref. 12 has been
found more convenient; as a consequence, the band-structure
term in the deformation potential is also different, but all of
the physical results (involving both microscopic and macro-
scopic terms at a time) are indeed consistent with Ref. 12.
E. I. Blount, Phys. Rev. 114, 418 (1959).
L. Kleinman, Phys. Rev. B 24, 7412 (1981).

~~The sum over s of the quadrupoles must vanish in order to en-
sure the material to be nonpiezoelectric, according to the
theory of Martin, Ref. 13.
A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).


