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Persistent-current paramagnetism and spin-orbit interaction in mesoscopic rings
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The persistent currents in arrays of isolated mesoscopic metallic rings are shown by conventional di-

agrammatic analysis (within a noninteracting model) to retain their paramagnetic character even in

the presence of strong spin-orbit interaction. It is also shown that this result is consistent with the

nonperturbative one-dimensional results of Meir etaI. , if these results are correctly applied to the

canonical ensemble.

Recently, there has been considerable progress in our
understanding of persistent currents ' in arrays of isolated
mesoscopic normal-metal rings penetrated by an Aharo-
nov-Bohm (AB) flux. In such a system one measures the
disorder-averaged current; this quantity was found
theoretically to be exponentially small in the metallic limit
when calculated at fixed chemical potential (i.e., in the
grand canonical ensemble), while neglecting electron-
electron interactions. However, in an electrically isolated
array the assumption of coupling to a particle bath is not
realized, a point stressed by Bouchiat and Montambaux,
who argued for a nonvanishing average persistent current
with flux period h/2e in such fixed-number arrays. Subse-
quently, experimental work by Levy et al. on such arrays
did measure a persistent current with period h/2e. This
stimulated several theoretical calculations which took into
account both the effect of fixed particle number and
the effect of electron-electron interactions in the grand
canonical ensemble. Both sets of calculations find an
average persistent current with period h/2e which does
not decay on the scale of the elastic mean free path. Al-
though the magnitudes obtained due to the two effects
differ, currently both calculations appear to predict mag-
nitudes substantially smaller than that observed experi-
mentally.

One of the most striking results from the noninteracting
calculation is that the low-field sign of the response is
paramagnetic (in contrast to the bulk orbital magnetic
response of a Fermi gas which is diamagnetic), signaling a
qualitatively new magnetic phenomenon characteristic of
mesoscopic metallic systems. Levy et al. tentatively at-
tributed a diamagnetic sign to the experimentally mea-
sured effect (although they pointed out that this deter-
mination contained some ambiguity). They suggested
that the diamagnetic sign was due to the influence of
spin-orbit (SO) interaction (within the noninteracting
theory). Their argument was based on an extension of the
results of Meir et al. who proved that for a strictly one-
dimensional (1D) system in an AB geometry there exists a
remarkable exact relationship between a problem with SO
interaction and its "bare" version with no SO interaction.
A naive application of this result predicts a sign reversal,
as will be discussed below.

In the recent work by Altshuler, Gefen, and Imry it
was stated (but not shown) that for the many-channel
case no sign reversal occurs due to SO interaction, but
that the sign should change as the 1D limit is approached

to be consistent with the results of Meir et al. Such a
nontrivial dependence on the channel number would be
surprising and in contrast to other calculations (e.g. ,
universal conductance fluctuations) in which the results of
perturbation theory extrapolate smoothly to the 1D limit.
Thus for several reasons it is particularly interesting to ex-
amine the eAect of SO interaction on the average per-
sistent current.

In this paper we first calculate the noninteracting aver-
age persistent current in the presence of SO interactions
within the conventional diagrammatic approach and con-
firm the statement of Altshuler, Gefen, and Imry that the
sign remains paramagnetic. In the strong SO limit the
magnitude is reduced by a factor of 4, as are the univer-
sal conductance fluctuations and density of states fluctua-
tions. ' We then provide a brief rederivation of the results
of Meir etai. and note that the simple relationship they
derived between expectation values of a system with and
without SO interaction only holds for certain grand
canonical expectation values. We show that their ap-
proach leads to a more complicated relationship between
the canonical persistent current with and without SO in-
teraction. We then demonstrate that this relationship im-
plies a paramagnetic persistent current in the metallic re-
gime.

We begin by reviewing the calculation of the fixed num-
ber persistent current for noninteracting spinless electrons
in a disordered ring at T =0 threaded by an AB flux. In a
crucial advance, Imry'' has shown that the expectation
value at a fixed number can be related approximately to
expectation values at fixed chemical potential, and this al-
lows one to write the leading contribution to the per-
sistent current as

4tr(p(Ef)) 8y

x J dE dE'(bp&(E )bp&(E') ),

where ( . ) denotes an average over disorder, p&(E) is
the density of states (which is a function of flux), bp&(E)
=ps(E) —(p&(E)), and Ef is the disorder averaged chem-
ical potential.

The leading contribution to the density-of-states corre-
lation function in (1) comes from diagrams of the type
shown in Fig. 1(a). We apply hard-wall boundary condi-
tions in the transverse direction and periodic boundary
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We now introduce SO interaction into the calculation.
The leading contribution to (bpt, (E)bp (E')) comes
from the diagrams in Fig. 1(b). As usual, we introduce
the total-spin-representation cooperon which is defined
through

r.,„,=g C.'„*c,';r, , (5)
J,m

where Css are the Clebsch-Gordan coefficients. Using the
property

QC, *C, =SJJB (6)
a,p

we are able to decompose the contribution of Fig. 1(b)
into a sum over the four total-spin channels.

We thus obtain

conditions around the circumference of the ring. The
presence of the AB Aux through the loop is then incor-
porated into the longitudinal boundary conditions so that
the momentum vectors It and p are vectors of the type
[2n(n„—P)/L, ttn~/L~, urn, /L, ], where L denotes the cir-
cumference of the ring, L~ and L, are the cross-section di-
mensions, n„,n~, n, are integers, and p is the Aux in units
of h/e. It follows from the fact that the Cooper pole in-
volves the sum of the two external momenta that the lon-
gitudinal x component of Q is of the type 2n(rn —2p)/L,
where m is an integer.

In evaluating the diagrams one can ignore the Aux

dependence of k and p and perform these sums by replac-
ing them by integrals which yield

(bp&(E)bpr(E'))= 2
QRetl/[i(E' —E)

2x g
+ y+DQ']'} (2)

where y= I/z;„ is the inelastic-scattering rate. The entire
flux dependence of the right-hand side is contained in Q,
and period halving follows from Q„=2+(rn —2p)/L. One
cannot replace the Q summation by an integration due to
its singular nature, so further evaluation is facilitated by
the identity

A (q) =g
~ exp(i4xry)

1 dg
L q 6 2a(m —2p)/L r

& exp(iqrL)A (q) . (3)

Inserting (2) in (I) and using (3), one obtains after some
work

l~(y) = evf 1 g sin(4nrp)exp
rL

L xM r&0 Lin
(4)

Here M denotes kjA/n; the number of transverse chan-
nels.

(b)
FIG. 1. Leading contribution to the density-of-states correla-

tion. A summation over the external momenta and spin indices
is implicit. 1 (Q) denotes the cooperon.

The first term in (7) is due to the singlet channel, the
second is due to the three triplet channels. Introduce the
definition Lso= (3rsoD/4) ' —. Comparison of (7) and
(2) shows that, as usual, SO interaction only introduces a
modified cutoA' in the triplet channel whose contribution
can then be evaluated by simple transcription in Eq. (4).
For the strong SO limit (L;„»L»Lso) the cutoff length
is =Lso for the triplet channels and L;„ for the singlet
channel; hence we obtain

lgo(y) = 1 g sin(4nrg)exp
rL

L 2+M, )p Lin

3evf 1+ g sin(4xrg)exp
L 2aM, ~O

(8)
Lso

Since in the strong SO limit the second term in (8) is ex-
ponentially smaller than the first, the presence of strong
SO scattering is seen to reduce the persistent current mag-
nitude by a factor of 4, but does not change the sign.

We now discuss the relationship of these results to those
of Meir et al. In this discussion we will only consider the
same contribution to the persistent current as treated
above, although other contributions may be important in

an exactly ID system. For a 1D (single-channel) system
Meir et al. have shown rigorously that the energy eigen-
values of the system with SO at Aux p are the same as
those of two spinless systems with the same spatial disor-
der and Aux p+ A, , where X is a measure of the SO in-
teraction. For completeness and clarity, we rederive this
result in a way that exhibits more explicitly the relation-
ship between the wave functions of the SO problem and
its bare version.

Consider a single-orbital tight-binding model with two
states at each site ln, o), distinguished by their spin z ei-
genvalue o.= ~ 1. Because we are dealing with an ¹ ite
ring threaded by an AB Aux, the relationship between the
states at sites 1 and N+ 1 is

11,cr) =exp( —i2rtg)1N+ i, a) .

(pp (E)p& (E'))=
2

+Re[1/[i(E' E)+y—+DQ2] 2}
2Ã g

+
z

+Re[I/[i(E' E)+—y3

2K g

+4/3zso+DQ ] }. (7)
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The Hamiltonian is

H = ps„(n, a)(n, a )
+ g t„(S„) [n, o)(n+ I,o'')+ H.c.

n, o,a'n, cr

(io)
Here t„ is real and S„ is an SU(2) matrix.

It is useful to introduce new states ~n, a) (a = + 1) at
each site by performing site-dependent rotations in spin
space:

Generalized gauge transformations of this type often arise
in problems treated in an adiabatic approximation. '

Usually one finds a vector potential type interaction in the
alternative gauge, which is expressed in this case through
the spin-dependent eAective Aux A.; however, in this case
the appearance of an eA'ective gauge potential involves no
approximation.

The above results imply

~n, a) =g ~n, a)U.'."'.
p,'o(E) =p, +g( E)+pt, g(E)-, (i 7)

We choose

U (n) U (I )g (i2)

~
1,a) =exp[ —i 2tt(p+ ak) l ~N+ 1,a), (14)

where exp( —i2ttak) are the eigenvalues of S~ Sjv.
This relation between the states at sites 1 and N+1 is ex-

actly as would hold in the spinless case if our system were

threaded by a flux P ~ A, [remember that a = ~ 1, cf. Eq.
(9)).

Using Eqs. (11) and (12) we can rewrite the Hamil-
tonian (10) in terms of the new states as

H =ps„(n, a)(n, a)+g t„(n,a)(n+ l, a)+ H.c. , (15)
n, a n, a

which is diagonal in spin. It follows that the energy eigen-
values are exactly those for the spinless system at p+ A, .
This completes the derivation.

The relationship between the wave functions of the bare
and SO interacting problems is seen to be

y.(n) =gU.'"'y (n) .

which fixes all the U's in terms of an arbitrary U ' . The
relation between the states at site 1 and site N+ 1 is

li, a) =g ~N+ l, a')exp( —t'2trp)(U ' S~ . SqU ' t)„.
(i3)

We may now choose U ' to be the diagonalizing matrix
for the product S~ . S~, which then yields

Q' (y) =- dE Q(E)f(E)p,"(E)

=Q(y+x)+ Q(y —x), (i8)

where Q denotes the grand canonical average for the bare
spinless problem. A naive application of this result to the
canonical persistent current would imply that the per-
sistent current with SO interaction is given by Eq. (4)
with an additional factor of (cos(4xrk))so multiplying the
summand. Here ( )so denotes an appropriate average
over the phase shift A, induced by the SO interaction; this
average for the first harmonic in the strong SO limit is
evaluated in Ref. 9, giving (cos(4&, ))so = —

2 . Thus, as
mentioned above, uncritical application of Eq. (18) would
predict a diamagnetic persistent current in the stong SO
limit. Note, however, that Eq. (18) does not hold for
tivo body ope-rators and since the fixed number persistent
current calculated in Refs. 5 and 7 depends on the density
of states p&~o quadratically, it need not satisfy Eq. (18).
Hence the question of its sign remains to be determined in

this approach.
This contribution to the persistent current is determined

by the density-of-states correlation function defined in Eq.
(1). Using Eq. (17) we now find

where p&(E) is the spinless density of states. This has the
obvious implication for the grand canonical average of
spin-independent one-particle operators Q(E) that

(bpt (E)bpt, (E')) = (bpt~g(E)bpt+g(E'))+(bpt, ) (E)b'pt, g(E'))+(bpt~i(E)hpt, g(E'))+(bpt, g(E)—bpt~i(E'))—,

(19)
where ( . ) now denotes an average over spatial disorder only.

The first two terms are the sum of the spinless density-of-states correlations at flux &+A. and p
—

X, in accord with Eq.
(18), however, the two additional cross terms are nonvanishing and we now show that these terms give rise to contribu-
tions whose flux dependence is not shifted by A, .

Using the harmonic expansion for the density of states bp&(E) =P„a„(E)cos(2nnp),

(8'p&~q(E)bp& i(E')) =g (a„(E)a (E'))c-os[(2trn)(/+X)leos[(2trm)(p —
A, )] .

n, m

(2o)

We expect (a„(E)a (E')) =b„,„C„(E E'), since, e.g. , semiclass—ically the amplitude a„(E) is determined by classical
paths that wind around the ring n times and its disorder average must vanish due to the arbitrary relative phase of distinct
classical paths.

Thus with some rearrangement

($ ( )$ (,)) g( ( ) (,)) cos(4n'nk) + cos(41m/)
n

(2i)
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Thus the flux-dependent part of these terms is indepen-
dent of k. By comparison to Eq. (20) with X =0 we see
that it is identical to the flux-dependent part of the spin-
less (bpt(E)8pt(E')), and so must give the same contribu-
tion to the persistent current. Hence

I)p)(p) = —,
' [I)D(/+A, )+I)D(p —k)+2I)o(p)], (22)

where the factor of —,
' arises because (p (Ef))

=2(p(Ef)&, the subscript denotes that the relationship is
only exact in 1D, and the superscript 0 denotes the spin-
less persistent current. Hence we see explicitly that the
persistent current does not satisfy a relation of the form of
Eq. (18).

We may confirm diagrammatically that the cross terms
in Eq. (19) are independent of X. In particular, for such
terms the longitudinal component of k is of the type
2tr(n„—p

—
A, )/L, the longitudinal component of p is of

the type 2tr(n„—p+ k)/L. Thus Q„ is of the type

2tr(m —2p)/L; i.e., the shift of the flux by the parameter X,

has canceled in the cooperon just as we found in the more
general argument above. Clearly then the third and
fourth terms in Eq. (19) are equal and yield the persistent
current at flux p. Since perturbation theory is not valid in
the exactly 1D case and other contributions may appear in
this limit, we only use the diagrammatic argument in the
1D case as a consistency check of our general result in Eq.
(22). The metal rings of experimental interest have
10 -10 transverse channels and are far from the exactly
1D limit, so our earlier diagrammatic result should be
quantitatively correct (within the models of Refs. 5-7).

From Eq. (22) it is straightforward to derive the factor
of 4 reduction of the ID persistent current based on the
approach of Meir etal. We know that the spinless per-
sistent current is periodic with fundamental h/2e so that
I

~ n(p) =g„i„cos(4ttnp), hence

I~0(p+k)+I~o(P —k) =pi„fcosH4trn)(&+7 )]+cos[(4trm)(P —
A, )]I

n

=2+i„cos(4trnttt)cos(4ttnk ) . , (23)

As noted above, in the strong SQ limit the average over X

of the factor cos(4H. ) equals —
2 . Hence averaging over

k in Eq. (22) yields for the fundamental of the persistent
current I ~ D

=
2 I

~ D
=

4 2I I D. Remembering that the per-
sistent current with spin but without SO scattering is
twice the spinless persistent current, we see that we have
recovered from the approach of Meir et al. the factor of —,

'

reduction due to strong SO scattering for the h/2e period-
ic contribution. Since higher harmonics undergo different
reduction factors in the approach of Meir et al. and not in
the perturbative approach, there still remains a minor

I

discrepancy between diagrammatic calculations and the
results of Ref. 9. Nonetheless, we have shown that the 1D
results of Meir et al. are consistent with the result derived
above for the many-channel case that the mesoscopic or-
bital magnetic response is always paramagnetic, even in
the presence of strong SO interaction.
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