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intrinsic mechanism for the poor luminescence properties of quantum-box systems
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The poor radiative efficiency in quantum-box luminescence is tentatively explained as an intrinsic
effect rather than the usually invoked effect of etch damages. From the recently calculated decreased
relaxation rate in zero-dimensional (OD) systems under 100-200-nm 1ateral quantization, we propose
that electrons captured from the barriers in the upper levels of quantum boxes are retained in their
cascade to the fundamental states for more than nanoseconds. Due to the mutual orthogonality of
quantum states in a box, no luminescence, or much less than in 2D or 3D, can be obtained from these
stored electrons with reasonable assumptions for the hole population. Magnetic-confinement experi-
ments in quantum-well lasers support our conclusion. A realistic model at low temperature describes
more quantitatively the observed strong decay of the radiative efficiency in quantum boxes and pseu-
dowires with decreased lateral dimensions.

There is growing, universal evidence that one-dimen-
sional (1D) and OD nanostructures lead to diminished
luminescence quality when compared to 2D or 3D hetero-
structures. ' Although some recovery of the optical
properties occurs upon regrowth over etched struc-
tures and encouraging quantum-wire lasers have been
fabricated, ' the luminescence properties never reach any
of the improvement predicted from the concentration of
the spectral oscillator strength. In this paper, we point out
that these disappointing results, instead of being due to
the often-invoked extrinsic fabrication defects, which
might eventually be cured, are due, rather, to unescapable
intrinsic sects, mainly orthogonality of electron and hole
states combined with slowed-down relaxation in 1D and
OD.

All the descriptions of quantum-well, -wire, and -box
lasers ' ' rely on the relaxation of carriers to the ground
state, although it was known that light-hole-to-heavy-
hole relaxation was affected by increased lateral confine-
ment. ' More recently, slowed relaxation was also in-
voked to explain high-energy shoulders in photolumines-
cence and other hot-carrier effects. '"

For a given band and a given number of electron-hole
pairs in their ground states, the maximum optical gain in-
creases with decreasing dimensionality due to the concen-
tration of the oscillator strength in energy. In first order,
such a k-matched pair has the same strength, whatever
the dimensionality, but occupied states usually cover a
range of some kg T, distributing the total oscillator
strength according to the density of states. Quantized de-
grees of freedom allow k matching of the electron and
hole states in the 1, 2, or 3 directions for quantum wells,
wires, or boxes, respectively, and increasingly concentrate

the oscillator strength in a narrow line.
However, it should be remeinbered that carriers first

have to cascade down to the ground state through k-
unmatched excited states Let us de. note n, m, l as the
standard (z,y, x) quantum numbers of a quantum-well,
-wire, or -box system in the infinite-square-well approxi-
mation. Then, the usual h, k =0 selection rule of optical
transitions becomes h,„„,I =0, i.e., electron and hole
states can decay radiatively only if they have exactly the
same three quantum numbers, n, m, l.

In typical 3D and 2D systems, electrons "meet" holes
both in real and k space [Fig. 1(a)]. Elastic collisions
very quickly randomize k directions ( & 1 ps at laser car-
rier densities). Energy is lost first through LO phonon
emission and next through acoustic phonons still in the
subnanosecond range' due to the 2D continuum of final
states. %'ithin their lifetime (—I ns) carriers thermalize
at their band edges and decay radiatively there. Going to
OD, relaxation rates vanish, chieAy due to the scarcity of
final states satisfying both energy and momentum conser-
vation. We now analyze the luminescence of a OD box
stemming from a basic quantum well of thickness L, .

At low temperatures, LO phonon emission is severely
restricted as soon as the average level spacing hE reaches
a small fraction of the energy htoLo ——30 meV due to the
near monochromaticity of LO phonons. Starting from the
injecting level (a typical barrier of height 0.2-0.5 eV) a
cascade with each step matching exactly AcoLo becomes
highly unlikely. It is even more so for extreme quantiza-
tion (—150 A) when the spacing exceeds this energy [Fig.
1(b)1.

For acoustic phonons, energy conservation selects the
magnitude of the phonon wave vector q ~BE. However,
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the momentum matrix element between the localized
wave functions vanishes beyond q = 2m/L„as detailed
below. Therefore, as calculated in Ref. 15„LA-phonon
limited electron lifetimes increase to tens of nanoseconds
below a critical confinement. Then, the cascade through
the several excited l, m, n states to reach the ground state
becomes longer than the usual nonradiative times (e.g. , in

a 2D nonetched system) [Fig. 1(b)].
As for holes, their quantization energies are less than

electron ones due to their heavier mass (mt, = 10m, ).
This favors thermalization of holes within some ktr T, as is
assumed for the rest of this paper. Then, corresponding
(i.e., k-matched nrm, l) electron states are in a range of
(mp/m, )ktr T—10ktr T above the ground state where radi-
ative decay is allowed.

Finally, as soon as the slowed LA-phonon relaxation
sets in, electrons stay in upper box states, all of them or-
thogonal to thermalized hole states leading to strongly di-
minished luminescence. From Ref. 15, this occurs at
= 1500 A, a typical value for the observed range of the
onset of the decrease ofphotoluminescence yield

Turning to intermediate temperature, where scarcity of
thermal LO phonons still holds, the 10kgT range of al-
lowed radiative decay approaches the electron-capture re-

band

FIG. 1. (a) Energy relaxation in a continuum. Radiative
recombination is possible even though k =k' is needed because
both band edges are populated. (b) Energy relaxation through
fully-quantized box levels can be very slow. (i,m, n) =(i',m', n')
then is needed to decay radiatively, but this rarely occurs be-
cause nonradiative channels are efficient on electrons stored
more than nanoseconds.

gion (say, midbarriers). Slowed relaxation then spreads
the electrons over this 10ktrT range (—10-100 meV),
leading to efficient but broadened photoluminescence and
laser gain curves.

At high temperatures energy loss occurs, rather, by a
succession of two-LO or high-energy TA or LA phonons,
one upward and one downward, both in the picosecond
range. At very small box size and average level spacing
AE larger than about hc0Lo/2, the two-phonon process is
highly unlikely since there are no states connected by the
LO-phonon energy. At larger L„, this process becomes
more likely and allo~s eScient relaxation. Then, as long
as a few laterally confined levels lie within ktr T, one gets
increased density of states and spectral oscillator strength
compared to a 2D situation.

The most direct and cleanest way to prepare a OD sys-
tern is to place a 2D quantum well in a perpendicular
quantizing magnetic field. ' ' The results of Berend-
schot, Reinen, and Bluyssen on quantum-well lasers fully
support the above analysis: ' at low temperatures with in-
creasing magnetic field (i.e., smaller boxes), the threshold
current increases monotonically, reAecting the hindered
relaxation to the ground state. But at —120 K, the
threshold current shows a small decrease around 8 = 10
T, as we expected: at lower fields, relaxation is e%cient by
the two-phonon mechanism, but the number of states
within k~ T is hardly diminished as compared to a 2D sys-
tem. At higher fields, the quantization (cyclotron) energy
becomes of the order or larger than AcoLo/2, leading to
strongly decreased relaxation and an electron bottleneck
in higher states not radiatively coupled to thermalized
holes. In between, around 10 T, one still retains energy
relaxation while having some rarefaction of electron states
within kg T, hence, diminishing the number of states to be
inverted to obtain optical gain.

We substantiate the above ideas through a model quan-
tum box based on the n=1 subband of an L, =10 nm

In047Ga053As well with InP barriers as in Ref. 15, or
GaAs with A102GaogAs barriers. We use the "lateral"
(!,m) energy levels of the infinitely deep square well of
size L„,Lz & L„Et„, rx: (i L„+m Lz 2) in the x-y
directions, and the deformation potential, velocity of
sound c„etc., of LA phonons as in Ref. 15. The squared
matrix element, proportional to the relaxation rate be-
tween two box levels (i,m, n), (i', m', n') has the separable
form

Ml, m, n, l', m', n'
l(~(mn I

&q rl~j'm'n' )I 2 Mll'( )Mmm'( )Mnn'( )
1 tqx& I' m tqyP' m' n iqz~ nt 2

where the p's are the usual square-well quantized envelope
functions. M and M~ yield factors of the form
sin[q L„/2+ (i+ )i/(2 )r]r, while M, yields for the intra-
band transitions n =n'=1 of interest here sinq. L,/2. -

The level spacing hE rx: [(i' +m' ) —(l +m )]L„
=pL„ imposes the magnitude of the phonon wave vector

q =BE/(hc, ). So q scales like L, whereas the typical
extent n/L„of M„(M~) scales like L„' and is much
smaller than the extent —tt//L, of M, which arises from
the main confinement controlled by the epitaxial layer

I

growth. Hence, for I much narrower than the charac-
teristic "phonon length" L

~

=h/2m *c„and thus
hE»E~ =m*c, , energy conservation requires q &&n/L, .
Therefore, only phonons with q, —rt/L «q and q, = q in-

teract. Here, m* =0.041mo, so L] = 2.6 pm and
Et = 2.7 peV. At this stage, however, the scattering rate
still increases with confinement. ' On further confining at
dE & AEO= A (c2n)/L, =0.6 meV, M, also vanishes
and relaxation is annihilated within a 20%-50% variation
of q, i.e., a 10%-20% variation of L . This is because
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M, (q) cx:q ~L„' in this region. The particular value
L =Lp where AE reaches AEp and M, vanishes also de-
pends on p =(l' +m' ) —(l +m ). In this respect, the
value p =3 [(2, I ) (I, I )] in Ref. 15 gives
Lp-(L~L, ) / = 160 nm. A close examination of realis-
tic box situations proves it more reasonable to consider
about a hundred levels (I,m —10). Then the value of p
between neighbor levels spans the range 1-8. For higher

p values, the slowed relaxation happens at even larger L„
values. Hence, our simulation takes into account the fact
that in actual boxes, neighbor level spacings are distribut-
ed and it includes the uppermost spacing values in the cas-
cade as they act as bottlenecks first. Two refinements
were introduced: (i) The exact square box has no spacing
smaller than p=1 and all levels are twice degenerate,
which seems unrealistic. Examining a variety of cases, we
found that a 5% size difference between the two sides
yields a representative and realistic distribution of level
spacing while still relevant to the perfect square box. (ii)
Due to this modification, levels can be accidentally very
close and thus strongly coupled and equilibrated at any
time. Then we group them as a single degenerate level.
With these criteria, we end up with 85 electron states in
66 levels. We then compute the transition rates due to
LA-phonon scattering between all pairs of levels assuming
L (L ~. In this regime, the above consideration on the ex-
tent of M and M, leads to the following approximation:

w;, =CL„'[ n(sq)+ [p]]M, (q), (2)

' = —w;;p;+g [w,;p, (I —p;) —w~/p;(I —p, )], (3)
JA/

where w;; =w„„.d(E;)+ wNR. After a few r ~R, a stationary
state is reached and Iluxes are computed for the radiative
and nonradiative decay channels. Figure 2 shows such
stationary solutions at 4 K in the slow relaxation regime:
carriers clearly accumulate whenever a larger AE induces
a slow relaxation and reach a dynamic equilibrium by
feeding the nonradiative channel if they are above
—10kgT of the ground state. Figure 3 shows the radia-
tive yield, i.e., the fraction of electrons decaying radiative-
ly, for the Inp476ap53As and the GaAs well cases, which
basically differ in effective mass. The expected decrease
of the radiative efficiency shows up around L =200 nm
and is very fast below. We claim that the effect is quite

where ns (q ) is the phonon occupancy number and C is a
constant. In the curly brackets, 1 stands for phonon emis-
sion and 0 for phonon absorption. Let us stress that the
regime of vanishing relaxation implies M, (q) ~LX and
thus w;/ cx: L„, a very fast decrease with lateral
confinement. It is assumed that holes are therinalized
with their Fermi energy at ground level so that the radia-
tive decay rates of electrons at energy E above the ground
state can be written as w„„.d(E) =(r„) '(exp[(mj, /m, )
XE/kiiT]+ I ) ' with mi, /m, =10 and r, =1.6 ns. The
nonradiative decay rate is taken constant and equal to
~~R=r~R =0.1 ns '. Capture is taken into account by
imposing an occupancy 2 to the upper level E,. „at any
time. In the absence of any recombination, this would be
the Fermi energy. We then iterate a Pauli master equa-
tion on the occupation probabilities p; of the levels:
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FIG. 2. Occupancy (upper part), nonradiative flux (middle
part), and radiative flux (bottom part) of the 66 levels of a
quantum box at 4 K of size L, =150 nm for the IOO-A
Gap 53lnp 47As/InP well system as a function of the reduced ener-
gy (E/kaT). The dashed line schematizes the radiative proba-
bility reflecting the thermal hole distribution.
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FIG. 3. Log-log plot of the radiative e%ciency of square
(LX L) quantum boxes and (L x IOL) pseudo wires on 100-A
well in the Inp47Ga053As/InP and the GaAs/Alo2Gao&As system
as a function of the lateral dimension I, at 4 K.

independent of any adjustable parameter as large varia-
tions of the nonradiative rate in either direction by I or 2
orders of magnitude would only slightly shift the shoulder
due to the very sudden occurrence of slowed relaxation
with decreased size.

To go toward quantum wires, we take L =aLJ with
a =10. Looking at the largest level spacings, we now pre-
dict the cascade through the (high l, m =I) levels just
below I = l, m =2 to be the bottleneck. Simple calcula-
tions show that hE scales like a in this region, reaching
AEp at L~ =Lpa ' . This is pictured in Fig. 3, where the
onset of decay is at -70 nm instead of -200 nm for
quantum boxes. Plausibly, this can be applied to a true
(infinite) wire if we say that electron diffusion events or
accidental constrictions of the wire due to nearby impuri-
ties occur about every L =aL~, 500-1000 nm in this case.

However, another recombination mechanism sets in,
due to carrier transport: even though defect density is not
largely increased when compared to 2D or 3D (we claim
here that we need not a major defect on each quantum
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box to explain their poor efficiency), one can still find a
major defect within a diffusion length of an electron in a
quantum wire, and this defect can be reached within the
carrier lifetime. This effect has been recently seen in the
careful study of photoluminescence efficiency on quantum
wires of different lengths. ' The quantum efficiency in-
creases with decreasing wire length for thin wires ((3
pm), evidencing the statistical appearance of defect-free
wires at small lengths, with an increased quantum ef-
ficien.

In conclusion, we claim that the poor efficiency of quan-
tum boxes in photoluminescence and laser action is due to
the combination of inefficient energy relaxation and ortho-

gonality of carrier quantum states, rather than to a major
increase in extrinsic defect density. Model calculations of
acoustic-phonon relaxation support this effect. The mech-
anisms are also well evidenced in the quantum-well-laser
studies in magnetic fields as a function of temperature.
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