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Cohesive energy of silicon by the Green's-function Monte Carlo method
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The total energy of diamond-structure silicon is calculated by a fixed-node Green's-function Monte
Carlo method using a pseudo-Hamiltonian to eliminate the core electrons. This demonstrates the
feasibility of calculating properties of solids with the quantum Monte Carlo method, since the statisti-
cal error for a supercell of 64 atoms is (0.02 eV/atom. The agreement with experiment, although
good, is limited by the accuracy of the pseudo-Hamiltonian. We find that the correlation energy is im-
proved over a variational pair-product trial function by 0.34 eV/atom in the solid compared with 0.21
eV in the free atom.

Green's-function Monte Carlo (GFMC) methods can,
in principle, be used to calculate exact properties of
many-body systems. ' In practice, very accurate results
have been obtained for simple systems like the homogene-
ous electron gas, light molecules, and solid hydrogen.
Such methods have never been applied to a real solid
heavier than lithium, however, because the presence of
core electrons introduces large fluctuations in the energies
and thereby reduces the computational efficiency. Re-
cently, Fahy, Wang, and Louie applied a variational
Monte Carlo (VMC) method to Si and C by using nonlo-
cal pseudopotentials (PP) to avoid core electrons. In the
present work we present GFMC calculations on Si, which
start from VMC trial functions of the same form as in
Ref. 5, and project out the lowest possible upper bound for
the ground-state energy, within the "fixed-node" con-
straint, i.e., that the (3N —I)-dimensional nodal surface
of the wave function is assumed to be the same as in the
VMC trial function. We expect our results to be close to
the exact energy for the assumed Hamiltonian since the
error due to the fixed-node constraint has been calculated
in cases such as the electron gas and Si atom and mole-
cules. The resulting structural properties and cohesive
energy of silicon are in good agreement with experiment
considering the method used to eliminate the core elec-
trons is based on a mean-field theory.

It was shown that a nonlocal pseudopotential used
within a Axed-node calculation will not necessarily be
above the exact ground-state energy and the nonlocality
will further complicate the random-walk algorithm.
Bachelet, Ceperley, and Chiocchetti constructed a local
Hamilton ian with position-dependent masses (pseudo-
Hamiltonian, or PH) and showed that it can accurately
account for much of the angular momentum dependence
of the pseudopotential for many atoms such as silicon.

The valence pseudo-Hamiltonian has the form:
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where ions of charge Z =4 are denoted by I,J, electrons
by i,j, and r;~, r;t, and R(J are relative positions. The
effect of the core electrons is incorporated in the PH
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where the functions a(r), b(r), and v(r) are determined
by the usual pseudopotential construction methods from
atomic orbitals. Reference 6 compares energy levels of
atoms and diatomics as calculated with the GFMC-PH
with experimental and theoretical results. We have tested
the accuracy of the PH in solid Si by comparing a local-
density approximation (LDA) calculation of the PH and
the PP (Ref. 8) from which the PH is constructed and find
that the PH gives a binding energy at zero pressure 0.219
eV/atom higher than that of the PP, in agreement with
Ref. 9. This diAerence increases with density and likely
arises because the attractive d channel of the PP is not ex-
actly reproduced in the PH. The PH could be improved to
give better transferability in the d channel, but our initial
attempts were not successful and we have used the PH
from Ref. 6.

In GFMC (Ref. 10) the operator exp( —tH) projects
out the ground state from the starting trial function which
we choose to have the Jastrow-Slater form:

(3)
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where u(r) is a two-body correlation function obtained
from the random-phase approximation for a homogeneous
electron gas; g(r) is a one-body term which modifies the
VMC charge density and D is a Slater determinant of
single-particle states calculated by LDA with plane-wave
basis set. All reciprocal lattice vectors with an energy less
than the "energy cutoff" are included. We have used two
energy cutoA's (7 and 15 Ry) to test the inAuence on ener-
gy. In VMC, the energy obtained with orbitals cutoff at
15 Ry is 0.44 eV lower than the energy with a 7 Ry cutoff,
while the two GFMC energies are the same within statist-
ical errors (0.04 eV/atom). This test suggests that the er-
ror in the nodal locations caused by the truncation of the
LDA trial function is small. We use the larger cutoff in
our calculations here which is more efficient because Auc-
tuations are reduced. A release-node GFMC calculation
for the atom shows that the diff'erence in energy from the
fixed-node GFMC is less than 0.01 eV while in the mole-
cule it is less than 0.07 eV/atom with a much less accurate
trial function than we used in the solid calculation. We
estimate that the exact energy is lower than our fixed-
node upper bound by less than 0.05 eV/atom in the solid.
We have also tested that the GFMC energy is insensitive
to changes in the other parts of the trial function.

The present results are calculated with a cubic supercell
containing 64 Si atoms with periodic boundary conditions.
The difference in an LDA calculation between a 64 atom
and infinite system is 0.11 eV, and our quantum Monte
Carlo (QMC) results are corrected assuming that they
have the same size dependence as LDA has. We find that
a system containing only 8 atoms is too small to represent
bulk Si. The number of walkers in the GFMC ensemble is
chosen to be 200. The initial distribution was obtained
from VMC. A time step of 0.015 a.u. (this gives an ac-
ceptance ratio of 98% in the Metropolis portion of the
time evolution) was used. A test calculation using half the
time step gave identical results, showing that the time step
error is less than 0.03 eV/atom. A typical run with 3 &10
steps, took 20 h on a Cray-XMP.

Figure 1 shows the energy as a function of lattice con-
stant from the LDA, VMC, and GFMC calculations. The
curves are least-squares fits to the Murnaghan equation of
state. ' The total energy dropped 0.21(3) eV in the atom
and 0.34(3) eV/atom in the solid at zero pressure (with
the most accurate variational function) in going from the
VMC to GFMC. This difference reAects the fact that it is
easier to construct a good trial function in the atom than
in the solid probably because the atom has spherical sym-
metry rather than the weaker periodic symmetry of a lat-
tice. In the solid, the energy drop monotonically increases
with lattice constant, suggesting that the trial function of
the form of Eq. (3) is slightly better at higher densities.
In VMC it is important to construct equally good trial
functions at all the lattice constants, otherwise there will
be a systematic bias in the results. To achieve the same
error bars, the GFMC calculation takes only 2.6 as much
computer time as VMC but does not require systematic
search of trial functions.

Also shown in Fig. 1 are the LDA total energies using
the same PH. For semiconductors like silicon, LDA is
known to work very well, and indeed the total energies
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FIG. I. Total energy of silicon vs lattice constant. The upper

curve with error bars is from VMC and the lower from GFMC.
Both have been corrected for the finite size of the system using
LDA. The error bars show the estimated statistical errors. The
solid lines are the fits to the Murnaghan equation of state. The
dashed line represents the results of an LDA calculation with
the same PH.
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TABLE I. Comparison of individual terms in the total energy
of Si from (1) VMC with only the two-body term u in the Jas-
trow factor, (2) from VMC with both the two-body term u and
the one-body term g in the Jastrow factor, and (3) from GFMC.
All numbers are from a 64 atom simulation in the diamond
structure at a lattice constant a =5.43 A and are in eV/atom.
The GFMC mixed estimators have been corrected using the
linear extrapolation method (Ref. 1); systematic errors due to
higher-order terms are of order of 0.3 eV/atom for the first three
lines but do not aAect the total energy.

Kinetic energy
External potential
Electron-electron

Ewald sum
Total energy

VMC,
u only

39.31
—3.00

—29.35
—114.26
—107.30

VMC,
both u and g

40.26
—5.30

—28.43
—114.26
—107.72

40.78
—6.48

—28.37
—114.26
—108.03

from LDA are very close (—0.2 eV) to those from GFMC
(even closer to those of VMC). Although these differ-
ences are not negligible, the largest change is in the atom
where the spin polarized LDA energy is about 0.8 eV
higher than GFMC.

It is known from the work on atoms and molecules and
from Fahy, Wang, and Louie that the introduction of a
Jastrow factor with only the two-body term u reduces the
kinetic energy and the electron-electron energy, and in-
creases the electron-ion energy. However, with the intro-
duction of the one-body term, g, in the Jastrow factor, the
electron-ion energy is reduced, while the kinetic energy
and the electron-electron energy are increased, as shown
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TABLE II. Comparison of the GFMC and VMC results with experiment and other calculations. All
quantities have been corrected for finite-size effects and zero-point motion of the Si ions, but here there
are no corrections applied to the difference between the pseudo-Hamiltonian and the pseudopotential.

LDA PP"
LDA PH
VMC-PP b

VMC-PH
GFMC-PH
Expt.

ap (eV)

5.373
5.455
5.40(4)
5.42(2)
5.45(2)
5.430 '

Bp (&)

0.946
0.916
1.08 (10)
1.08 (5)
1.03(7)
0 992

dBp/dP

4.00
3.93

3.5 (6)
3.8(3)

3.20 —4.68 '

E., (ev)
—102.71
—102.71
—103.42(3)
—103.35(3)
—103.56(2)

E„i (eV)

—108.01
—107.79
—108.23(6)
—107.73(2)
—108.07 (2)

E„h (eV)

5.30
5.08
4.81(7)
4.38(4)
4.51(3)
4.63(8) "

"Our calculation using the pseudopotential from Ref. 8 with an energy cutoff of 30 Ry.
Reference 5.

'At T=O K, Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
At T=0 K, J. J. Hall, Phys. Rev. 161, 756 (1967). lt agrees with more recent results at room tempera-

ture.
Landolt-Bornstein: Numerical Data and Functional Relationshrps Science, edited by K.-H. Hellwege,

New Series, Vol. 3, 17a (Springer, New York, 1982).
"References 16 and 17.

in Table I. Therefore, the two-body term in the Jastrow
factor over corrects the many-body wave function, and the
effect of the one-body term is to correct it back. GFMC
further reduces the electron-ion energy with respect to
VMC (by 1.2 eV), while increasing the kinetic energy (by
0.5 eV). This shows that further improvements to the
one-body term are possible.

The final comparison with experiment and other calcu-
lations is given in Table II. For solid silicon, at least,
LDA is working very well, and the LDA error in the
cohesive energy comes mainly from using the LDA value
for the energy of the atom. Our VMC energy is 0.43
~0.08 eV smaller than that of Fahy, Wang, and Louie.
After correcting for the difference between the PH and PP
as calculated by LDA, there is still a 0.2 eV diff'erence.
The trial functions used in the two calculations are essen-
tially identical. We performed additional VMC calcula-
tions with their nonlocal pseudopotential, and reproduced
their results. This implies that the transferability of the
pseudopotentials is different between LDA and a many-
body calculation such as VMC or GFMC (by 0.2
eV/atom). Construction of the pseudopotentials from a
many-body theory is necessary for the full accuracy of the
QMC approach to be reached.

The structural properties from GFMC are in slightly
better agreement with experiment than the VMC results
of Fahy, Wang, and Louie. Our GFMC cohesive energy,
bearing in mind the unknown transferability of the PH,
should be between 4.51 (assuming no correction) and 4.73
eV (assuming the LDA gives correctly the difference be-
tween the PH and PP), in agreement with the most quoted
experimental value, ' ' 4.63(8) eV. In future work, we

will describe the results of GFMC calculations with a
nonlocal potential using a method'4 which treats the non-
local parts in a variational manner.

In conclusion, we have applied the fixed-node Green's
function Monte Carlo method to solid silicon using a
pseudo-Hamiltonian to include the eff'ects of core elec-
trons. The main outcome of our work is simply to demon-
strate that rigorous Monte Carlo calculations of solids are
now possible, attaining an accuracy of 0.03 eV/atom and
that the results are in good agreement with experiment.
VMC works very well for a semiconductor like silicon, but
to achieve an accuracy on the cohesive energy of better
than 0. 1 eV, GFMC is necessary. The uncertainty arising
from the imperfect transferability of the LDA-derived
pseudo-Hamiltonian is larger than the statistical errors,
the fixed-node errors, and the finite system errors, all of
which are smaller than 0.05 eV/atom. Applications to
other materials where the pseudo-Hamiltonian is ap-
propriate are in progress. We note that for future calcula-
tions, it is desirable to use a pseudo-Hamiltonian or pseu-
dopotential derived from a many-body theory of the atom
rather than from a mean-field theory like LDA.
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