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The electronic properties of a two-dimensional lateral-surface superlattice are simulated by using the
split-operator technique based on the solution of the time-dependent Schrodinger equation involving the
propagation of the wave functions in the imaginary time domain. The two-dimensional dispersion rela-
tion and the density of states are derived and the transport characteristics of the system are calculated in
linear-response theory. The results compare well with recent experimental data and show clear evidence

of single-electron states in the system.

Recently the problem of a two-dimensional (2D) elec-
tron gas in a periodic surface potential has been the sub-
ject of many experimental investigations.!”® With the
advent in nanolithography techniques, periodic struc-
tures with nanometer feature sizes can be fabricated in
which the wave nature of the electrons is manifested in
interference and diffraction effects. As a variation of the
ordinary single-gate modulation-doped field-effect transis-
tor, a lateral-surface superlattice (LSSL) is realized by us-
ing a grid gate®> In this system the degree of
confinement can be controlled by changing the gate volt-
age. At sufficiently high negative gate bias, when the gat-
ed regions are completely depleted, the ungated regions
can retain electrons and the system behaves as an array of
isolated quantum dots. When the gate voltage has inter-
mediate values such that the gated regions are not com-
pletely depleted the system is a quantum dots superlattice
with states extending over several periods of the struc-
ture. In the present paper we will focus our attention on
the low-energy states bound in the periodic potential and
calculate the conductance of weakly periodic LSSL with
a simple linear model.

Kumar, Laux, and Stern’ have studied theoretically
the electronic states in a single isolated GaAs quantum
dot resulting from a grid gate structure by solving self-
consistently the Poisson and Schrodinger equations in
three dimensions. They concluded that the effective
confining potential has nearly circular symmetry despite
the square geometry of the gate and that the energy levels
are quite insensitive to the charge in the quantum dot at a
fixed gate voltage. For a fixed gate voltage the effective
potential has a flat central region and increases rapidly as
a function of the distance. In the present paper we capi-
talize on the results of Kumar, Laux, and Stern® to inves-
tigate the nature of the discrete electron states in a weak-
ly periodic potential. We take a simple approach by as-
suming complete confinement in the plane of the electron
gas. This is justified since the confinement in the vertical
z direction is much stronger than the in-plane con-
finement. We propose a phenomenological periodic po-
tential'® which is given by
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in order to obtain the two-dimensional (2D) dispersion re-
lation, the density of states, the conductance, and the mo-
bility as a function of the Fermi energy for several tem-
peratures. In Eq. (1), ¥, and a are the amplitude and the
extension of the potential, respectively. /, and [, are the
periodicity on the x and y directions, respectively Figure
1 shows the effective potential used in this simulation
with @ =520 A. In agreement with the self-consistent re-
sults,’ this model presents a central flat region and in-
creases rapidly as a function of the distance.

The method we have developed to calculate the elec-
tronic structure of a two-dimensional periodic system is
based on the solution of the time-dependent Schrodinger
equation and uses the split-operator technique. For nu-
merical purposes the time-dependent Schrodinger equa-
tion is written as!>!3
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FIG. 1. Effective potential V(x,y) for an I,=1,=200-nm
grid gate with a 60-nm nominal linewidth.
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The error introduced in this expression is due to the non-
commutativity of the kinetic and potential operators and
since in Eq. (2) each operator is unitary, the norm is
strictly conserved.

The effective potential ¥ (r) and the initial wave func-
tion ¢(r,0) are computed on a two-dimensional grid and
¥(r,0) is multiplied by exp[ —iV (r)At /2#] at each grid
point. Because the kinetic energy is diagonal in k space,
we use the fast Fourier transform to perform the second
operation in Fourier space. The result is then
transformed back into real space where it is multiplied by
the third operator exp[ —i¥ (r)At /2#] to obtain the wave
function at time ¢ +At. This procedure is applied itera-
tively to calculate the time evolution of the initial wave
function.

By using this propagation scheme in the imaginary
time domain (¢ = —i7) we are able to calculate the eigen-
states of the Hamiltonian. We choose a Gaussian wave
packet as an initial wave function and reach the ground
state of the system after several imaginary-time steps of
propagation. The excited states are obtained by the same
procedure with the well-known Gram-Schmidt method
where the new wave function is given by the expression

PV, ) =(r,t)— 3, (1/;j1/;i)¢j(r,t) ’ (3)
j<i
which assures orthonormality between all states at each
time step. Here it is important to stress that, unlike the
real-time propagation scheme, the wave functions ob-
tained with the imaginary-time propagation must be nor-
malized in each time step.

For periodic systems the wave functions satisfy Bloch’s
theorem; therefore in order to calculate the dispersion re-
lation we have performed the propagation of a set of
wave functions for several subbands and different k
values. This method is numerically quite stable and
powerful in providing general solutions for bound states
in the confining potential as well as extended high-energy
states in the two-dimensional continuum.

The conductance along the x direction is calculated in
linear-response theory and is given by
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where L, and L, are the sizes of the system in the x and y
directions, respectively, A is the area of the unit cell, and
f is the Fermi-Dirac distribution function. In this pre-
liminary analysis we have assumed a relaxation time 7 in-
dependent of energy because of the narrowness of the en-
ergy range (=4 meV). In Eq. (4), 7 is a parameter that is
determined empirically by fitting the experimental G
value.
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FIG. 2. Dispersion relation for both directions [01] and [11]
for the same grid size of Fig. 1 and V;=2 meV.
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FIG. 3. Density of states (DOS) for the same grid size of Fig.
1 and potential amplitude V=1, 2, and 3 meV. We have nor-
malized the DOS in order to facilitate a comparison between
three ¥, values. The zero of energy is defined at the top of the
potential.
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We focus our investigation on weakly confining poten-
tial with barrier height of few meV which corresponds to
the experimental situation of Toriumi et al.,!! who use
an [, =1,=200-nm square grid gate with nominal width
60 nm. We have carried out the calculation for three
different potential amplitudes: 1, 2, and 3 meV and re-
stricted the simulation to the 25 lowest subbands. In Fig.
2 the 2D dispersion relation is plotted against the wave
vector in both directions [01] and [11] for a potential am-
plitude V;=2 meV. The zero of energy is defined at the
top of the potential. This system presents a very compli-
cated energy subbands dispersion with strong interaction
between subbands. The lowest three subbands are rela-
tively flat, which manifest the nature of bound states in
the wells. Due to the potential symmetry the second and
third subbands are degenerated for almost all values of k.
For higher energies, the extended states have a compli-
cated dispersion relation which is due to the band folding
in the Brillouin zone. Overall the electron effective mass
is substantially larger than the bulk effective mass; as a
consequence of this, an enormous reduction of the mobil-
ity is expected. The density of states is presented in Fig.
3 for three different values of the potential by using an
energy broadening of 1.5 K. It can be seen that for
V=2 and 3 meV, the two peaks with negative energy
correspond to bound states. In fact, the second peak cor-
responds to the second and third subbands which are al-
most degenerated for all values of k; those states are oc-
cupied by four electrons. For the case where the poten-
tial amplitude is 1 meV only one bound state exists. In
the continuum, the density of states presents several
peaks reflecting the influence of quasilocalized states in
the periodic potential, and a flat region characteristic of
the quasi-two-dimensional nature of the system appears
at high energy. In Fig. 4 we show the number of elec-
trons as a function of the Fermi energy for two different
temperatures, the low-energy plateaus represent discrete
energy states occupied by single electrons. As expected,
the transition between plateaus smoothens with tempera-
ture; at higher energies the number of electrons is a linear
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FIG. 4. Number of electrons as a function of the Fermi ener-
gy for a potential amplitude V=1, 2, and 3 meV, at T=1K
(solid curves) and T =0.1 K (dashed curves).
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FIG. 5. Conductance as a function of the Fermi energy for
T=0.5, 1.0, and 1.5 K. Open circles are experimental data
from Ref. 6. The inset shows the first peak of the conductance,
dots are experimental results.

function of the Fermi energy. The conductance along the
x direction is presented in Fig. 5 as a function of the Fer-
mi energy with the experimental results obtained at 1.5
K. The good agreement obtained with the value of
7=0.35 ps fitted from the experimental data is especially
visible around the valley at E =3 meV. However, our re-
sults are strongly dependent on the temperature and for
T =1.5 K the fine structures are no longer observable.
This is particularly noticeable with the first peak of the
conductance which is due to the quasibound energy state
at —0.3 meV (inset). It is expected that a more sophisti-
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FIG. 6. Electronic mobility for two temperatures T'=1.0 K
(dashed curves) and T=1.5 K (solid curves).
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cated model where the energy dependence of 7 is taken
into account would reproduce the negative differential
features in the conductance at E =—0.3 meV. Another
important limitation of our model is the assumption of a
linear relation between gate bias and Fermi energy in
comparing the experimental conductance with the calcu-
lated results. Because the localized low-energy states can
only accommodate a finite number of electrons, the Fer-
mi energy does not change continuously with the gate
voltage, but is rather pinned on the localized state for a
finite range of external bias and then jumps from the top
of a miniband to the bottom of the next one.!* This
would explain why the experimental curve shows a pro-
nounced and persistent plateau at 0.5 meV where the
E —k dispersion is very flat at these energies. Finally,
Fig. 6 shows the mobility u as a function of the Fermi en-
ergy for a potential amplitude of 2 meV and for two
different temperatures. The important finding here is the
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substantial reduction of the LSSL mobility compared
with the 2D mobility (u,p~3X10° cm?*/Vs) in uniform
gate structures. This u reduction is due to the presence
of the periodic potential modulation which affects consid-
erably the energy dispersion relation.'

In conclusion, we have calculated the electronic band
structure of a lateral-surface superlattice using a phenom-
enological potential. The carrier dispersion relation in
the LSSL periodic potential is derived to calculate the
conductance in the linear-response approximation. The
results compare well with recent experimental data and
reveal the existence of discrete single-electron states in
the system.
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