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Electron-positron enhancement factors at a metal surface: Aluminum
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Momentum density of annihilating electron-positron pairs at an Al surface is calculated within an ap-
proximation developed by the author. The surface momentum-dependent enhancement factor is investi-
gated. This parameter is found to be a decreasing function of momentum for a clean Al surface, in spite
of its behavior in the bulk metal.

I. INTRODUCTION

Interest in slow positron interactions with metal sur-
faces has increased in the past few years. ' Particularly,
the well-known angular correlation of annihilation radia-
tion (ACAR) technique has been successfully applied to
investigations of electron and positron surface states in
Al, ' Cu, Si, ' Ni, ' Pb, and graphite.

The interpretation of ACAR data in terms of the elec-
tronic structure of metallic systems is based on the belief
that positron annihilation yields information about one-
electron states of the material. A series of slow-positron
experiments performed recently on various metal sur-
faces ' produced some surprising results from the point
of view of positron-annihilation characteristics in the
bulk. One of them is the lifetime of the positron surface
state (SS) which amounts to 580 psec for the Al(110) sur-
face, ' i.e., about 15%%uo more than the spin-averaged free-
positronium (Ps) value. Furthermore, unlike the ACAR
spectrum from the Cu(121) face (which displays a strong
anisotropy, in agreement with theoretical expectations),
the surface-state components of the two-dimensional (2D)
ACAR spectra for any of three low-index surfaces of Al
[(100), (110), and (111)]are nearly isotropic and face in-
dependent. In contrast to the surface state, the momen-
tum density of the positronium emission from Al depends
appreciably on the crystal orientation, and in the Al(110)
spectrum a clear anisotropy occurs. The discrepancies
between experimental ' and theoretical" ' annihila-
tion characteristics (cf. discussion in Ref. 4) indicate that
in the calculations of the SS annihilation parameters both
the individual electronic-state distributions and electron-
positron correlations must be treated very carefully.

First of all, the theoretical results for the SS ACAR
spectra are as reliable as the electron wave functions used
in the description of the unperturbed material are
correct, at least for the region where the positron is
found. For this reason the mixed-density approxima-
tion' (which assumes the electron wave functions in the
form of single plane waves filling the Fermi sphere of lo-
cal Fermi radius) is invalid in the surface region, and con-
clusions about the shape of the SS ACAR spectra drawn
within the approach of Ref. 12 turned out to be mislead-
ing, as pointed out in Refs. 15 and 16.

A proper treatment of electron-positron correlations at
the surface is very important. ' When the enhance-
ment of electron density on the positron is neglected, "'
the SS lifetime for an Al surface is one order of magni-
tude longer than the experimental one, ' as shown in Ref.
15. The local-density approximation' ' ' (LDA) ap-
proach should also be modified when the SS annihilation
characteristics are calculated. Treating the electron
screening cloud as in a jellium of local electron densi-
ty' ' ' ' ' leads to a positron SS lifetime ~ which never
exceeds the free-Ps value of 500 psec. Moreover, the SS
ACAR spectra calculated within the LDA (Ref. 15) are
too narrow; the electron-positron correlation potential
obtained within the LDA tends to the constant value of
0.25 atomic units (see the dependence of the correlation
potential on the electron density in jellium, parametrized
by Boronski and Nieminen ' '), instead of reproducing
the correct image form, which had to be imposed. ' ' '

The shape of the positron wave function has a crucial
effect on the resulting SS positron-annihilation charac-
teristics. ' ' There has been considerable theoretical
effort devoted to modeling the positron in the surface
state. ' The positron distribution at the surface is strongly
dependent on the background electron charge density as
well as on the electron-positron correlation potential.
Here the density-functional formalism' ' and the
Feynman theorem ' ' or electric-field approach
to be useful starting points for the treatment of the prob-
lem. The form of the potential acting on the positron at
the surface and the change in the electron density on the
positron site, due to the electron-positron interaction,
cannot be considered separately (as, e.g. , in Refs. 11—13)
in the calculations of the positron SS annihilation charac-
teristics. The problem of electron-positron correlations
should be treated on a broad basis in a consistent way.

The aim of the present work is to study the effect of
electron-positron correlations on the surface-state
positron-annihilation characteristics. An approximation
proposed in Ref. 16 is used to obtain SS ACAR spectra
from an Al surface. The background electron charge
density, positron distribution, and electron-positron
correlations are treated in common in the calculations of
positron-annihilation characteristics. In this context the
applicability of the independent-particle model (IPM) to
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the surface problem is discussed. The momentum depen-
dence of the electron-positron enhancement factors at an
Al surface is investigated. Although the calculations are
performed within the jelliurn model of an Al surface, nev-
ertheless, the proposed formalism is general, and it can be
applied to the calculation of SS positron lifetime and
ACAR spectra for a more realistic discrete-lattice model
of any metal surface, based only on the values of the indi-
vidual electron wave functions in the material investigat-
ed.

II. FORMALISM

the shape of a positron wave function P+(r ) (as is shown
in Sec. IIA) and change the density of individual elec-
tronic states on the positron position. ' ' *' ' ' ' In
order to inspect this problem, it is convenient to intro-
duce the conditional electron wave functions and condi-
tional density of the electronic charge screening the posi-
tron, assuming that the positron is located at r,
f;(r„'r~), and bp(r„r~), respectively, according to the
formulas

g, (r, ;r~ ) =P;~(r„r~ )/f+(r~ )

The 2D ACAR slow-positron experiment measures the
2D projections of 3D momentum density (MD) of an ini-
tial state of the one-positron many-electron system or of
the Ps atom formed and emitted from the surface. The
surface-state part of the momentum distribution of an-
nihilating pairs, p(p), is given by the expression

p(p) =g f e '~'P;~(r, r)dr (»)
OCC

where p=(p„,p,p, ) is the annihilation photon-pair
momentum and g,'i'(r„r ) are the pair wave functions of
the thermalized positron located at r and electron in the
initial state i located at r, . The summation in Eq. (la) is
over all occupied electronic states i. The corresponding
2D SS ACAR spectra can be expressed as

&ss(p. p. )=kfp(p)dp,

where p, is assumed to be normal to the surface and g is a
normalization constant, generally dependent on the
geometry of experiment, intensity of the source, positron
lifetime ~, and time duration of the experiment. The
long-slit (1D) ACAR spectra can be generated from the
2D spectrum by the integrations

X(p, ) = fXss(p„,p, )dp

X(p„)=fNss(p„, p, )dp, .

The total annihilation rate A. (A. = 1/~) for the positron in
the surface state is related to p(p) according to the for-
mula [cf. also Eq. (la)]

hp(r„r~) = g ~g;(r„'r ) n, i—(r, ) .
OCC

Here

n, i(r, )= Q If;'(r, )~'

OCC

(2a)

is the local electron density in the unperturbed material.
The screening charge distribution hp(r„'r ) for any r
should satisfy the charge-neutrality condition

fbp(r„r )dr, =l . (2c)

In terms of the conditional wave functions and screen-
ing charge density [Eq. (2a)], formulas (la) and (lb) take
the form

2

p(p) = g f e 'P'i)'j+(r)g, (r;r)dr
OCC

2f e ' 'g+(r)g, (r)v'f(r, i)dr.
OCC

(3a)

A, =~roc f dr~/+(r)~ g ~@, (r;r)~
OCC

=vrroc f dr~&+(r)~ n, i(r) 1+ bp(r;r)
"ei r

(3b)

where the two-particle enhancement functions f(r, i) are
defined as (cf. Refs. 15, 16, and 19—22)

GATI" ()C fdpp(p)=~roc f dr g ~g,'i'(r, r)~2
(2~)'

OCC

(lb)

f(r, i) =
I g;(r; r) ~'/~ @';(r)~' .

Each of the functions f(r, i), as well as the function

F(r~ )= I+Ap(r~;r~ )/n„(r ),
where ro and c are the classical electron radius and veloc-
ity of light, respectively.

It should be pointed out that the case of metal-surface
calculations of P;~(r„r ) is fairly more complicated than
that for a bulk metal. First of all, the standard band-
structure methods of determining the unperturbed elec-
tron wave functions in the material investigated (in the
absence of a positron), i',.(r, ), are to be modified, as the
periodicity conditions are violated in the direction per-
pendicular to the surface. The next point is connected
with electron-positron correlations, which inhuence both

has a definite physical meaning: f{r,i) describes the
enhancement of the density of the electronic state i on the
positron site from its initial value ~g, (r )~, under the
condition that the positron is located at r, while F(r )

corresponds to the change of the total electron density on
the positron position. The enhancement of the local elec-
tron density, F(r)=1+hp(r;r)/ &(nr), used in the for-
mula (3b), is, according to Eq. (2a), equal to the weighted
average of individual electron-positron enhancements
f{r,i) [cf. the ACAR formula (3a)] over states i, i.e.,
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F(r)=1+ ' = g ~1(j;(r)~ f(r, i)
n,&(r) n,~(r),.

OCC

=(f(r, i)),
If the functions f(r, i) were state independent [i.e.,
f(r, i)=—f(r)], they would be exactly equal to
F(r) = I+bp(r;r)/n, &(r) according to Eqs. (2b) and (4).

It should be stressed here that the theoretical predic-
tion of two-particle correlations f (r, i) for separate elec-
tronic states i at the surface is very complicated and, up
to date, has not been performed. Fortunately, as shown
later in this work, the momentum dependence off (r, i) is
much less pronounced in the region where the positron is
found than their position dependence. Thus the func-
tions f(r, i) in the ACAR formula (3a) can be approxi-
mated by their average over i, F(r) [Eq. (4)]. This leads
to the new ACAR formula'

1/2 2

p(p)= g f e '~'g+(r)g, (r) 1+ ' drbp(r;r)
n„(r)

OCC

(5)

used in the present work in calculations of positron SS
annihilation characteristics.

Closer inspection of Eqs. (2a), (3b), and (5) leads to the
conclusion that the positron-annihilation characteristics
are well determined by the wave functions of individual
electronic states in the host material, g, (r), and the elec-
tronic screening charge distribution, b,p(r, ;r~). As
shown in Sec. II A (cf. also Ref. 20), the positron wave
function appearing in formulas (3b) and (5) is generated
by the above quantities and it cannot be considered sepa-
rately, as independent of hp(r, ;r~ ) (as in Refs. 11—13).

A. Influence of the background electron charge density
and electron-positron correlations

on the positron distribution at the surface

The positron and unperturbed electron wave functions
at the surface may be found using a standard density-
functional method. ' ' The electron wave functions

obtained within the Hohenberg-Kohn-Sham23"23'b'
(HKS) formalism are the solutions of the set of one-
particle Schrodinger equations"' ' ' (atomic units
are used throughout)

positron potential V+(r~)= —Vc(r~)+ V„„(r~) is the
sum of the electron Hartree (with opposite sign) and
electron-positron correlation potentials —Vc and V„„,
respectively. "' ' ' ' " ' As shown schematically in
Fig. 1, the repulsive Coulomb potential —Vc(r~ ) repels a
positron from the metal to the vacuum, while the attrac-
tive correlation potential, because of the existence of the
electronic cloud screening the positron [b,p(r, ;r~)%0],
causes trapping of the positron at the surface, preventing
it from escaping far outside the metal (the corresponding
effective electron potential V,z is presented in Fig. 2 of
Ref. 15). The Coulomb part of the potential experienced
by the positron [ —Vc(r)] is determined by the back-
ground electron charge density n,&(r).

Since the positron distorts the background electron
charge density, the correlation potential V«„(r ) should
be thought of as the work done to bring the positron to r
against the Coulomb forces between the positron and
electronic polarization cloud. There are several ways of
taking into account nonstatic effects in the calculation of
V„„on the basis of the exact form of screening charge
distribution bp(r„r ).

The electric-field approach introduced by Harbola and
Sahni for determining electron-electron correlations
and exchange at a metal surface seems to be promising
for the description of electron-positron interactions. I
would like to suggest the adaptation of the formalism of
Ref. 27 to the positron-surface problem. The correlation
potential acting on the positron at r may be interpreted
as the work done in moving a positron from infinity up to
its final position against the electric field 6„„coming
from the electronic screening cloud:

V„„(r~) = —I C«„,d 1, (7a)

where the electric field felt by a positron at r is given by

0.2-

0.1-

[ —
—,'V,'+ V,s(r, )]g, (r, )=E,Q, (r, ), (6a)

[ ——,
' V~+ V+ (r~ ) ]g+(r~ ) =E+g+(r~ ), (6b)

where E+ is the positron ground-state energy and the

where V,s(r, )=V&(r, )+V„,(r, ) is the electron poten-
tial, consisting of the electrostatic Hartree (Vc ) and
electron-electron exchange-correlation (V„,) parts, and E;
denote the electron energy eigenvalues. The Coulomb
potential Vc(r) and electron-density profile n,~(r) gen-
erate each other, according to Eqs. (2b), (6a), and the
Poisson equation.

The positron wave function is an eigenfunction of the
equation

-01-
]( cor

-0.2

FIG. 1. Effective potential acting on the positron at the sur-
face, V+(z~)= —V&(z~)+ V„„(z~)+EVe(—z~), and its Har-
tree part —Vc(z~ ). P+ = —0. 19 eV is a positron work function,
4 V=2.34 eV is the height of the potential step, zI is the position
of the image plane, and V„„(no)= —a (no)/4 is a correlation
potential in the bulk. The classical image potential is denoted
by a dashed lined.
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the Coulomb law

(r, —r )8„„(r )=fdr, hp(r„r~)
r 3 (7b)

f dQ fdr, n,~(r, )[g(r„r,n,&, Q) —1]
0

= f dQ f dr, bp(r„r, Q)=1,
0

(10a)

In the calculations of the present work, the approach
based on the Feynman theorem' ' is used. The
electron-positron interaction, scaled by the interaction
parameter Q, is included adiabatically; i.e., Q is increased
from zero (no interaction) to unity (full interaction corre-
sponding to the actual state of the system). Since the
electron-positron correlations are mainly due to the
Coulomb forces, the interaction parameter Q can be con-
sidered as the charge of a light particle embedded in the
many-electron system. This particle causes the change
in the background charge density n, t(r), and an electron-
ic screening cloud bp(r„r~, Q) arises. The distribution
bp(r„'r, Q) is obviously an increasing function of Q.
For Q = 1 (actual interaction) one has
bp(r„'r, Q= 1)=hp(r„r ) and for Q=O (no interac-
tion) bp(r, ; r~, Q =0)=0. In terms of the displaced
charge-correlation function of the one-positron rnany-
electron system,

g(r„r, n, ~, Q ) = 1+hp(r„'r, Q) /n, &(r, ),
the charge-neutrality condition has the form

fdr, n, &(r, ) [g (r„r~,n, &, Q) —1]

=f dr, bp(r„r, Q)=Q, (9)

for any r~ and Q.
It should be noted here that the present understanding

of the interaction parameter Q differs from its interpreta-
tion by Jensen and Walker, ' who included the parameter
Q into the electron-coupling constant as a factor. The
authors of Ref. 18 employed, following Gunnarson,
Johnson, and Lundqvist, the normalization condition

change in the electron-density distribution bp(r„r~ ) and
the correlation part of the effective potential acting on
the positron, V„„(r~), which we should be aware of in
the calculation of positron-annihilation characteristics (at
the surface as well as in the bulk ). From Eqs. (7) and
(ll) it clearly follows that if bp(r, ;r~)=bp(lr, r~l)
(i.e., it is independent of positron position r ), then
V„„(r~) = Vo and the effective potential acting on a posi-
tron differs from the Hartree potential —Vc(r ) only by
the constant value V0. In this case the positron wave
function is the eigenfunction of the Schrodinger equa-
tion'

I:
—'~ Vc(r )]4+(r )=E+0+(r ) . (12)

2
p' (p)= g f e '~'g;(r)g+(r)dr

OCC

(13a)

The relation between the screening charge distribution
and correlation potential is reversible; i.e., the effective
positron potential V+(r ) may be replaced in Eq. (6a) by
its Coulomb part —Vc(r ) [Eq. (12)] only if
b p(r, ;r~ ) =b p( l r, —

r~ l
). This obviously occurs when

the positron interacts with a homogeneous electron sys-
tem of a constant background electron density
n„(r)=no. In real metals, however, the equivalence be-
tween b,p(r, ;r„) and V„„(r ) should be taken into ac-
count when the positron-annihilation characteristics for
a positron in a surface state or in the bulk are calculated,
according to Eqs. (3b) and (3a) and (4) or (5).

Let us discuss the applicability of the independent-
particle model (IPM) to the surface problem from the
above point of view. Within the IPM the electron-
positron correlations are neglected. If we want to apply
the IPM strictly [i.e., to assume F(r)=f(r, i)=1], we
should neglect V„„(r). The pair wave functions
gP(r„rz) in the ACAR and lifetime formulas (3a) and
(3b), respectively, are replaced by the products
g, (r, )g+(r~ ), where the positron wave function P~+ is an
eigenfunction of the Schrodinger equation (12) [instead of
(6b)]. This leads to the well-known formulas for the IPM
annihilation characteristics:

for any r, where the parameter Q scaled the electronic
screening length. At the same time, according to Eq.
(2c), the condition

and

=vrroc f lP+(r) n„(r)dr . (13b)

fdr, n„(r, )[g(r„r,n,&, Q =1)—1]

= fdr, hp(r„r~)=1 (10b)

had to be fulfilled. This problem will be also discussed in
Sec. II B.

The correlation potential acting on the positron locat-
ed at r can be expressed according to the Feynman

ore~18, 24, 26 as

V„„(r )= —f dQ f dr, n,&(r, )
0

X [g (r„r~,n„,Q) —1]/lr, —
r~ l

= —f dQ f d r, hp(r„'r~, Q) /l r, —r~ l
. (11)

0

Equation (7) or (11) gives the relation between the

It should be noted here that in the bulk the ACAR
spectra are reproduced within the IPM reasonably well,
at least for valence electrons in the simple metals and in
the low-momentum region (the discrepancies between the
IPM and experiment are pronounced for momenta ap-
proaching the Fermi momentum ' and higher as well
as in d-electron metals' ' or at ionic cores ' ' '). It is
not so with the positron lifetime, which, within the IPM,
is considerably overestimated [Eq. (13b)]. At the metal
surface, however, the applicability of the IPM is limited.
As is seen in Fig. 1, the potential —Vc(r~ ) has a strongly
repulsive character, and if V„„(r ) were constant (or
equal to zero), the unscreened surface positron in its
ground state E+ [Eq. (12)] would be repelled to the vacu-
um. The normalized positron wave function g+ would
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be constant far in the vacuum and exponentially vanish
into the metal because of the positron tunneling through
the dipole barrier of height —Vc( —ao ) —[ —Vc(~ )].
This means that within this model no positron surface
state would be formed. The positron wave function f+
would be smeared in the vacuum, while electrons are
confined to the metal. Thus the overlaps of g+(r) and

(r) [.cf. Eq. (13a)) would be very small, and therefore
the information about the electron distributions at the
surface extractable from the IPM ACAR spectrum would
be fairly poor. For this reason in several theoretical
works" ' calculations of the surface ACAR spectra were
performed within a modified model, called in the present
work the quasi-IPM in order to distinguish it from the
"true" IPM. Within the quasi-IPM the change in the
density of electronic states on the positron is neglected as
within the IPM [i.e., it is assumed that
g;(r~;r~)=1(I, (r~)], but the positron at the surface is
influenced by the electron-positron correlation potential
V„„(r~)%const.

It should be stressed here that the quasi-IPM is well
justified for positron positions far in the vacuum. In this
case the electronic screening cloud would be detached
from the positron' [i.e., bp(r;r )=0] and localized at
the image plane located at z =zI (see dotted line in Fig. 2
and solid line in Fig. 3). The image charge should pro-
duce the electron-positron correlation potential in the
classical image form V„„(r~) = —0.25/(z~ —zI ), accord-
ing to Eqs. (7) and (11). However, the contribution of
this region to positron-annihilation characteristics (3a)
and (3b) [(13a) and (13b)] is negligible because both the
electron and positron densities decrease rapidly as the
positron escapes to the vacuum.

In the bulk and near-surface region, which give the
main contribution to the partial and total annihilation
rates, the quasi-IPM is internally inconsistent. Since this
particular point could raise some controversies, I found it
necessary to add some comments. As is illustrated in Fig.
2 (dashed, solid, and dot-dashed lines), for positron posi-

tions in the bulk and between the surface and image
planes (i.e. , for z„~zl ), the screening charge density
b,p(r, ;r~) achieves its maximum either just on the posi-
tron, i.e, for r, =r, or in its immediate vicinity. Thus,
for z (zl, the assumption bp(r;r )=0 implies that
hp(r, ;r )-=0 for any r„and therefore V„„(r )=0, ac-
cording to Eqs. (7) and (11), but in disagreement with the
quasi-IPM assumption V„„(r~)%const. For this reason
the quasi-IPM must be treated with a great deal of cau-
tion in the region z ~zI. On the other hand, as can be
seen in Fig. 1, the positions z zI occupy an appreciable
part of the positron potential well, where the positron is
found. Because of this deficiency, the quasi-IPM ACAR
spectra"' should not be compared directly with the ex-
perimental data. The momentum density p(p) [Eq. (3a)
or (5)], whose 2D projections are measured experimental-
ly, difFers from the quasi-IPM distribution p' (p) by a
momentum-dependent enhancement factor eMD(p ),
defined as

eMD(p ) =p(p)/p', (p) .

Here a remark is needed. The positron is a strongly in-
teracting probe, and hence it measures properties of ex-
cited (X-electron+positron) states. In practice, however,
we are interested in the ground (X-electron) state of the
system. In the calculations of p(p), which corresponds to
experimental ACAR spectra, the electron-positron corre-
lations are included both to the electron and positron
wave functions, according to Eqs. (2a) and (7) or (11).
The quasi-IPM, despite its deficiencies, reflects the posi-
tron and unperturbed electron distributions at the surface
[cf. Eq. (13a)], i.e., the quantities just under study. Since
quasi-IPM ACAR spectra must not be related directly to
experimental ones, in the interpretation of slow-positron
experimental data the knowledge of enhancement factors
@MD(p) is needed.

B. Electron-positron correlations at the surface
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0.6-

0.4-

0.2-

I

I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
/

/

I

I

I
I
I

I
I
I
I

1
\

-2.5 -2,0 -'5 -1.0 -05 0 'I 0.5

Z (units of 2t(/kFI

1.0 1.5 2.0

FICx. 2. Cross sections of the screening charge distribution
hp(0, z, ;z~ ) for various positron positions z~: in the bulk
(dashed line, Ap enlarged 10 times), at the surface plane (solid
line, enlargement 20), at the image plane zr (dot-dashed line, en-
largement 50), and well outside the metal (dotted line, enlarge-
ment 100).

In order to determine correctly the positron-
annihilation characteristics at the surface, the screening
charge distribution b,p(r, ;r ) should be known [cf. Eqs.
(3b) and (5) as well as Eqs. (7) and (ll) for a positron].
For positron positions well inside the metal, the screening
charge distribution may be considered as spherically sym-
metric (if the lattice effects are neglected). As a positron
approaches the surface from inside the metal, the polar-
ization cloud Battens along a surface' ' and becomes de-
tached, forming a classical image charge for a positron
located far in the vacuum (this gives rise to an image
form of the correlation potential). '

Preliminary calculations of the electronic charge distri-
bution screening a positron moving from the metal to
vacuum were performed by Inglesfield and Stott' within
the random-phase approximation (RPA) and in the
infinite-barrier model of a metal surface. Although the
formalism of Ref. 17 led to quantitatively correct results
for the shape of the polarization cloud and positron-
correlation energy, nevertheless, these calculations can-
not be considered as definitive. As is well known, the
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RPA does not give a satisfactory account of electron-
positron correlations in the range of metallic and low
densities (it is valid for high densities only' ). Also,
the dipole barrier at the real-metal surface is of finite
height.

Electron-positron correlations, applied in the present
work to calculating of positron-annihilation characteris-
tics at metal surface, are determined within the
weighted-density approximation (WDA). ' ' The WDA
is in principle an adaptation of the LDA to strongly inho-
mogeneous systems. It should be stressed here that al-
though the WDA allows us to go beyond the RPA and is
based on more realistic electron-density profiles at the
surface than those resulting from the infinite-barrier mod-

I

el, ' nevertheless, the calculations of the screening charge
distributions bp(r„r ) performed within the WDA are
not self-consistent in the sense of Hohenberg-Kohn-Sham

eory23(8)723(b)

Within the WDA the displaced-charge correlation
function of the system is approximated by

g(r„r~, n„,Q)wDA=g "(Ir,—r, I
&*(r,»Q»

where g "(r,n *,Q ) is the correlation function in an elec-
tron gas of density n'. The corresponding screening
charge distributions and positron-correlation potential
are equal to

(14a)

and

V„„(r~)wD~= —J dQ f dr, n„(r, )[g"(lr, r l, n*(r —), Q) —1],
0

(14b)

g"( r, —r l, n*,Q)=1+Q e
a (n*) —a(n*)~r, —r

~

8~n * (15a)

where the form of g (O, n*, 1), enabling us to calculate
a(n*), was parametrized in Refs. 23(d) and 23(e) as a
function of n*. For low and metallic electron densities,
occurring at the surface, the results of Refs. 23(d) and
23(e) are in fairly good agreement with the more con-
venient, in practical applications Brandt-Reinheimer for-
mula, ' which leads to a simple density-dependent form
of a(n*)

a (n*)=1+40~n*/3, (15b)

employed in the calculations of the present work.
For an electron gas of constant electron density

n,&(r)=n *, the correlation functions given by Eq. (15a)
clearly satisfy the charge-neutrality conditions (9) and the
correct values of total annihilation rates in jellium, '

A, (n*), are reproduced for low and metallic densities.
The corresponding correlation energies obtained accord-

according to Eqs. (8) and (11), respectively. The values of
the effective electron density n*(r ) are determined for
any r from charge-neutrality conditions (9), which is
treated as an equation for n *(r~ ).

For practical applications of the WDA to the positron
surface problem, first of all the form of the displaced-
charge correlation function in jellium must be known. In
an electron gas of density n*, this function may be ap-
proximated by an exponential form. ' ' ' Assuming
an exponential distribution of the electronic cloud screen-
ing a heavy-particle-charged Q, the screening length
remains unchanged when Q increases, unlike the density
of the screening charge on the particle, which is propor-
tional to Q. Thus the correlation function g "(r,n', Q)
may be assumed in the form

xn„(r, )/lr, —
r~ l

. (16)

The screening charge density calculated according to
Eqs. (14a) and (15b),

ing to Eq. (14b), equal to V„„(n*)= —a (n*)/4, are in
good agreement with their n dependence ' ' in the
range of low and metallic electron densities. The form
(15a) of correlation function in jellium, assumed in the
present work, differs from the one used in Ref. 18, where
the parameter Q scaled the electron screening length
Qa(n') and the charge-neutrality conditions (10a) and
(10b) were employed. Although the annihilation parame-
ters in jellium, V„„(n*)and A(n*), ,resulting from the
present approach and the one of Ref. 18, are exactly the
same, nevertheless, for an inhomogeneous electron sys-
tem (metal surface), the correlation function in the form
(15a) enables us to avoid the deficiency contained in Ref.
18. The charge-neutrality conditions (10a) and (10b) used
in Ref. 18 determined two different effective WDA elec-
tron densities for a positron located outside a metal,
n*, (r~) and nz (r~), respectively. Both these densities
were applied simultaneously in the one lifetime formula
(3b). The density n i (r ) was used for determining the
correlation potential in the positron Scrodinger equation,
while the enhancement of the electron density on the pos-
itron depended on nz (r ). In contrast to Ref. 18, the
present approach leads to one effective electron density
n (r ), satisfying the charge-neutrality conditions (9) for
any Q E [0, 1].

The correlation potential obtained within the WDA
according to Eqs. (14b) and (15b) is given by the expres-
sion

a [n*(r )]
V„„(r~)=-

8irn*(r )

—a[n (r )]~r, —r
X dr, e
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bp(r;r) =n, i(r)
a n*(r)

8vrn "(r)

5=n, i(r) —+
8rrn *(r)

leads to the formula, for a total annihilation rate,

(17)

and

0+(r) =~ i)'j+(z) (20a)

is the Heaviside step function, and the coordinate z is
perpendicular to the surface. The positron and unper-
turbed electron wave functions at the surface are assumed
in the form

roc .Jdr~g+(r)~ n„(r) 1+
8mn*.(r) S z

(20b)

7"OC n„(r)+ f dr~/+(r)~ a [n*(r)]
8 n "(r) (18)

respectively, where r=(x,y, z) and S is the area of the
surface plane. The functions P& (z) obey the set of

z

Schrodinger equations [cf. Eqs. (6a) and (20a)]
Within the WDA the displaced-charge correlation

function of the system, g (r„r~,n, i, Q ), is replaced for any
r by its analog in an electron gas of the efFective density
n*(r„), g "(~r, —r~, n*(r~), Q). Since, according to Eq.
(4), g (r~, r~, n, i, Q = 1) is a weighted average of individual
enhancement functions f (r, i), the functions f(r, i) em-
ployed in the ACAR formula (3a) may be also replaced
within the WDA by their analog in an electron gas of
density n "(r ), e (QE;/E~, n*(r )).' ' '

Here e (p, n *) are electron-positron enhancement factors
obtained within the model of jellium for various electron
densities n *, ' and E~ is a Fermi energy. Since
e (p, n*) as functions of n" behave as (n') ', while, as
functions of p, increase at most 50%, ' "the position
dependence of f(r, i ) is much more pronounced at the
surface and in the vacuum (where a positron is found)
than their state dependence. For this reason f (r, i) may
be approximated in the ACAR formula (3a) by their aver-
age over i, given by Eq. (4). The latter leads to expression
(5) for momentum density p(p), used in the present work.
It should be noted here that the use of the SS ACAR for-
mula (5) instead of (3a) is not only a numerical
simplification which does not change the results (as
checked numerically in the case of an ideal Al surface).
It is an essential advantage in comparison with (3a), as it
allows one to avoid determining individual electron-
positron correlations separately, at the same time con-
serving the shape of the ACAR spectra. This problem is
discussed also in Ref. 16.

For the correlation function in the form (15b), Eqs. (17)
and (5) lead to the WDA ACAR formula

p(p) = g J dr e '~'P+(r)P;(r)
OCC

X [1+a [n*(r)]/[8mn'(r)]]'~

III. CALCULATIONS AND RESULTS

In this section the annihilation characteristics from an
ideal Al surface are presented. Calculations were per-
formed within the jellium model, where the ions are
thought of as forming a constant positive background
charge within the metal, n;,„(z)=n06( —z). Here
no=3/(4vrr, ) is the bulk conduction-electron density, r,
is a Wigner-Seitz radius [for Al, r, =2.07 (Ref. 30)], 6(z)

d2
+2V,~(z) gi, (z)=(k, —k~)gq (z), (21a)

with boundary conditions P& ( oo ) =0 and

gi, ( —~)=sin[k, +5(k, )], where the phase shifts are
z

continuous and 5(0)=0. The Coulomb part of the
effective electron potential (cf. Sec. II A) satisfies the Pois-
son equation

Vc(z) = —4vr[n„(z) —n;,„(z)],dz'
(21b)

where the background electron charge density n, i(z) is,
according to Eq. (2b), equal to

kF
n„(z)= J (k~ k, )[gi, (z)—] dk, . (21c)

kz in Eqs. (2la) and (2lc) denotes the Fermi momentum
in the bulk. The electron-electron exchange and correla-
tions were treated in a local way, and the Wigner's form
of V„,(n„(z) ) was used. Equations (21a)—(2lc) were
solved self-consistently' within an iterative scheme pro-
posed by Manninen et al. "and adapted to finite space
by Monnier and Perdew. ' ' The details of the calcula-
tions and results are given in Ref. 15. The electron-
density profile n, i(z) as well as the potentials Vc(z) and
V,ir(z) are presented in Figs. 1 and 2 of Ref. 15, respec-
tively.

Here a remark should be made. As is well known, real
metals differ from an electron gas. For simple metals,
however, characterized by nearly parabolic valence
bands, the jellium model describes electron wave func-
tions in the interstitial region reasonably well. In partic-
ular, conduction electrons in bulk aluminum have a near-
ly free nature. As was pointed out by Monnier and
Perdew, 3'b' the Al(100) face is also jelliumlike. The pro-
jected energy-band structure for each of three low-index
surfaces of Al was determined by Chen et al. The bot-
tom of the bands are parabolic, while substantial gaps ap-
pear below and above the Fermi energy. The energy gaps
near the Fermi level have a crucial effect on the
positronium-emission spectroscopy results, since the
electron energy distribution near the Fermi energy is de-
cisive in the theoretical Ps momentum density. "" In
contrast to the Ps component, the SS ACAR spectra are
dependent mainly on the shape of the electron wave func-
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tions (cf. discussion in Sec. II), while the electron energies
are considered in the SS ACAR formula (5) in the aver-
age [cf. Sec. II B and, in particular, formulas (4) and (5)].
The nearly free electron nature of Al conduction bands
allows one to substantiate the approximation of the elec-
tron wave functions at the surface in the form (20a), at
least for the Al(100) face. The fact that the lattice effects
are neglected parallel to the surface is, however, reAected
in N (p„) in the high-momentum region [the density
N (p ) obtained within the jellium model of the metal sur-
face vanishes for momenta p ~ kF].

The distribution of electronic charge screening a posi-
tron located at r~ =(x,y~, z ), bp(r, ;r„), was modeled
within the WDA, according to Eqs. (14a), (15a), and
(15b). Within the jellium model bp(r„r„)may be written
in the form

0.4-

0.2-

-0.4-

-0.6

FIG. 3. Positions of the center of mass of the screening
charge distribution [Eq. (22)] as a function of a positron position
(solid line) compared with the function z&(zP ) =zP (dashed line).

bp(r, ;r ) =bp(R, z, ;z ),

where

R =[(x,—x ) +(y, —y ) ]'

n*(r )=n*(z ), and V„„(r )= V, „(z ) .

The effective WDA electron density n'(z ) was obtained
for any zz according to charge-neutrality conditions (9).
For positron positions z well inside the metal, the values
of the effective density n (z ) coincide with n, &(z~ ).
When the positron is in the vacuum (z„~oo ),

I

n„(z )/n "(z )~0. For z ~00, however, n*(z )~0 as
well.

The cross sections of the resulting screening charge
density bp(O, z, ;z ) for various positron positions z are
shown in Fig. 2. The screening cloud, which is spherical-
ly symmetric in the bulk (dashed line in Fig. 2), deforms
as the positron approaches the surface (solid line in Fig.
2) and is left behind at the image plane located at
zI=1.76 a.u. for positron positions far in the vacuum
(dotted line in Fig. 2). This is also illustrated in Fig. 3,
where the positions of the center of mass of the screening
cloud, defined as

zo(z~)= fd'R f dz, z, bp(R, z, ;z ) f d Rf dz, b,p(R, z, ;z ),
I

(22)

a,re presented by a solid line for various positron position
z~. The function z, (z )=z~ is shown for comparison
(dashed line). For positron positions well inside the met-
al, zp(z& ) =z&' i.e., the center of mass of the polarization
cloud is on the positron. As the positron leaves the met-
al, the center of mass becomes detached (see deviation be-
tween solid and dashed curves in Fig. 3), and for the posi-
tron located far in the vacuum, (z ~ac) zc(z )~zl
=1.76 a.u. [the relation between the position of the im-
age plane zI and the limit value of zo(z~) for z~~ ac is
discussed in Ref. 25].

The positron-correlation potential V„„(z~) was ob-
tained according to Eq. (16). The asymptotic behavior of
V„„(z )~—1/[2(z —zi)] for z ~~ is observed (see
solid line in Fig. 1). For comparison the classical image
potential V; (z )= —1/(4z ) is given in Fig. 1 (dashed
line). The deviation of V„„(z ) from the image form by
a factor —,

' may be attributed to the fact that the calcula-
tions of electron-positron correlations, performed within
the WDA, are not self-consistent in the sense of HKS
theory, as was pointed out in Sec. IIB. The screening
charge distribution on the image plane,

a [n*(z~)]
bp(R, zi, z )=net(zi)

8n.n *(z~ )

P I P
—a[n (z ))[R +(z —z ) )

determined according to Eq. (15a), never achieves the im-
age form obtained by Lang for a heavy particle located
far away from the jellium metal surface,

(z~ —zi )
bp; (R,zi,'zp)=

2m. [R +(z —zi) ]
2 2 3/2

The screening charge density hp(R, zl', z ) in the form
(15a) decreases exponentially as a function of R for any
positron position z, while hp; (R,zi;z ) behaves as R
for z ~&n. Moreover, as follows clearly from Eq. (17),
although the electron density on the positron,
hp(O, z~;z ), tends to zero for positron positions well out-
side the metal, nevertheless, the screening cloud is never
completely detached from the positron, since, for zz ~~,
bp(O, zz', z~) converges to zero weaker than n, &(z ), and in
consequence g(r, r, n, &, Q =1) differs from unity for
large values of z . Thus electron-positron correlations for
the positron located far in the vacuum are overestimated
within the WDA. Since the WDA gives a correct ac-
count of the average correlation energy, the electron-
positron correlations in the immediate vicinity of the sur-
face are likely to be slightly underestimated.

The effective positron potential V+(z ) is the sum of
electron Hartree (with opposite sign) and electron-
positron correlation potentials. The positron work func-
tion P+ = V+ ( ac ) —p is the difference between the
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effective positron potential in vacuum and the bulk posi-
tron chemical potential p, which, within the jellium
model, is equal to p~"'= —Vc( —~ )+ V„„(—~ ). For
z ~ ~ we have V„„(~ )~0 and hence the correspond-
ing positron work function in jellium P+'= D—
—V„„(—~ ), where D = Vc( ~ ) —Vc( —oo ) is the
height of the surface-dipole-layer potential. However,
the model of jelliurn, used in the calculations of the
present work, neglects the interaction of electrons and
the positron with the ionic lattice.

In real metals the surface-dipole-layer potential may be
considerably different from the value calculated in the jel-
lium model. This is because the potential of the lattice of
ions, experienced by electrons, is considerably more at-
tractive than the electrostatic potential of the jelliurn pos-
itive background, and the electron Fermi level, or the
internal chem. ical potential p„becomes more negative
than for jellium. Lang and Kohn, Monnier and
Perdew, ' ' and Perdew, Tran, and Smith "considered
the difference between the potentials of the semi-infinite
lattice of ions and the electrostatic potential of the serni-
infinite uniform positive background. The "difference po-
tential" 5vws(r) in the neutral Wigner-Seitz cell was
defined in Refs. 33(b) and 34(c) as the sum of the pseudo-
potential in this cell and the electrostatic potential of the
uniform electronic density contained within it, with the
convention that 5vws(r} vanishes far outside it. The
average of 5vws(r) over a Wigner-Seitz sphere, (5vws),
was found to be a considerable fraction of both the free-
electron Fermi energy and one-electron potential barrier
of the jellium surface. The change in D, however, almost
cancels the change in p„ leaving the electron work func-
tion relatively insensitive to the strength of the electron-
ion interaction. The authors of Refs. 33(b) and 34(c) pro-
posed to approximate the potential 5vws(r) by a step
function (5vws)e( —z), where the structureless step
height (5vws) for Al was estimated as —2.4 eV [Ref.
33(b)] or —2.49 eV [Ref. 34(c)].

In contrast to electrons, the positron is strongly re-
pelled from the ions, and in some cases the lowest posi-
tron state lies several electronvolts above the electrostatic
potential in the interstitial region, and the positron chern-
ical potential p is more positive than for jellium.
One can mimic this additional dipolar effect by subtract-
ing from the positron potential the electron difference
potential 5vws( r ) or its approximation
(5vws)e( —z). ' ' "" In the present electron model,
this correction leads to the positron work function
P+= —0.25 eV for (5vws) = —2.4 eV [Ref. 33(b)] and

P+ = —0.34 eV for (5vws) = —2.49 eV. @' In the
present work the step height A V= —2.34 eV was adjust-
ed in order to reproduce the experimental value of a posi-
tron work function for an Al(100) face, equal P+ = —0. 19
eV."""' In Fig. 1 the eff'ective positron potential V+ (z}
and its Coulomb part —Vc(z) as well as the potential
step 6V are presented. It should be noted here that 6V is

I

a fitting parameter, necessary in order to switch from the
jellium model to a real-metal surface. This method is
used in the majority of calculations of positron wave
functions at the metal surface (cf., e.g. , Refs. 11—13, 15,
18, 36, and 37), and we would be able to avoid imposing
the step potential b, VB( —z) only if fully self-consistent
calculations of the electron Hartree potential V& at real-
rnetal surfaces were performed.

The positron wave function g+(z~) was obtained ac-
cording to Eq. (6b). The resulting value of the positron
binding energy Ez relative to the bulk, equal to —3.06
eV, is in good agreement with slow-positron experimental
data for Al(100) face, E~ = —3.05 eV [Ref. 1(a}]or —2. 8
eV." ' It should be noted here that the eigenvalues of
Eq. (6b) (and, henceforth, positron binding energy E~)
are dependent not only on the depth of the potential well,
but also on the shape of correlation potential in vacuum.
When the image potential was imposed in vacuum in-
stead of V„„(see Fig. 1), the resulting value of binding
energy changed to E~ = —2.9 eV.

The total annihilation rate A, was obtained within the
WDA according to Eq. (18). The value of the positron
lifetime, ~=593 psec, is in good agreement with slow-
positron measurements for the Al(100) face, r,„=580
psec. '

Comparison of theoretical annihilation rates with
experimental ones allows one to deduce that the jellium
model of the Al(100) surface is a reasonable approxima-
tion when the positron surface state is investigated. The
long positron SS lifetime should not be attributed to trap-
ping of a positron at the surface defects, as claimed by
Brown et al. ,

' and a proper treatment of electron-
positron correlations at the surface seems to be much
more important than lattice effects. My feeling is that
the statement of Jensen and Walker, ' "... an asymptotic
limit [of V„„(z )] is unlikely to seriously affect the
properties of the positron surface state. ..," is not quite ex-
act. When far in the vacuum the image potential was im-
posed instead of V„„,the theoretical value of ~ changed
to 570 psec. For this reason the self-consistent calcula-
tions of the screening charge distribution at the surface,
performed beyond the WDA, are desired.

It should be noted here that the calculations of the
positron-annihilation rate and binding energy performed
in the present work are based on the WDA displaced-
charge correlation function in the form (15a), in contrast
to Ref. 18. The essential difference, however, consists in
the fact that the electron density used in the present work
was based on individual electron wave functions ft(r)
[obtained self-consistently according to Eqs. (20a) and
(2la}—(21c)], while in Ref. 18 the parametrized form of
n, i(r) was applied. For this reason Jensen and Walker
were not able to calculate reliable surface ACAR spectra
(cf. discussion in Refs. 15 and 16).

The forms (20a) and (20b) of the electron and positron
wave functions employed in the WDA ACAR formula
(19) lead to the expressions for 1D SS ACAR spectra

and

p(p, )=2m f (kz k, )dk, f e' "g—
k (z)g+(z)[1+a [n (z)]/[8mn (z)]dz]'~ (23a)



10 866 ANNA RUBASZEK

(k2 2)1/2

p(p„)=2j (kg. p— k—, )' dk, J ~gk (z)~ ~g+(z)~ [ 1+a [n*(z)]/[ 8~n*( z)]Idz

The momentum distributions p(p, ) and p(p ) are present-
ed in Fig. 4(b) by solid and dashed lines, respectively.
Their quasi- IPM analogs, obtained according to formulas
(23) with a ( n *)—:0 [see also Eq. ( 1 3a)], pq~ (p ), and

p (p ), are given in Fig. 1 (a) for comparison. Momenta
are expressed in units of the Fermi momentum kz (for Al,
kF =6.76 mrad) and the spectra are normalized to the
same peak height. The experimental spectrum N,„(p, )

(Ref. 4) is shown in both parts of Fig. 4 by a dotted line
(the core electron contribution is not subtracted). It
should be remembered that the SS part of experimental
ACAR spectra from an Al surface reported in Ref. 4 was
isotropic and face independent, and therefore N,„~(p, )

for Al(100) may be treated as representative of 1D SS dis-
tributions from three low-index Al surfaces.

It is apparent that including electron-positron correla-
tions causes narrowing of theoretical ACAR spectra and
both reverses and decreases the anisotropy with respect
to the quasi- IPM. The agreement between theory and ex-
periment is appreciably improved when electron-positron
correlations are taken into account in the ACAR formu-
las (23). The full widths at half maximum (FWHM's) of
p(p, ) and p(p ), equal to 6.69 and 6.84 mrad, respective-
ly, are intermediate between the experimental isotropic
results 7.1 mrad (Ref. 3) and 6.3 mrad (Ref. 4). The den-
sity p(p) is isotropic within 2%%uo with p(p, ) narrower than
p(p ). The latter is in agreement with Ref. 3, but in
disagreement with the more recent results of Ref. 4. This
fact could be attributed to the same reasons as those re-
sponsible for differences between theoretical and experi-
mental positron lifetimes and binding energies. The
discrepancies between theoretical and experimental
ACAR spectra are pronounced for momenta close to the
Fermi momentum and higher. This is obviously the re-
sult of neglect of lattice and core effects when the jellium

model of the real Al surface is considered. I suppose that
the information about the surface defects and imperfec-
tions as wel 1 as about the lattice and core effects is con-
tained rather in the high-momentum component (HMC)
of the spectrum. This is an interesting problem for fur-
ther investigation. The supposed positron trapping at the
surface defects' is unlikely to be a serious reason for re-
ported features of experimental SS annihilation charac-
teristics, Nss (p,p, ) and A, .

Because of electron-positron correlations, the MD p(p )
(which is measured experimentally) differs from the
theoretical quasi-IPM distribution p' ( p ) by a factor
eMD(p). Since quasi-IPM ACAR spectra are anisotropic,
it seems to be more reasonable to consider two separate
parameters @MD(p, ) =p(p, ) /p~q (p, ) and @MD(p )

=p(p ) /p' (p ), instead of one isotropic @MD( ~ p ~ ),
often used in the case of bulk metal.

In Fig. 5 the values of eMD(p, ) /@MD(p, = 0 ) and
@MD(p ) /@MD(p, =0 ), presented by solid and dashed
lines, respectively, are compared with the "experimental"
enhancement factor e,„~,(p, ) /e, „,(p, =0 ) extracted from
Ref. 4 (dotted line), where e,„,(p, ) =N,„„,(p, ) /p (p, ).
A reasonable agreement between @MD(p, ) and e,„,(p, ) is
observed. Both @MD(p„) and @MD(p, ) are decreasing
functions of momentum. This is a surprising feature be-
cause in the bulk metal the enhancement factors for
valence electrons are always increasing functions of
momentum as well as because local electron-positron
correlations approximated by f (r, k) = I +Ap(r, r)/n, i(r)
are momentum independent. On the other hand, this de-
crease of the surface @MD(p) is in agreement with experi-
mental data: Any of the calculated quasi- IPM ACAR
spectra "' is broader than the experimental ones and
therefore results of this work cannot be attributed to the
method of calculation of the electron and positron wave
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FIG. 4. 10 ACAR spectra from an Al surface calculated
within (a) the quasi-IPM [Eq. (13a)] and (h) according to formu-
las (23). Directions perpendicular and parallel to the surface are
denoted by solid and dashed lines, respectively. The experimen-
tal values of the momentum density X„pt(p, ), extracted from
Ref. 4, are presented by dotted lines in both parts of the figure.
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FICx. 5. Momentum-dependent enhancement factors at an Al
surface, @MD(p, ) /@MD(p, =0 ) (solid line) and @MD(p„)/
EMD(p =0 ) (dashed line), compared with experimental values
~expt(pz ) /~expt(pz 0 ) (dotted line), where &expt(p. )

Xexpt (pz ) /p~ (p, ) ss extracted from Ref. 4.
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functions alone. Moreover, for core and d electrons in a
series of bulk metals, the negative slope of @MD(p) was
found as well.

@MD(p, ) shows a stronger tendency to decrease than
eMD(p„). The behavior of experimental enhancement fac-
tors is similar to the theoretical one. In my opinion the
stronger decrease of experimental e,„,(p, ) at an Al sur-
face is common for all quasi-IPM calculations because
experimental ACAR spectra are isotropic ' while for any
theoretical quasi-IPM densities" ' the parallel corn-
ponent is narrower than the perpendicular one.

IV. CONCLUSIONS

In the present work the effect of electron-positron
correlations at the metal surface on the theoretical posi-
tron surface-state annihilation characteristics is em-
phasized. The interdependence between the distortion of
the electron background charge density and positron dis-
tribution is set forth. It is pointed out that the positron
lifetime v and momentum density of annihilating pairs
p(p) cannot be considered separately, as it is done, e.g., in
Ref. 11. The well-known expression for a total annihila-
tion rate [Eq. (3b)] (Refs. 2, 21, and 29) is derived directly
from the ACAR formula (3a) and definition of screening
charge distribution (2a). Electron-positron correlations
are treated within the proposed formalism in a consistent
way.

The momentum density of annihilating pairs is calcu-
lated according to the ACAR formula (5). It should be
stressed here that the approximation (5) of the exact
ACAR expression (la) or (3a), which is valid at the metal
surface, must be treated with a great deal of caution in
the bulk material, where state selectivity of the pair
correlation functions f(r, i) is of major
importance. ' ' " ' ' The annihilation parameters ob-
tained within the proposed approach are found to be in
fairly good agreement with Al experimental
data, "'" ' ' in spite of the fact that the calculations
were performed within the jellium model of an ideal Al
surface. Inclusion of electron-positron enhancement
effects into the ACAR and lifetime formulas appreciably
improves the agreement between theory and experiment
in comparison with the quasi-IPM.

Because of the nearly free nature of valence electrons
in Al, the deviations of parallel components of electron
wave functions gz(r) in the real metal from single plane

i(k x+k p)
waves, S ' e, assumed within the model of jel-

lium, is much less pronounced in the resulting SS annihi-
lation characteristics than electron-positron enhancement
effects. In contrast to the electron and positron distribu-
tions parallel to the surface, the normal components of
the electron wave functions ft, (z) have an essential

Z

influence on the theoretical positron lifetime and ACAR
spectra in Al. It should also be noted here that for d-
electron metals (e.g. , for copper) the jellium model of the
surface is far from being satisfactory and band-structure
calculations are necessary. The energy distribution near
the Fermi energy is also decisive in the momentum densi-
ty of the Ps emission from metal surfaces, "" and there-
fore the electron-gas model is also not adequate in the in-
terpretation of Ps ACAR spectra, in contrast to the SS
component in simple metals.

Electron-positron enhancement factors eMD(p) at an
Al surface appear to be decreasing functions of momen-
turn, in contrast to their behavior in bulk Al. Anisotropy
of @MD(p) is observed. @MD(p, ) exhibits a stronger ten-
dency to decrease than eMD(p ). These features of
E'MD(p) are in agreement with experimental results with
respect to any published quasi-IPM calculations. "'

The weighted-density approximation employed in the
present work for modeling positron distribution and elec-
tronic screening charge density at an Al surface gives the
correct account of electron-positron correlation energy in
the average. Electron density on the positron, which is
correctly reproduced within the WDA for a positron lo-
cated well inside the metal, is overestimated for positron
positions far in the vacuum and therefore must be slightly
underestimated in the immediate vicinity of the surface
plane. In order to determine electron-positron interac-
tions at the surface exactly, first of all, self-consistent cal-
culations of the screening charge distribution bp(r„'r ),
performed beyond the WDA, are necessary. This is,
however, still an open problem.
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