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The interaction of positrons with a surface potential is considered as a two-step process, upon which
the time-dependent positron trapping into the surface potential is evaluated. The reflection of positrons
at the surface potential is seen to be larger than previously calculated. This suggests that the interaction
of positrons with a surface is a many-encounter process. '

I. INTRODUCTION

With the advent of variable-energy positron beams, it
has become possible to study solid surfaces and interfaces
with positron techniques.! When positrons with keV in-
cident energy are implanted in solids, a majority of them
become thermalized with the lattice and diffuse back to
the surface as thermal positrons. In interacting with the
surface potential, positrons may become trapped by their
own image potential and form positron surface states.
They may also escape the surface either by picking up
electrons to form positroniums (Ps), or may be reemitted
as free positrons on negative-work-function surfaces.
Considerable theoretical and experimental work has been
carried out in order to understand these surface process-
es. A typical model approach includes treating these pos-
sibilities as competing rate processes,”> i.e., the Ps forma-
tion rate is vp,, positron reemission rate is v, + surface
trapping rate is v,, and the desorbed fraction of positrons
from the surface trapped state via the Ps channel is f,.
The branching ratios into each of these channels are then
calculated as follows:

total rate v=v_ . +vp,tv, ,

positron reemission branching ratio v, +/v ,

(1)

Ps reemission branching ratio (vp,+ fyv,) /v,
surface trapping branching ratio (1—f;)v, /v .

Specifically, the surface trapping rate v, is calculated
using the Fermi golden rule, where the wave functions for
both the final localized and initial delocalized positrons
are obtained from solving the stationary Schrdodinger
equations.*?

The branching ratios evaluated from Eq. (1) provided
the basis for much of the previous theoretical and experi-
mental work. It is, however, inappropriate because of the
following considerations. First of all, positron trapping
at a surface potential is a dynamical process, and should
be treated on a time-dependent basis. This time depen-
dence becomes more critical when positron trapping is
accompanied by other processes such as elastic scatter-
ing.® Elastic reflection from the surface potential ap-
proaches unity for thermal positrons at decreasing tem-
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peratures, and there exists the question of whether posi-
tron trapping still occurs under such circumstances (note
that the stationary Schrodinger equation solution gives a
zero delocalized wave function beyond the surface poten-
tial well; in other words, the overlapping of the delocal-
ized and localized wave functions approaches zero). If
the time-dependent nature of the problem is included, the
possible effects of the positron being scattered within the
potential well and the corresponding time scale has to be
considered to account for positron trapping.

The branching ratios defined in (1) implicitly assume
that the different surface processes are competing one-
step processes. It will not be proper to apply the theoret-
ically calculated rates to Eq. (1) without justification of
the underlying physical model. For example, the pro-
cedure used in Ref. 3 distinguishes the time sequence of
positron trapping from positron reemission and Ps for-
mation, which would not agree with Eq. (1). A two-step
process is assumed there, with the positron being
transmitted through the surface potential and experienc-
ing reflection or trapping first, and subsequently the
transmitted positrons will undergo the competing pro-
cesses of escaping as Ps or e'. It is obvious that the
one-step competing surface trapping rate previously cal-
culated cannot be used in Eq. (1) with this two-step model
to obtain the trapping branching ratio.

In an effort to examine the qualitative features when
the time dependence is introduced, we attempt to follow
the two-step model and calculate the positron trapping at
the surface. The temperature, as well as the sign of the
work-function effects on the trapping, is evaluated. The
theoretical basis used in this calculation is described in
Sec. II, with the results and discussions given in Sec. III.

II. THEORY

Positron trapping at a surface potential is a localized
time-dependent perturbation problem. Trapping occurs
only when the delocalized positron wave function is close
to the surface. The situation resembles that of an ion
Auger neutralization process.® Suppose at time ¢ the
trapping rate is I'(¢). The fraction that survives the in-
elastic trapping will then be

P=exp [~ [ T(a | @)
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or the trapped fraction is
F,=1—P. (3)

For ion neutralization, the trajectory approximation
appropriate for ions at certain energies is assumed. A
spatially dependent transition rate I'(z) (usually of ex-
ponential form) is then used to solve for the neutralized
fraction. For positrons with thermal energies, however,
it is more proper to start from the Schrodinger equation,
so that the quantum-mechanical nature of positron prop-
agation is considered, and one does not have to assume
any form for the transition rate ['(¢).

In this paper, the time-dependent trapping rate I'(z)
will be evaluated by following the propagation of the
delocalized positron wave function and its scattering
from the surface potential. With the wave functions ob-
tained, we can evaluate the transition matrix for positron
trapping into the surface state. Fermi’s golden rule is
then applied to yield the time-dependent transition rate,
and thus we may determine the trapped fraction from (3).
Similar formulation is also used in dealing with the Auger
neutralization problem as discussed in Ref. 6.

The surface potential is modeled as a square well as
shown in Fig. 1. The discreteness of the lattice, the inho-
mogeneity of the electron gas, and the long-range charac-
ter of the image potential, etc., will be neglected here
since our main concern is the qualitative nature of a two-
step process. The same square potential-well model has
been used in many other circumstances’ for calculations
of positron reemission or trapping at surfaces.

The trapped positron wave function and corresponding
binding energy are easily solved for such a potential well
from the stationary Schrodinger equation. The evalua-
tion of the time-dependent delocalized wave function is
based on the Schrodinger equation

_ % W(z,2)

aW¥(z,t)
2m  9z? ’

+V(z)W(z,t)=i#
ot

(4)
The numerical solution of Schrodinger’s Eq. (4) needs to
preserve the unitarity of the Hermitian operator® which
is done in our case by carrying the time difference as

1+1i—

— 17
1—i

v (5)

SH
#

The numerical difference equation corresponding to Eq.
(4) is both stable and unitary, and it can be solved to ob-
tain at each instant the delocalized free-positron wave
function.

(z—2z0)

2
20'0

Y(z,0)= 72 €xplikoz Jexp . (6)

1
(0'0‘/7_7)

A Gaussian wave packet Eq. (6) is assumed for the ini-
tial wave function of the incident thermal positron. The
momentum spread of the wave packet is associated with
the thermal broadening, as is the spatial extent oy( ~ 60
AV300/T ). This spatial extent is far larger than the
width of the potential well (~2 A), which makes the
quantum-mechanical calculation more desirable. The
centroid of momentum k, in this calculation is taken to
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FIG. 1. Schematic representation of the positron surface po-
tential well with a negative positron work function.

correspond to the thermal energy of positrons, and z, is
the starting position of the wave packet.

If k and p are the initial electron and positron momen-
ta and q is the momentum transfer, then the transition
rate from the delocalized state to the bound state is calcu-
lated with Fermi’s golden rule’ as

Fzz_;ir"EE|M(p,q>|2fk(1_fk+q)5(8i‘8f" @
P q

where f; is the step function ©(kz—k), k. is the Fermi
momentum, and

21,2 2.2
N
2m _ 2m+

#(k+q)?
ef=e¢+—sb+———é—’;l—_—q— .

Here, €, is the positron binding energy at the image
potential, ¢ is a positron surface work function and m
and m _ are the positron and electron effective mass in
solids.

The electron wave function as well as the transverse
components of the positron wave function are represent-
ed by plane waves with perpendicular momentum
transfer g,, and the matrix element is evaluated as

M(P,q)ZU—I(glfdz e uy(2)uz) ®)

where the initial delocalized positron wave function u;(z)
is obtained from Eq. (4), and u f(z) is the normalized pos-
itron bound state. v(q) is the Fourier transform of the
screened Coulomb interaction, the screening constant
will be assumed to be a fraction of the bulk Thomas-
Fermi screening constant,” and L is the normalization
length.

The electron-hole mediated trapping rate for a surface
of positron work function ¢, is from Egs. (7) and (8),
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F=Wfdpqu glv(q)*x —kqj’ P fdzfdz’u,«*(z)uf(z)u,-(z’)u;(z')—g(zf—_-zz,—ll . )
I
Here, monotonic with time and is associated with the reflection
2 occurring at z=0.
Rl P x+1x2>y>|x —1x? The positive work-function surface result [Fig. 2(b)] is
x x 2 ’ T 2 different from a negative one in several respects. First of
(x.p)= all, the absolute amplitude of the trapping rate is reduced
X1X,¥ 27 y for 0<y <x —%xz and x <2 relative to the negative work-function surface case. This

0 otherwise .

We should note that though the delocalized wave func-
tion changes significantly spatially as time proceeds, the
momentum distribution does not change until the in-
cident wave packet in the configuration space enters the
range of the surface potential.” When the incident wave
packet does get into the potential well, the magnitude of
the centroid of the momentum distribution will change
about k, only because of the elasticity of the scattering
process. An approximation in Eq. (9) is made by neglect-
ing the integration over initial positron momentum
spread and evaluating the trapping rate at the centroid of
the momentum, k,, only. This is acceptable considering
other simplifications in the problem.

The trapping rate is calculated for different tempera-
tures and work-function surfaces. The transmitted elastic
fraction can be obtained by examining the transmission
coefficient from our calculation, from which an estimate
of the surface trapped branching ratio is obtained.

III. RESULTS AND DISCUSSIONS

The time-dependent trapping rate for an initial Gauss-
ian wave packet is evaluated. Figure 2 shows the time-
dependent trapping rate at 100, 200, and 300 K for (a) a
negative work-function surface and (b) a positive work-
function surface. The parameters of the surface potential
are listed in Table I. It in noted here that the tempera-
ture dependence of certain parameters is not considered,
e.g., the positron work function, thermal Ps desorption,
etc. Positron annihilation and Ps formation during the
trapping process are not considered.

For the negative work-function surface [Fig. 2(a)], it is
seen that at low temperatures, the maximum amplitude
of positron trapping is reduced from that of high temper-
atures. This is mainly associated with the stronger
reflection at the surface potential well at reduced temper-
atures. The reflection occurs dominantly at the inner side
of the surface potential (z=0 in Fig. 1), thus the transi-
tion matrix as well as the trapping rate have only one
maximum. The same effects can be seen in Fig. 3(a),
which shows the time-dependent positron fraction
beyond the surface potential (z > a in Fig. 1) for different
temperatures. This quantity approaches the transmission
coefficient at longer times. The transmitted fractions at
lower temperatures are always reduced owing to
reflection, whereas the initial increase of this quantity is

is because of the strong repulsion that a positron experi-
ences from both the inner step (z =0) and the vacuum
side of the potential (z =a). Second, there exist oscilla-
tions in the calculated trapping rate and transmitted frac-
tion [Figs. 2(b) and 3(b)], which are also related to the im-
portance of reflection at z=a for a positive work-
function surface. Since positrons elastically reflected at
z =a may get trapped on their way back into the solid.
This quantum-mechanical effect is also observable in the
time-dependent transmitted fraction in Fig. 3(b), where
some positrons may be temporarily present on the vacu-
um side (z >a) even though they are eventually reflected
back into the solid. The same phenomenon is negligibly
small for a substantially negative work-function surface,
where most of the reflection happens at the solid side of
the potential well. It should also be noticed from Fig.
2(b) that the reflected positrons contribution to the trap-

TRAPPING RATE (10" POSITRONS / sec)

TIME (sec)

FIG. 2. (a) The time-dependent trapping rate for a negative
work-function surface at T7=100, 200, and 300 K. (b) The
time-dependent trapping rate for a positive work-function sur-
face at T=100, 200, and 300 K.
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FIG. 3. The time-dependent fraction of positrons present
beyond the surface potential in the vacuum side (x >a in Fig.
1): (a) for a negative work-function surface at =100, 200, and
300 K; (b) for a positive work-function surface at 7= 100, 200,
and 300 K.

ping rate is very small compared with the initial outgoing
positron contribution. Thus the total trapped fraction
will still be more dependent on the reflection at z =0.
From this result it may be inferred that the absolute mag-
nitude of trapping will be reduced when the temperature
is decreased even for positive work-function surfaces.

The trapped fraction evaluated from the time-
dependent trapping rate [Eq. (3)] is shown in Fig. 4. This
quantity is related to the positron dwell time (which con-
sists of the time spent by the transmitted and reflected
positrons in or near the potential-well region) and the
strength of the transition matrix within the dwell time.
The temperature dependence here is decided not only by
reflection, but also by the time it takes for the positron to
travel through the potential well. The positron trapped
fraction almost doubles in the discussed temperature
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FIG. 4. (a) The temperature dependence of the trapped frac-
tion for a negative work-function surface. (b) The temperature
dependence of the trapped fraction for a positive work-function
surface.

range. The transmitted fraction also increases at almost
the same rate as shown in Fig. 3, therefore the tempera-
ture dependence obtained here is predominantly from the
reflection by the surface potential. It should be noted
that the trapped fraction in Fig. 4 is different from the
trapping branching ratio defined in (1), as will be dis-
cussed later.

The transmitted fraction obtained from our calculation
is found to be less by one order of magnitude than that
obtained previously for a negative potential step (see, e.g.,
Ref. 3), which is

4kpT(kyT—2¢. )
T= .
(kg T_¢++\/k3 T(kBT_2¢+)]2

(10)

There, the image potential well was neglected while only
the work-function difference was considered, yielding a
transmitted fraction of unity order. We argue that this is
inappropriate since the quantum-mechanical scattering
from the image potential well does play a role even at
zero temperature. Consider the extreme case of a zero

TABLE I. Parameters for the surface potential

Well Well Binding
Surface studied depth (eV) width (A) energy (eV)
Positive work function
0.2 eV) 6 1.5 1.69
Negative work function
(—0.3 eV) 6 1.5 2.03




44 TRAPPING OF THERMAL POSITRONS AT METAL SURFACES

work-function surface (¢ =0.0 in Fig. 1); the transmis-
sion probability is predicted to be unity from Eq. (10), but
the transmission coefficient for a potential well from solv-
ing the exact Schrodinger equation is'® on the order of
1072 for thermal positrons. Thus the potential-well
depth cannot be neglected when estimating the transmit-
ted or reflected fraction. Instead of estimating the
transmitted fraction from Eq. (10), it will be more proper
to include the effects of the potential “well.” The small
transmission coefficient gives rise to a trapped fraction of
the same magnitude, while the reflected fraction is the
dominant part here. Relating to existing experimental
evidences,® we may infer that positron interaction with
the surface is a many-encounter process.'®

Figure 4 gives the trapped fraction F, for an incident
Gaussian wave packet; it is different from the branching
ratio defined in Eq. (1), which is a relative quantity disre-
garding the reflected positrons. One can make an estima-
tion of the trapped branching ratio from the transmitted
fraction, 7, as follows: if the transmitted fraction is taken
as (1—F;)r, then the trapped branching ratio is approxi-
mately

F,/[F,+(1—F,)r] . (11)

Equation (11) is plotted in Fig. 5 for both positive and
negative work-function surfaces at different tempera-
tures. It is seen that the trapping branching ratio
changes very little with temperature and the trapping is
relatively enhanced for the positive work-function sur-
face. This agrees with previous experimental findings.3
It is also noted here that Fig. 5 shows only the qualitative
temperature behavior of the trapping branching ratio; the
quantitative result is dependent on a more precise model
as well as on the choice of certain parameters such as the
Thomas-Fermi screening constant at the surface.”

In conclusion, we have calculated positron trapping at
a surface potential from a two-step model. Positron trap-
ping is affected by the surface potential scattering and the
dwell time of positrons in or near the well region. The
perturbation approach is considered justified here by the
smallness of the trapped fraction from our calculation.
We also note that the reflected positron fraction is much
larger than previously suggested. As to the temperature
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FIG. 5. The relative branching ratio of the trapped positron
from a negative positron work-function surface (squares) and
from a positive positron work-function surface (crosses).

dependence for electron-hole mediated trapping, the
trapped fraction is found to increase with temperature.
The relative branching ratio in Fig. 5, however, has a
weak temperature dependence in agreement with previ-
ous experimental work.! In order to fit the present model
to the experimental results, the effect of the reflection and
other quantitative differences should be further exam-
ined. It should also be noted that although this calcula-
tion has made some progress from previous calculations,
it is nevertheless not perfect in the sense that not only
have certain approximations been made, but also the
quantitative results, e.g., the relative branching ratio, are
subject to the choice of parameters such as the surface
Thomas-Fermi screening constant. Improvements of
these aspects are planned to be pursued in the future.
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