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Cluster-size distribution during epitaxial growth from the vapor on strongly misoriented surfaces
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Crystal growth in molecular-beam-epitaxy conditions on misoriented surfaces is described with a non-
linear model. Adsorbed atoms may annihilate through collisions with adatoms and existing clusters.
Clusters grow only by attachment of single atoms. The conditions under which step How dominates are
displayed as a function of the growth parameters. The cluster density is of the same order or larger than
the adatom density. Medium-sized clusters of about 10 atoms will be important also in the conditions
most favorable for two-dimensional growth.

I. INTRODUCTION

The microscopic kinetics of epitaxial growth from the
vapor in molecular-beam epitaxy (MBE) has received
renewed interest recently. ' Because of the very large
supersaturations, the classical Burton, Cabrera, and
Frank (BCF) (Ref. 4) theory has been modified to take
care of step movement. ' More recently, lateral interac-
tions have been included. ' ' This leads to a nonlinear
diffusion equation, when two-atom cluster building is
considered. This equation is coupled with additional
nonlinear equations, if higher-order nuclei are also in-
cluded. These works emphasize the calculation of the
adatom density along the terraces as well as the total
cluster density along them.

This paper provides the nonlinear diffusion equation
for adatoms coupled with the rate equations for all nuclei
in the steady state. They are solved to provide the
cluster-size distribution as a function of the growth pa-
rameters.

Section II describes the growth model and constructs
the full set of nonlinear equations. In Sec. III the real
growth conditions are used to approximate the equations.
The magnitudes of physical interest for evaluating the de-
viations from perfect two-dimensional epitaxy are dis-
cussed in Sec. IV. In Sec. V, numerical solutions are pro-
vided, characterizing the growth modes in the relevant
parameter space. A criterion for estimating an epitaxial
temperature is also derived. Sections VI and VII provide
a discussion and comparison with previous work, as well
as the conclusions.

II. GROWTH MODEL

A. DifFusion model

Let us consider a misoriented surface, h being the dis-
tance between steps. They are assumed to be monatomic
and periodic. An atomic Aux I' (units of m s ') im-
pinges onto the surface with a sticking coefficient of uni-
ty. Adsorbed atoms (adatoms) migrate with a surface
diffusion coefficient D that follows an Arrhenius behav-
ior: —Ed /kTD=n, ve

where no is the surface density of sites about 10' m
[6.7X10' m for the silicon (100) surface]. Ed is the
activation energy for a jump between neighboring sites
(about 1 eV) and v is a vibrational frequency near 10'
—1s

According to Ref. 4, let us define E„as the adatom
desorption energy from the surface into the vapor. Then
it follows that the mean lifetime ~ of an atom on the sur-
face is

E„/kT~=v e

Additionally, its mean displacem. ent or diffusion range xo
is given by xz =De.

B. Adatom conservation

In this model, adatoms diffuse until they reevaporate
or collide. Collisions occur with another adatom on the
surface or an atom coming from the beam, as well as with
existing clusters or the step edges. It is supposed that the
Burton, Cabrera, and Frank (BCF) growth mode is only
slightly perturbed and collisions with steps dominate.

Under large supersaturation conditions, very far from
equilibrium, as it is indeed found in MBE experiments, all
clusters are stable (supercritical ) and will not detach
adatoms. Therefore cluster decay is not considered.

Let n;(x) (units of m ) be the surface density of i
sized nuclei (n i

=n ), where x is the coordinate measured
along the terrace between two steps. Actually, these den-
sities should depend on both surface coordinates, that is,
n; =n;(x, x') (see Fig. 1). Because of the symmetry of the
parallel train of steps, however, the dependence on the
second axis x' (along the edges), is averaged as follows:

n (x)=— n (x,x')dx',l L l

where L is a distance small enough on a macroscopic
scale, but large enough to contain many clusters. The nu-
merical calculations will show that this distance amounts
to several thousands of atomic positions.

Let o; be a capture number, which represents the
efficiency of an i cluster to capture adatoms from the sur-
face. o.; is roughly proportional to the cluster perimeter
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and should increase with i ' for two-dimensional islands
and with i ' for the three-dimensional situation. For the
square lattice, o.

&
should be near 4.

Let o,' be the cluster eKciency for trapping atoms from
the beam. It is proportional to the cluster area at its bot-
tom, and should increase with i and i for the two- and
three-dimensional situations, respectively. For the square
lattice, o.

&
is about 5.

In steady-state conditions the steps move to the right
with velocity U (see Fig. 1), which is to be calculated. The
adatom density n vanishes at both step edges, and the
cluster density n;, i ~ 2, vanishes at the recently formed
advancing step edge, because clusters have had no time to
grow up. Under these conditions, in a reference system
moving with the step velocity v, there is a time-
independent current J= —DVn —nv, whose divergence
equals the net adatom creation rate.

Adatoms are created because of the impinging Aux F,
which is corrected to take into account the fraction im-
pinging onto clusters or adatoms. They may also annihi-
late because of other contributions leading to the follow-
ing rates: (i) n r ' (local) desorption rate from the surface
into the vapor; (ii) 2nFn 0

' o
&

represents the loss of both
an adatom and an impinging atom because of a collision;
(iii) 2Do, n loss of two adatoms because they collide to
form a cluster; (iv) Dng," zo;n; loss of adatoms due to
collisions with already existing clusters; and (v)
Fn o g; 2o; n; fraction of the impinging beam, which
does not generate adatoms because they fall directly onto
clusters. Therefore, the conservation equation for the
adatom density reduces to the one-dimensional form

F, F+ o.,
'.

&n, &

— o.
,'n,

Ilp Ilp
(5)

D. Total cluster density

Finally, an equation for the total cluster density N(x )

will be derived. Let us define

N(x ) = g n, (x ) .
E =2

By adding the whole set of Eqs. (5), it follows that

dX 2 F
U =Der]n + 0 ]n

GX alp

The last result uses the telescopic property assuming
that n; ~0 as i ~ ~. Equations (4), (5), and (7) were used
in Ref. 7, although no numerical solution was given
there. They completely determine the growth problem.
The introduction of the total cluster density is based on
Zinsmeister's theory of steady-state nucleation. It will
be shown that in the experimental conditions found in
MBE, it is possible to solve the problem for n and X
without solving the equations for ni.

tachment of single adatoms from the surface or atoms
from the beam (although polyatomic clusters may already
be present in the beam itself). The cluster conservation
equation for the i clusters with i ~ 2 is then

ni—
U =o.; &Dnn; &

—o Dnn;
8X

dn dn n—D —
U =F———

8X 8X

2Fo. i

np
n 2Do y7l

III. REAL GROWTH CONDITIONS

A. Step velocity
OO QO

Dn g o;n;—— g o,'n, .
"P =2

(4)

C. Cluster conservation

0
00

Ea

All polyatomic nuclei are assumed to be nonmobile.
Therefore, there is no cluster diffusion current in the
moving system, but only a drift current J;=n; v.
Creation and annihilation of clusters take place by at-

The solution of the coupled equations (4), (5), and (7) is
somewhat complicated because the step velocity v, which
appears as a parameter, is determined by the solution it-
self. In most MBE experiments, however, ' the distance
h between steps is much less than the diffusion length xp.
This means that almost all adatoms will meet a step and
have no possibility to reevaporate (a situation called total
condensation) This effect is r. einforced if nucleation is in-
cluded. As a consequence, the term nr ' in Eq. (4) can
be neglected.

The number of atoms falling onto a terrace in a time t,
per unit of length (measured along the steps) is Fht and
must equal the number of atoms incorporated to the step
in this time, which is the "area" vt divided by the area as-
signed to an adsorption site, np . It follows that in the
regime of complete condensation the step velocity is
v=Fhnp and does not depend on the temperature.

B. Reduced variables

FIG. 1. Advancing monatomic step on a terrace of length h,
showing impinging atoms, adsorbed atoms, and clusters, as well
as a diatomic cluster incorporated into the crystal.

Thinking in the numerical solution it is useful to intro-
duce a nondimensional distance y as y =x/h, as well as
nondimensional cluster densities z, by

h
n; =F~ z,.

Xp
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and Z by X=Fr(h Ix o )Z. (The scaling of X used in this
work is different from that used in Ref. 3).

In addition, let us define the following nondimensional
parameters:

b =or )noh

aIld

In Ref. 1 this coeKcient was written as the product
2aP, with P=b and tz=Fh /Dna, a depending on the
Aux, temperature, and misorientation. This has the ad-
vantage of providing a physical interpretation for param-
eter a as the ratio of the time required by adatoms to
reach a step edge to the time between arrivals at a surface
site. Increasing this parameter increases the surface den-
sity and nucleation events.

noX()0 ) nov0 )

Ed /kT
e d (10) 3. Meaning of a

dz; 0;=bz z;—
0) z, , + (o.,'.z; —cr'; iz;, ), (12)

and
dz — 2= —bz —0. )z . (13)

Notice that, for i = 1, the ratio n; Ino=abz; is the ada-
tom surface coverage, i.e., the fraction of the surface sites
occupied by adatoms. Additionally, in this work, the sur-
face coverage by i-sized clusters is defined by the ratio
n; /no, which always remains several orders of magnitude
lower than 1. Because a nucleus occupies several surface
sites, this ratio differs from the fraction of the surface ac-
tually covered by i-sized nuclei. The latter also depends
on the unknown cluster shape.

C. Meaning of the parameters

1. Meaning ofb

A short discussion about the parameters a and b is
worthwhile. Parameter b depends principally on the
misorientation of the surface. Since the distance between
adsorption sites is about no ' and is very near to the
height of a monatomic step, b can be expressed in terms
of the misorientation angle y as b =o., cot p (see Fig. 1).
This parameter does not depend on the temperature, ex-
cept by the possible variations in 0 &. For a given sub-
strate, b is fixed and cannot be changed during the MBE
experiment. The lowest value for b can be estimated by
accepting that the concept of a misoriented substrate is
still valid for, say, a terrace length about five times the
atomic height. If a value of 4 for 0.

&
is used, it follows

that b =100.

2. Diferent parameter elections

The coefficient of the nonlinear term z in Eq. (11) de-
pends on all the growth variables. They are the diffusion
energy and temperature as Ed /kT, the impinging Aux I',
and the misorientation y. The physical interpretation is
quite indirect.

With these definitions, Eqs. (4), (5), and (7), after
neglecting the desorption term n~ ', take the form

d z dz
2

+ab = —1+2ab z +2abo. (z
2 2

dy
OO 0 00

+ab z g z, +ab g o. ', z, ,
1=2 1 1 =2

From a different point of view, it is very convenient
that the nondimensional parameters depend on the lowest
number of experimental variables as possible. Parameter
a, as defined in this paper, depends only on the Aux F and
temperature T (for a given Ed ). Notice that the time
v exp(Ed IkT ) is the mean time between difFusion
events and can be regarded as the relaxation time into a
lattice position. The time (F/no) is the mean time be-
tween arrivals at a site. Except for the term 0.

&, a is the
ratio between both times. A small value for a means that
adatoms have time to relax into a lattice and to diffuse
between arrivals.

A value of a approaching unity means that adatoms
are covered before they relax. As it was stated in Ref. 8
and has been further exploited in Refs. 11 and 3, this
leads to ainorphous growth. (This conclusion does not
depend on the surface misorientation. )

D. Capture numbers

dZ —— 2—= —bz —0z . (15)

Both equations together with the boundary conditions
z(0)=z(1)=0 and Z(1)=0 can be solved to provide
z(x ). Then all the cluster densities for i ~ 2 can be calcu-
lated by iteration.

IV. MAGNITUDES OF PHYSICAL INTEREST

A. Nucleated fraction of the beam

Now let us briefly discuss the physically interesting
quantities. The surface current of single adatoms onto a

At this stage the growth problem can be numerically
solved by taking some cutoff value for the cluster size i
and selecting two- or three-dimensional island formation,
which defines the capture numbers as functions of i.
However, if the cluster density decreases with the cluster
size, one can concentrate in the smaller nuclei. For them,
and beginning with 0.

&
about 4, the capture numbers in-

crease rather slowly (sublinearly) with i. It is then sound
to approximate all the capture numbers by the same fixed
value, that is cT =0

&
aIld 0.=0 ~. For simplicity, 0.

&

=0.
will be used. The slight loss of exactitude is greatly com-
pensated for by the generality of the results. With this
simplification, all summations in Eq. (11) disappear, lead-
ing to

Z dz+ab = —1+2ab z +2abz+ab2zZ+abcrZ (14)
dy
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step, assuming that it has the same capturing e%ciency at
both edges, is given by the addition of the current
J=—DVn —nv, evaluated at the beginning and at the
end of a terrace, where the adatom density vanishes. The
fraction y& of the impinging beam that diffuses as single
adatoms to the steps in a nondimensional quantity less
than unity (it tends to unity for perfect layer-by-layer epi-
taxy), which is given by

dz dz
V1

dy„ , dy„

The fraction yo of the beam that is incorporated as pre-
formed nuclei into the steps is then the difference

go = 1 p &
~ This quantity turns out to be of central im-

portance for two-dimensional epitaxy: if it is small, step
Row dominates. If yo approaches unity, nucleation dom-
inates and the formalism has no physical relevance (there
is no such thing as step ffow). For intermediate values of
yo there is competition between step How and nucleation.
The consequences for the overgrowth will depend on the
relation between cluster and substrate orientation.

B. Fraction of i clusters

Similarly, the current of nuclei of i atoms to a step at
the time they are incorporated is J,.~

O~=vn;~ 0~. The
current of atoms included in i-sized nuclei is iJ;~
The fraction of the impinging beam that is incorporated
in i-sized nuclei is easily shown to be y; =iabz;(y o).

The total cluster current into a step, y, is evaluated
in a similar way, leading to y =abZ(y=0). This ex-
pression is normalized to the impingements, and there-
fore is less than unity (and less than yo).

C. Average cluster size

The quantities yo and y can be calculated without
solving for z;. This allows one to calculate the average
cluster size r as the ratio r =yo/y

The magnitude r is a Ineasure of the dominant cluster
size at the time the nuclei are absorbed by the advancing
step. It can be used as a control for the validity of the as-
sumptions regarding constant capture numbers: if for a
given set of growth parameters r is large, say 100, the
dependence of the capture numbers on the cluster size be-
comes important.

V. NUMERICAL SOLUTIONS

A. General considerations

1. Adatom conservation

As can be seen in Eq. (14), the dominant nonlinearities
in the differential equations are z, representing adatom
interactions, and zZ, representing adatom-cluster interac-
tions. The coupling parameter g is then given by g =ab .

As was shown in a previous work, g is a small parame-
ter. Parameter b is a large one (larger than 100). There-
fore, the coefficient of the derivative dz/dy in Eq. (14) is

small and can be neglected in most situations. Physically,
it means that the step movement does not modify the
adatom density, as was already stated. '

The same reasoning can be applied to the term
2abz=2(g/b)z, which is almost always much smaller
than ab z . This means that collisions between adatoms
are more frequent than direct impingement from the
beam onto adatoms. The same can be said about beam-
cluster collisions.

2. Cluster conservation

The linear term o.z in Eq. (15) is negligible compared
with the quadratic one, except very near the ends of the
terraces.

All these terms involve no additional difhculty from
the point of view of the numerical solutions. Therefore
these are carried out for the complete equation (14).

3. BCF limit

When all terms involving step movement or nucleation
are neglected in Eq. (14), it reduces to d z/dy = —1.
This is the problem already solved by Burton, Cabrera,
and Frank for the close step approximation, with the
solution z~c„(y ) =—,'y (y —1).

The preceding discussion suggests that the adatom an-
nihilation in Eq. (14) is controlled by the parameter g,
and the behavior of the clusters is controlled by b.

B. Solving procedure

The solution of Eqs. (14) and (15) was carried out with
a Micro VAX 3600 computer using standard IMSL rou-
tines (DBVPFD release 10). Fixed parameter values are
the capture number o.=4 and the step height of one
atom. The same procedure was used to calculate z,.(y).

The inclination parameter b varies from 10 to 10000,
corresponding to misorientations from 32.3' to 1.14'.
The physically meaningful values of b are larger than 100
(misorientation of 11.3'). The upper limit is given by the
mean cluster size, which becomes too large if b is larger
than 100000 (0.36'). The values of the nucleation pa-
rameter g vary from 0.001 to 5. The results show that the
step How does not exist for g larger than unity.

Plots of the functions yo, y, and r as a function of
the g parameter for fixed values of b were already pub-
lished (where they were called y2, y&, and r, respective-
ly). Although these calculations were done for a biatomic
step considering only the dominant nonlinear terms, no
important difference is seen: yo and y increase monoto-
nously with g, while the cluster size depends almost
uniquely on b, increasing very slightly as g decreases.

C. Nucleated fraction of the beam

Much more information can be obtained from Fig. 2,
where level curves of constant yo have been depicted as a
function of the parameters b and g. The quantity yo can
be used to predict if the growth process will be two di-
mensional (step ffow) or not (nucleation).

As has been pointed out in other works, there is no



CLUSTER-SIZE DISTRIBUTION DURING EPITAXIAL. . . 10 839

M 2.5 2.0 1.5 1.0 0.5 0.0 0.5

4.0

3.5

3.0

2.5

O
2.0

4.0

3.5

3.0

D. Total cluster current

Figure 3 depicts level curves of constant y, that is,
the total number (normalized) of clusters incorporated
into the steps, disregarding the number of atoms in them.
It is seen that this magnitude depends principally on g
and only very slightly on b. This fact was explained
through an analytical first-order approximation that gives
y „=0.008ab'=0. 008g.'"

1.5 1.5 K. Average cluster size

1.0 ~ 1.0
-30 -2.5 -2.0 —1.5 -1.0 -0.5 0.0 0.5

log)o g

FIG. 2. Fraction of the atomic beam yo that condenses
as polyatomic clusters into the steps, as a function of the
nondimensional parameters b =o.noh =o.cot ip and g =ab
={oE)(novcot y). log&oyo is displayed as level curves of con-
stant value. The region at the left side of the level log»yo= —2
corresponds to the step-flow regime.

sharp transition between layer-by-layer epitaxy and dis-
torted growth. ' ' A rather arbitrary but physically
sound criterion was proposed for assuming an epitaxial
regime if less than l%%uo of the beam is condensed into clus-
ters. Similarly, it may be assumed that nucleation dom-
inates if, say, lo%%uo of the beam condenses into clusters.
Therefore, the level curves yo=0. 01 and 0.1 divide the
space parameter (plane g-b) in a step-Row region, a nu-
cleation region, and a transition region, as it is depicted.

From the plot it is inferred that the limiting curve
y I

=0.01 is quite well described by the relation
bg =ab =30, a very useful approximation for meaningful
values of b.

The last quantity, the average cluster size at the time
they meet the step, is depicted as level curves in Fig. 4.
In the step-Row region the cluster size is practically in-
dependent of the nucleation parameter g: it depends only
on the misorientation parameter b and not on the imping-
ing Aux nor the temperature. Hence, b and a describe
very diA'erent aspects of the growth kinetics.

An important observation is that even for small both g
and b the cluster size is larger than 2 and more often
about 10. This means that even under favorable growth
conditions (i.e., high temperature, low impingement
current, and large misorientation), large clusters play an
important role. As an example, the calculated average
cluster size for g=lO and b=500 (a=4X10 ) is
about r =25.

The accuracy of the calculation is limited by the large
cluster size as b increases: the capture numbers increase
with the cluster size and more adatoms are annihilated.
Therefore, yo should be somewhat larger than that calcu-
lated here. It can also be supposed that the cluster size at
large b should be larger, because big clusters capture
more adatoms.

Because of the presence of very large clusters, some
care is needed for the interpretation of Fig. 4, as well as
Fig. 7. In the example above, the distance between steps
is nearly 11 atomic spaces for a mean cluster size of 25
atoms. A three-dimensional cluster of this size will have
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FIG. 3. Total cluster current onto a step edge y„=abz(0)
(normalized to the atom flux onto a terrace) ~ Level curves of
constant log&oy„are depicted as a function of the growth pa-
rameters log&og (g =ah ) and log&ob. The segmented lines corre-
spond to the levels yo=0. 01 and 0.1.
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FIG. 4. Average cluster size r at the time the nuclei are cap-
tured by the steps. log»r is depicted as a function of the growth
parameters log&og and log&ob. The segmented lines correspond
to the levels yo=0. 01 and 0.1 (g =ab ).
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a base diameter about three atomic positions, and a two-
dimensional one about five, occupying a significant por-
tion of the terrace length. Under these conditions the
cluster position x turns out to be meaningless. This
seems to be an inherent limitation of the continuous mod-
el for the description of the discrete nucleation process.

From the physical point of view this only means that
the nuclei meet the step edges earlier than assumed in the
model. If the cluster and the substrate orientation coin-
cide, this cluster-step collision can be interpreted as a
fluctuation of the step shape.

On the other hand, if the cluster orientation is
different, a grain boundary may form. It is difficult to
predict how it inAuences the growth at later stages: the
defect may be covered and buried by the next layers, or it
may propagate upwards, eventually leading to the com-
plete disruption of the layer growth as the overlayer be-
comes thick enough. Only in the former situation can
one speak of steady-state layer growth. In the latter, the
quality of the overgrowth decreases with increasing
thickness and may turn to be polycrystalline after some
critical thickness is reached.

F. Growth temperature

As was mentioned, there is no well-defined epitaxial
temperature. By accepting that good epitaxy in many
materials is achieved only in the step-How regime, a
quality-dependent growth temperature T, can be defined
in terms of the value of yo.

From the plot of Fig. 2 it can be inferred that the level
curves of constant yo are very similar to the curves of
constant bg =ah . This was confirmed by plotting the
level curves for yo as a function of b and bg, as in Fig. 5.
If the b parameter is larger than 100, the yo level curves
are roughly similar to the constant bg ones. They are

also of nearly constant spacing. Therefore the product
bg =ah is a natural growth parameter. A numerical fit
leads to the roughly approximate expression
logioyo=»gio(bg) —35 .

Using the definitions of b, g, and a it follows that

E„ nov
T, = log&0 32yo(%) tan qr+~2 (17)

where yo(% ) denotes the percent of the impingement
beam incorporated as clusters. Very often the ratio
32/cr approaches unity, providing a simple approxima-
tion.

The surface site density is very similar for different ma-
terials, nearly 10' m . Also the frequency v is about
10' s '. The impingement rate changes between
different experiments, but because of technical reasons it
is often nearer to 10' m s '. Using these illustrative
values and assuming that the threshold occurs for
yo(% ) = 1, one obtains

Eq/k
T, ( l%%uo) = [32+6 log&0( tang) ]

(18)

G. Approximate expressions

The quality of the overgrowth depends not only on yo
but also on the average cluster size r. Therefore, an ap-
proximation for r is very useful. From the plot of Fig. 4 a
numerical fit gives roughly log&or =0.85(log&ob —1).

Together with the approximation for yo, it follows that

logioy = log&oyo+0 157 logiob 2 65

Because of the limited range of b, one can select
b = 1000, leading to log, oy = log, og

—2.2, or
y =0.006g. The last expression is roughly similar to
the first-order analytical expression. '
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I ~ I '
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H. Cluster-size distribution

1. Fraction of the beam in i clusters
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3.0

cled 25O

2.0

1.5

1.0
-2.0 -1.0 0.0 1.0 2.0

log„{bg)

-3.5

3.0

-2.5

2.0

—1.5

1.0
3.0 4.0

An additional aspect of the growth process is the dis-
tribution of the cluster size as a function of i at a fixed po-
sition y, in particular at y=0, where it is related to the
cluster current. Figure 6(a) is a plot of the fraction of the
atomic beam condensed as i-sized clusters into the steps,
y;, as a function of the cluster size i. Different curves
correspond to different inclination parameters b, for 6xed
g. The maximal contribution shifts to larger clusters as
the misorientation decreases. The shape of the curves
does not depend on g. This is consistent with the in-
dependence of the cluster size on g.

2. Cluster-size distribution

FIG. 5. Fraction of the atomic beam yo that condenses as po-
lyatomic clusters into the steps. Level curves of constant
log]pgp are depicted as a function of the "natural" growth pa-
rameters log&ob and log&obg. It is observed that in the physical
region b & 100, yo is nearly a function only of bg, but not of b
(g=ab ).

The current of i-sized clusters, normalized to the im-
pinging current onto the terrace, is displayed in Fig. 6(b),
showing a similar behavior. Notice that the maxima are
at least in the neighborhood of i =8 and increase as b in-
creases.
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FIG. 6. (a) Plot of y;, fraction of the atomic beam that con-
denses as i-sized clusters into the steps, as a function of the clus-
ter size i. Different curves correspond to different b values. The
equivalent misorientation is indicated in parentheses. The
curves are plotted for g =0.001, but they are nearly independent
of g. (b) Plot of the current of i clusters into the steps (normal-
ized), y; /i, as a function of i.
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VI. DISCUSSION

FIG. 7. Reduced surface cluster density z; as a function of
the position on the terrace. The scale on the left is z, the scale
on the right corresponds to the real surface coverage n; jn0.
The growth parameters are b =500(5. 1 ) and g =0.001, a point
well inside the step-How region. The distance between steps
amounts to eleven atomic positions.

Physically, this means that the cluster-size distribution
does not depend on the temperature or the impingement
rate: it is only a function of the misorientation.

Even at rather high misorientations
(b = 100,y=11.3'), clusters of size about 8 atoms make
the most important contribution. The absolute value of
y;, however, depends on the temperature and the Aux
through the g parameter. Curves for different b values
scale rather similarly as g changes.

I. Cluster density

Finally, the cluster densities z, (y) are displayed in Fig.
7 as a function of the position y, for some different cluster
sizes. The selected growth parameters are b =500
(pe=5. 1), a realistic misorientation, and g=0.001
(a =4X 10 ). These values correspond to dominant
step-flow conditions.

The value of g affects the scale of the plot, but not its
shape. Small clusters, as i=2 (not depicted) follow a
curve very similar to z(y) (single adatoms), with a max-
imum near the center of the terrace. Their density de-
crease as one approaches the step. At about i =20 the
maximum and the value at the edge are very similar. At
i =30 the situation is reversed: their is no maximum and
the cluster density steadily increases near the advancing
edge.

The asymmetry of the curves is explained as follows:
One can argue that smaller cluster densities have their
maximum value near the maximum of the adatom densi-
ty, because they are created in this region. The density
decreases as one approaches the step edge, because it be-
cornes larger through the capture of adatoms. On the
other hand, the density of large clusters increases con-
tinuously as one approaches the step, with a correspond-
ingly simple interpretation: they are created as expenses
of smaller nuclei and adatoms. The slight asymmetry in
z(y) cannot be appreciated in the scale of the figure.

A. General

This paper puts in a quantitative form the well-known
fact that high temperatures, low growth rates, and a quite
large misorientation increase the quality of homoepitaxial
layers that require a step-How mechanism. On the other
side, lower temperatures and higher growth rates are
desirable for production. Therefore, a compromise must
be found, depending on the acceptable level of incor-
porated nuclei in the overgrowth. For a given substrate
(b fixed) and growth conditions (T and F, incorporated in
a), this number can be predicted from Fig. 2. This re-
quires an independent knowledge of the diffusion energy
Ed, which is only sometimes available and with some un-
certainty.

The predicted yo values should be interpreted as a
highest limit, because small clusters may rearrange at the
time they meet the step and match the bulk structure per-
fectly. Because of the results depicted in Fig. 6, however,
the highest contribution comes from medium or large
clusters, which are not likely to rearrange easily.

B. Cluster density

The behavior of the cluster density as depicted in Fig.
7 is, at first glance, somewhat counterintuitive. All clus-
ter densities up to i =30 or even larger have maxima
similar to the single adatom density. The total reduced
cluster density Z(y) was indeed not depicted, because it is
more than one order of magnitude out of range in the
scale of the figure. This means that there are many more
clusters than adatoms on the surface, even in conditions
at which step Qow largely dominates.

Equation (15) provides some help for the understand-
ing of this fact. Notice that the maximum possible value
of z is 0.125 and that of o' is 4. Neglecting the quadratic
term, this leads to a maximum value of nearly 0.5 for
Z(y 0) effectively larger than z~».
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The physical picture can be described as follows: the
average distance d between clusters Inust be larger than
N(0) '~. It is easy to show that N(0)=noyor '. In
reference to Fig. 7 and using the level curves, the follow-
ing values are found: @0=2.2X10 and r=25. This
leads to d larger than 300 atomic positions in any direc-
tion, parallel or perpendicular to the steps. This is much
larger than the distance between steps, which amounts to
11 atomic positions. Therefore, incoming atoms will
meet a step with much higher probability than a nuclei,
and step How dominates despite the large average cluster
size.

Incidentally, the mean distance between adatoms for
the same growth parameters turns out to be larger than
2000. This is consistent with the large cluster size, be-
cause adatom-adatom collisions will be scarce as com-
pared with adatom-nuclei collisions. This can be summa-
rized by stating that adatom-adatom distances are larger
than nuclei-nuclei distances, which are larger than the
step-step distance. Reciprocally, adatom-step collisions
are more frequent than adatom-nuclei collisions (there-
fore step liow), which are more frequent than adatom-
adatom collisions (therefore the large cluster size).

The important feature to remember is that the adatom
current into the steps is much larger than the cluster
current, and that adatom-cluster collisions are rare events
as compared to adatom-step edge collisions. The lower
adatom density, as compared with the clusters, is only a
consequence of their high diffusivity: after arrival, ada-
toms migrate very quickly to the step edges, while the nu-
clei remain fixed at their positions.

The cluster density can be higher than the adatom den-
sity, but it remains far below the total surface coverage,
as depicted in Fig. 7.

C. Eft'ect of the misorientation

The effect of the misorientation, represented by b, and
the growth parameters fIux F and temperature T,
represented by a are very different. In particular, the
average cluster size and the cluster-size distribution de-
pend only on b. Large misorientations favor smaller clus-
ters. A consequence is that, for all growth conditions,
clusters as large as 10 atoms and Inuch larger must be
considered in any calculation.

D. Inhuence of the large clusters

Early approximations have only considered the adatom
collision rate in a linear approximation, or cut the clus-
ter size at two or three atoms. These approximations are
useful for calculating the adatom density, but ignore the
size distribution. A step-How regime was predicted if
the condition ab =0.01 is satisfied, by considering the
weight of the nonlinear terms in the difFerential equa-
tions.

Differences with the actual calculation can be seen in
Fig. 2, where the condition ab =0.01 corresponds to the
vertical line log&og = —2. Roughly speaking, both cri-
teria are similar at very high misorientations, but the
latter is not restrictive enough at smaller angles, for
which larger clusters are more important. In this situa-
tion, the numerical plot of Fig. 2 should be preferred.

E. Limitations of the model

The fact that large clusters are important limits the
range of b values for which the model can be directly ap-
plied. If b is large (say, misorientation smaller than I ),
the size dependence of the capture numbers must be tak-
en into account. The existence of magic numbers for
clusters of especially high stability may also inAuence the
size distribution.

The model does not consider surface reconstruction.
Its effect is included in the value of the diffusion energy
Ed and, possibly, the surface site density no.

VII. CONCLUSIONS

Nucleation on the terraces leads to important devia-
tions with respect to the BCF growth theory. The ada-
tom density is only sightly modified in the step-How re-
gion, but a fraction of the impinging beam condenses as
nuclei and not as single adatoms. The size distribution of
the clusters depends mainly on the misorientation of the
vicinal surfaces, and not on the growth conditions (tem-
perature and growth rate). A criterion for evaluating a
quality-dependent growth temperature as a function of
the misorientation and Aux is provided.
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