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Fully self-consistent calculation of the electronic structure of n-type InAs accumulation layers
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The screening of an external electric field at the surface of a degenerate semiconductor is modified in

narrow-band-gap materials due to "motional binding, " where the confinement potential for surface-

bound states depends on electron motion along the surface. A self-consistent calculation is presented

that includes motional binding and treats both bound and mobile charge on the same footing. The cal-

culation is applied to accumulation layers on n-type InAs and very good agreement is obtained with ex-

isting Shubnikov —de Haas data. The calculation is also used to predict intersubband spacings under con-

ditions of motional binding.

I. INTRODUCTION

The interplay of bound and mobile charge in the
scattering of an external electric field at the surface of a
degenerate semiconductor was described in the work of
Baraff and Appelbaum. ' With n-type InAs as an exam-
ple, they carried out a parametrized, self-consistent cal-
culation, which successfully brought out the central
features of screening in such degenerate systems. Be-
cause the full band structure of InAs was not included,
however, it is not possible to use the Baraff-Appelbaum
results for quantitative comparison to experimental data.
Recently, we showed that the screening properties are
modified when the nonparabolicity of the band structure
is taken into account because then the bound-state
confinement potential depends on the motion along the
semiconductor surface. This "motional binding" is a
general feature of quantum wells with mass-mismatched
barriers; in surface quantum wells (inversion or accumu-
lation layers) on narrow-band-gap semiconductors, con-
tinuous spatial variation of the effective mass, as a result
of the nonparabolicity, causes motional binding, as was
recently shown by Doezema and Drew, who employed a
crude square-well approximation to simulate the effect,
precluding a numerical comparison with data. For accu-
mulation layers on degenerate, narrow-band-gap systems,
a bound state is always motionally bound at the onset of
occupation. At this threshold the delicate interplay be-
tween bound and continuum states is of particular in-
terest and to fit the experimental results successfully in
these regions would imply, for a calculation, that the
screening is well understood indeed.

It is our purpose in this paper to present such a calcu-
lation with particular emphasis on motionally bound
states. We use a four-band model for InAs and treat both
bound and mobile charge on an equal footing. (Reisinger
has carried out a similar calculation, but ignored the
motionally bound states. ) In addition to fitting
Schubnikov —de Haas data in the motional binding re-
gime, we are able to predict the corresponding distribu-
tion of mobile charges and intersubband spacings over a
range of bulk concentrations. We are also able to exam-

ine the relation between the existence of a motionally
bound ground state and the "Hatband" condition, which
has not been unambiguously determined experimentally.

The elements of the problem are sketched in Fig. 1.
The self-consistent potential V(z) is assumed to support
two bound states. The upper subband is shown motional-
ly bound; i.e., it exists only for transverse wave vector k,
larger than k, &. The Fermi level E~, governed by the (de-
generate) bulk electron density n, determines the Fermi
wave vectors k~0 and k~, for the ground state and first
excited state. Both the ground-state and motionally
bound electrons in the first excited state contribute to the
screening and thus afFect the mobile-state (continuum)
electron density near the surface at z =0 (z is the coordi-
nate into the semiconductor).

In Secs. II and III we discuss the theoretical frame-
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FIG. 1. Schematic potential well V(z) and subband disper-
sion for an n-type InAs accumulation layer under motional
binding conditions for the first excited state. For the zero and
first subbands, the Fermi wave numbers (kFO and k+&) as well as
the critical value of k, for the first subband (k„)are indicated.
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work and algorithms used in our calculation. Section IV
contains an analysis of the numerical results together
with a critical comparison with experiment, and Sec. V
contains our conclusions and summary.

II. THEORETICAL FOUNDATION

To obtain a precise description of the accumulation
layer in n-type InAs, we use the four-band model as de-
scribed by Zawadski. Our adaptation of this model is
given in Sec. II A. In Sec. II B we present our method of
achieving an exact, self-consistent solution of Poisson's
equation. The calculation is developed at zero tempera-
ture, which Reisinger has shown to be valid when com-
paring to data taken below 77 K.

A. Four-band model

For the range of electron concentrations considered
here, the small effective mass at the InAs conduction-
band edge (m =0.0235mo, where mo is the free-electron
mass) and large dielectric constant (e=14.9) combine to
yield r, values in the range 0. 1 & r, &0.5. For this range
of r„Baraff and Appelbaum' showed that many-body
effects could be neglected relative to the Coulomb effects
of principal interest in this work.

Following Zawadski, we define a wave function for
InAs of the Bloch form:

4 —ik -r
%(r)= g f, (z)u, e

Here the index l = 1 refers to the conduction band, which
has s-like symmetry; the remaining I values designate the
degenerate heavy- and light-hole bands and the split-off
band, all of which have p-like symmetry. The ur are the
basis functions on the unit zinc-blende cell, and the fI are
envelope functions, which are to be determined in the cal-
culation. The in-plane wave vector k, is transverse to the
direction of the applied electric field.

We apply the k.p method to the Schrodinger equation

2
+ VL (r)+ V(z) % (r) =E% (r), (2)

2mo

where VL (r) is the lattice potential and V(z), a function
of the external field, is the screening potential to be deter-
mined self-consistently. Using the form (1) of the wave
function, one finds that f2, f3, and f~ can be written in
terins offi, which we henceforth simply call f. This en-
velope function for the conduction band is found (for
m*((mo) to satisfy

where Eg is the gap energy and an isotropic bulk disper-
sion relation has been assumed.

Solving Eq. (3) to determine both the bound and mobile
states is of central importance. For bound states the bulk
wave number k„ is no longer a good quantum number.
Instead, these states form a quasidiscrete spectrum, in k„
of electric subbands, which we index with j. The corre-
sponding eigenenergies are E ..

B. Poisson's equation

p(z) =2e g g VJ „(z)%'J~ (z)
j k,

+2e y y 'pk k (z)pk, g (z) —«
k, k

(5)

In this approach, essentially similar to that of Baraff and
Appelbaum, ' the final term results from the fixed-
background, donor-ion charge density and the summa-
tions are over all occupied bound and mobile states.

In Eq. (5) we convert the sums over k, to a two-
dimensional integral over k, in the usual way. For bound
states the integral runs from 0 to k~j, the Fermi wave
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In the presence of an external electric field in the z
direction, both bound and mobile charges are distributed
to screen the field. Self-consistency is obtained by finding
simultaneous solutions to the Schrodinger equation, dis-
cussed above, and Poisson's equation:

8 V(z) 4me
p z

Bz

The total charge density p(z) is given in terms of the
bound- and mobile-state wave functions %'.

& (z) and

%'k i, (z), respectively:

a'
E+E —V(z)

aV(z) r' a
c}z 2 * az

-¹0 I

kt;(10 cxn )

+ V(z) 1+ V(z)
Eg

E 1+

f (z)

A k f (z),
2m

(3)

FICi. 2. Calculated dispersion relation E vs k„ for
n =1.8X 10' cm when the first subband is motionally bound
and occupied (N, =0.7 X 10' cm ). The hatched region delim-
its the area in k, over which only occupied, mobile states can
exist. Bound states exist only below the dashed curve defined by
k, (k, ) =0, i.e., the zero of the bulk wave-number component.
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E~ ak,T~ dE
min "f ~+ &g

2

(6)

vector for the jth subband, except when the jth subband
is occupied and motionally bound, in which case the
lower limit corresponds to the cutoff k, The integral for
the mobile states runs from 0 to the bulk Fermi wave vec-
tor, kF =(3m n )'~, spanning the region of occupied
states indicated in Fig. 2 by the crosshatched region. For
computation it is convenient to replace the sum over k,
by an energy integral:

where the limits on E, for a given k„are from

E;„(k,)= g

4 2m*

using the conduction-band dispersion relation, to the Fer-
mi energy EF. The donor-ion charge density can also be
written as an integral over k, and k, with the same lim-
its as for the mobile states, allowing one finally to write

2e kF kp EF ak,
p(z)= g f dk, k, %' „(z)% „(z)+ f dk, k, f dE [4*„(z)% „(z)—1] .

J
(7)

The total electron sheet density N, = f,"p(z) is given

through Poisson's equation by the slope of the potential
at the interface:

e d V(z)
4m dz z=0

(8)

It is clear from expression (7) that N, is composed of a
bound and a mobile contribution:

N, =yNb +N;, .

J

where N, . is the density of bound electrons occupying
subband j and X, is the mobile-state contribution.

III. COMPUTATIONAL ALGORITHMS

A. Iteration scheme

The Fermi energy EF is determined in degenerate n-

type InAs by the concentration n. The relationship
EF(n) is fixed by the conduction-band dispersion relation

E2 E Q2k2g+ f+ g

2 4 2m

with k] =kF. The value of the potential at the interface,
V(0), is also taken as an input parameter. The N, value
resulting from a given choice of V(0} is an output quanti-
ty through Eq. (8). For z~ao, deep in the bulk, we as-

The goal of our self-consistent calculation is to find
bound and mobile charge densities which simultaneously
satisfy the Poisson and Schrodinger equations through
the potential function V(z), which is consistent with the
applied electric field at the interface. We use an iterative
method to achieve self-consistency. In this section we de-
scribe the general features of our iteration scheme. We
next detail the solution of Kq. (3) separately for the bound
and mobile states. We then discuss the computation of
the charge density p(z) and the solution of Eq. (4). For
additional details, the reader is referred to a dissertation.

sume that both V(z) and d V/dz vanish. To start off the
iteration, we use an initial guess for the potential func-
tion, denoted by V, (z). Following Refs. 1 and 4, we ex-
press this function as a sum of exponentials:

5

V, (z)= g P e
p=1

(10)

In practice, we found that, even in the most highly non-
linear regimes, only one or two terms in this expression
were usually necessary. A single iteration through the
entire algorithm required first a numerical integration of
Eq. (3). With the resulting wave functions, the charge
density p(z) could then be constructed from Eq. (7).
Poisson's equation (4) was then solved, and the result
V«, (z) was compared point by point to the initial poten-
tial V~„(z) used to solve Eq. (3) for the iteration.

B. Bound-state computation

A bound state satisfies the condition,

E)(k, ) & V(z,„),
where E (k, } is the eigenvalue for the jth subband corre-
sponding to motion in the z direction and z,„specifies a
point deep in the bulk. We typically choosez,„=16/kF, i.e., much larger than the depth of the sur-
face potential, which is of the order of 1,—I /kF. We as-
sume that the bound-state wave functions f"I, (z) vanish

at the surface, z =0. The asymptotic form of the wave
functions for z »1/kF was chosen to be a decaying ex-
ponential characterized by a z-component wave number
k, determined from the bulk dispersion relation

' 1/2
2m E 1 + E

&g

A fourth-order Runge-K. utta scheme is used to integrate
Eq. (3) from z,„ to z =0 for a given value of k, . The
correct bound-state energy E and wave function are ob-
tained when the boundary conditions on f~ z (z) is found
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at z =0. The normalization requirement is applied to the
total bound-state wave function VJ k (z).

direct but computationally intense method is to calculate
k, (z, k„E):

C. Mobile-state computation
B%'E,k (z)

k, (z, k„E)= i-
az

(17)

A mobile state satisfies the condition

Ek (k, ) ) V(Z,„),
where the energy for z motion, Ek (lr, ), is quasicontinu-

z

ous and k, is a good quantum number, related to E and
k, through Eq. (11). There are two possible asymptotic
solutions for the mobile-state wave functions fP (z),
which we denote by fP'(z) and fP'(z), as z ~z,„:

and then form the derivative numerically. We found that
an acceptable trade-off between precision and speed is to
approximate the derivative by using the bulk relation of
Eq. (11) and replacing E with E —V~(z) to obtain an
analytical expression for (Bk, /BE )k .

t

For a reasonable initial guess of V, (z), convergence
was typically obtained in 10—20 iterations, except in the
case of motional binding, when typically 50 iterations
were needed.

and

fP'(z,„)=cos(k,z,„) (12a)

IV. RESULTS

fP'(z, „)=sin(k,z,„) . (12b) A. Comparison to experiment

fP(z) =a(k„E)fP'(z)+b(k„E)f P'(z) . (13)

Imposing the boundary condition at z =0 then yields the
wave-function phase corresponding to an eigenstate:

b (k„E)
q(k„E)= —tan ' (14)

a k„E
Box normalization' on the interval I,,=z „is imposed
on the total mobile-state wave function %z z (z).

Both fI, '(z) and fP'(z) are determined for all z in gen-
eral by integrating Eq. (3) from the starting values of Eqs.
(12a) and (12b). We then form the linear combination:

A very sensitive test of our calculation is provided by a
comparison to Shubnikov —de Haas (SdH) data. The fre-
quency of SdH oscillations, Bf~, corresponding to the jth
subband and given by Bf'=ckk+. /2e, is usually a mea-
sure of the subband occupation N, ., because X, - is given
by kzz/2~. However, if the subband is occupied and
motionally bound, N,J is given by (k~. —k, . )/2m, where

k, is the cutoff transverse wave vector. Thus, in the re-
gime of motional binding, the SdH frequency is "pinned"
to kF, which is essentially constant in this regime. This
pinning is the signature of motional binding in SdH ex-
periments. We wish for our calculation to match the

D. Self-consistent determination of V(z)

The bound- and mobile-state wave functions obtained
above are used to compute the total charge density p(z)
with Eq. (7). Poisson's equation [Eq. (4)] is then solved
with the boundary conditions V(z,„)=0 and
(d V/dz)(z, „)=0 and with the initially fixed value V(0),
an input parameter. A finite-difference, successive-
overrelaxation method was employed to determine V(z)
for all z in a given iteration i. This newly determined po-
tential V "'(z) is then compared to the potential V, (z)
used to solve Eq. (3) in the ith iteration. For n selected
values z„between z =0 and z =z,„,we form the ratio

2
CV

IE
V

CV

0
T

8
I

I
cv I

Self-consi
~ Experimen

n =l.sx]O c

V "'(z„)—V~(z„)

V(0) (15)

Our convergence criterion was 5&~10 . To form the
input potential for the (i +1)th iteration, only a fraction
of the output potential was used:

V, ,(z)=(1 f;+,)V;(z)+f;+/V "'(z) . —
0

Ns(IO cm )

FIG. 3. Comparison of our calculated Shubnikov —de Haas
frequency 8f vs total surface carrier density N, to the data of
Radentsev et al. (Ref. 10) for bulk density 1.8X10' cm . The
arrows indicate the termination of motional binding (k„=0) for
each subband. A11 experimental points were slightly shifted in
N, as discussed in the text.

On each iteration the fraction f, +, was chosen in the.
range 0.01—0.2. This technique is a variation of the ex-
trapolated convergence method.

In each iteration the calculation of the Jacobian
(Bk, /BE)k, in Eq. (7), is of particular importance. The
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FIG. 4. Comparison of calculated vs experimental 8f vs N,
for heavy bulk density 1.6X 10' cm . All notation and scales
are as in Fig. 3.

measured SdH frequencies over the whole range of
surface-electron density, but especially in the region of
motional binding.

Figures 3 and 4 compare our predicted SdH frequen-
cies to experiment. We have used the data of Radentsev
et al. ' for a moderately doped (n =1.8X10' cm ) and
a more heavily doped (n =1.6X10' cm ) sample. The
zeros of the experimental curves have been slightly shift-
ed to make the data for the ground state coincide with
the theoretical prediction. The shift is necessary because
of the difficulty of determining the "Hatband" or N, =0
condition experimentally. The small size of the needed
shift ( = 1 X 10" cm ) indicates that the empirical deter-
mination of the Hatband used for experimental data' '" is
nearly correct. In general, the agreement between theory
and experiment is excellent. In the motional binding re-
gime for the ground state, the calculation converges so
slowly that it was only possible to verify that the ground
state is indeed motionally bound and occupied at the N,
values indicated by the SdH data. It is likely that the
motional binding regime persists to even lower N, values
than indicated by experiment. (The excited subbands
show this in Figs. 3 and 4; both the N, independence of
Bf and the decreasing subband occupancy can contribute
to loss of experimental signal in this regime. ) The in-
teresting region of negative X, values where the ground
state is motionally bound is discussed in more detail
below.

B. Properties of the screening layer

Assured by the good agreement with the SdH data that
we have found the correct screening potential, we can
now calculate quantities of interest which are not directly
accessible in the SdH experiments.

The first of these quantities is the subband occupancy
X,~. It is not accessible to the experiment in the motional
binding regimes, where it is no longer given by kzJ/2m.
Figures 5 and 6 show that with decreasing X, the sub-

FIG. 5. Calculated subband-electron concentrations N„. and
mobile surface-electron concentration N, as a function of total
surface-electron concentration N, for bulk concentration
1.8 X 10' cm . In the absence of motional binding, N„ is iden-
tical to kz~/2m.
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FIG. 6. Calculated ground-state subband concentration N, o

and mobile surface-electron concentration N, vs total surface-
electron concentration N, for bulk concentration 1.6X10'
cm . In the absence of motional binding, N, o is identical to
kFO /2a.

band occupation densities in these regions fall rapidly
from the fully bound occupancy when k, . =0 to zero
when k, =k~. At the same time, with decreasing N„
the deficit of mobile charge density in the surface region
decreases to compensate for the rapid loss of bound
charge. Aside from small adjustments in the motional
binding regions, the self-consistent potential (seen for
several N, values in Fig. 7) varies smoothly with N, . The
small adjustments are evident in Fig. 8, where we show
how the depth of the well, V(0), and the subband edges
vary with N, . These adjustments reQect the changeover
from screening by mobile charges to screening by bound
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0
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(c)

by BarafF and Appelbaum, ' which is caused by the re-
quirement of orthogonality between bound- and mobile-
state wave functions. It is also gratifying to note that the
mobile charge density exhibits the expected Friedel oscil-
lations with period -2/kz.

In Fig. 10 we show the self-consistent potential and
density distributions near N, =0, the flatband condition.
At N, =0 the potential is Hat at the surface, i.e.,
d V/dz =0 at z =0. However, as discussed by Baraff and
Appelbaum, ' the positive ionic layer caused by vanishing

electron wave functions at z =0 induces an attractive
self-consistent potential well at the surface which can
support a bound state. This bound state persists into the
negative N, region (dV/dz (0 at z =0) as a motionally
bound state. To determine the exact N, where the state
disappears would require extreme computational pre-
cision.

C. Intersubband spacings

A final quantity of interest is the intersubband spacing,
which can be measured spectroscopically without a depo-
larization shift in narrow-gap systems. ' Measurements
outside the motional binding regimes have been per-
formed' ' which are in good agreement with the predic-
tions of Reisinger's self-consistent calculation. Here we
are particularly interested in predicting transition ener-
gies in the motional binding regimes.

Because of bulk nonparabolicity, the subband spacings
in InAs vary with k, . Allowed transitions i~j occur
over a range of k, : from the k, value, where subband j
coincides with the Fermi level (or the onset of motional
binding for subband j if it occurs at an energy higher
than the Fermi energy), to the k, value, where subband i
crosses the Fermi level. Possible 0~2 transitions (for
T=O) are shown in Fig. 11 corresponding to total N,
values in the motional binding regime of subband j =2.
The line broadening implied by the variation of the spac-
ing with k, is generally less than the observed' width of
intersubband transitions in InAs, and so we can safely
take the average value of the intersubband spacing in the
allowed k, range as the characteristic intersubband spac-
ing for a given N, value. Figure 11 also indicates that
once, with decreasing N„subband j is not occupied
( k,j kFJ ), the intensity of the i ~j transition will

smoothly decrease to zero (in which case k, . ~ k~;). The
predicted transition energies are shown in Fig. 12 for the

100 0
ZE,

120—

80-

-IOO ——

0 l 2 3

k (106' ')

E

40-

FIG. 11. Evolution of subband dispersion in the motional
binding regime for the j =2 subband. Three N, values are
shown for n =1.8X10' cm ' corresponding to (a) first allowed
transition (T=O) from the ground state to motionally bound
subband 2, (b) saturation of k, range of allowed transitions from
the ground state to motionally bound subband 2 (allowed transi-
tions are in the range between the two arrows), and (c) subband
2 fully bound.

FIG. 12. Intersubband transition energies vs N, for
n =1.8X10' cm '. The motional binding regimes (occupied
states only) are indicated by horizontal arrows for subbands 1

and 2. The values labeled A, 8, and C correspond to the condi-
tions shown in Fig. 11.
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same bulk concentration as for Fig. 11, and the N, values
corresponding to the three situations depicted in Fig. 11
are marked. Outside the regions of motional binding, we
find agreement with the results of Reisinger's calculation.
An experimental study of the motional binding regimes
with intersubband resonance is in progress. '

V. CONCLUSIONS

shape of the self-consistent potential at the onset of sub-
band occupancy. Finally, we are able to use the calcula-
tion to predict intersubband transition energies. Outside
the regions of motional binding, the results agree with the
work of Reisinger. A study of intersubband resonance
under conditions of motional binding is highly desirable
and would provide a sensitive additional test of our calcu-
lation.

We have presented a self-consistent calculation of the
accumulation layer on n-type InAs which is in excellent
agreement with existing SdH data, in particular in the re-
gimes of surface-carrier density where motional binding
occurs. The calculation allowed us to examine the inter-
play between bound and mobile carriers in screening
external fields. Good agreement is found with the picture
of screening in degenerate semiconductors presented by
Hara' and Appelbaum. The inclusion of motional bind-
ing into the calculation removes discontinuities in the
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