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Quantum transport equations for the one-particle distribution function, pertinent to one-
dimensional or two-dimensional periodic arrays of quasi-one-dimensional electron gases (quantum
wires), are derived from first principles. The electrons are assumed to interact weakly with an ex-
ternal system and/or with each other The. lateral electron confinement is modeled with a square or
parabolic well and the vertical one with a triangular or square well. Screening is treated dynamically
and the collision integrals a.re expressed in terms of the dielectric functions and potential correlators.
The results are valid for periods large enough that tunneling between the wires can be neglected. The
derived energy and momentum relaxation frequencies, with the help of a drifted Fermi-Dirac distri-
bution function, are given in a form suitable for applications. The momentum relaxation frequency
and the mobility are evaluated for an array of quantum wires in interaction with volume and sheet
impurities at different dista. nces from the array and it is shown tha. t the Coulomb coupling between
the quantum wires can have pronounced effects on both quantities. Both types of the considered
lateral confinement lead to similar results with small quantitative differences when only the lowest
lateral subband is occupied.

I. INTRQDUCTION

In previous papers, hereafter referred to as I and II,
we developed the quantum kinetic equation for a, quasi-
one-dimensional electron gas (QlDEG) in a single quan-
tum wire (QW). The relevant collision integrals as well
as the relaxation frequencies for some important cases
were expressed in terms of the dielectric functions of the
scattering system and of the Q1DEG. The dielectric func-
tions and the correlators of the scattering potentials were
calculated for several realistic systems.

In this paper we genera. lize our theory to the case of a
superlattice (SL) of QW's which recently has been the
subject of several experimental and theoretical" in-

vestigations. The latter works dealt mainly with col-
lective excitations and the dynamical conductivity for
electron-phonon interaction. Here we present a. system-
atic dc transport study, taking into account electron-
impurity and electron-electron interaction, and give ex-
plicit expressions for the relaxation frequencies and mo-
bilities beyond the Drude model. We treat screening dy-
namically and take into account remote sheet and volume
impurities. To our knowledge these aspects have not been
studied before. We consider both one-dimensional (1D)
and two-dimensional (2D) arrays of QW's with a. simple
or complex SI, period. Two effects are important: the
Coulomb interaction, which affects the screening, and the

formation of minibands due to tunneling. In this paper
we consider only the first effect assuming that the over-
lap between the wave functions of two successive QW's is
small, i.e. , we assume that the separation between neigh-
boring QW's is large. The paper is organized as follows.
In the next section we present brieQy the derivation of
the quantum kinetic equation and of the relaxation fre-
quencies using the formalism of I and II. Both 1D and 2D
arrays of QW's are considered. In Sec. III we evaluate
the mobility of a Q1DEG due to scattering by impurities.
Concluding remarks are presented in the last section and
the Appendixes detail some of the results used in the
text.

II. TRANSPORT EQUATIONS

A. A single array of QW's

We consider an array of identical Q iV's arranged pe-
riodically along the y direction, with period 8, as shown
in I"ig. 1. A more sophisticated system that can be con-
sidered is one with several QW's in each SL period or
cell with different or alike particles in each QW. In what
follows the kind of particles or wires will be denoted by
p. Using the notation of I, we denote the Hamiltonian
of the free p particle by H„and its wave function in the
nth cell by
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particle number.
To obtain an explicit expression for the collision inte-

gral (4) we use the equation for the fluctuating part of
the density matrix, bp&B, in the collisionless approxima-
tion, cf. Eq. (13) of I, and the following expresssion for
the potential fluctuations:

FIG. 1. One-dimensional array of quantum ~vires.

bV(~, q, p) = bV. (~, q, p)
d

, ) epbN„p(~, q, p').
&~ ~~&~p)P)

+". (r) = @:(~)~p.(p - p-)

here p = (y, z), p„=(»E, O), n labels the "longitudi-
nal" eigenfunction along the QW, a the corresponding
transverse quantity, and A = (n, a). The correspond-
ing eigenvalue hu~& ——hup~ + h~" does not depend on n.
Since we do not consider tunneling the quantum index a
is discrete.

With this wave function the total Hamiltonian can be
written as [cf. Eq. (1) of Ij

H = H, + ) h~~a„pAa„p~
npA

ex+ g p(+npAA' + +npAA')a'npAanpA'
npAAI

Here N„p is the number of p particles in the nth cell
and c, (u, q, p, p') is the dielectric function of the exter-
nal system giving the linear response of the potential, at
point p, to the test charge eN placed at point p'. By
virtue of the periodicity we have c, (u, q, p + p„,p' +
p ) = e.(~, q, p, p').

Solving together the equations for bpz& and by&& and
taking discrete Fourier transforms over the number n of
cells, as defined in Appendix A, we arrive at the analog
of Eq. (26) of I:

( bpK (4), q, qy)
q qv) = ~J.

, ~ ~KK (~, q, qy)

nn'pp'A A'BB'

X anIpIBI anpB. (2)

nn'pp'
( 2 p,p')~AA'B'B pA 'p'A' +RKK (~, q, qy)byI~, (~, q, q„)

(6)

Here H, is the Hamiltonian of the external system, ep is
the charge of the p particle, p'" = pe" (r, t) is the poten-
tial of the external electric field (when it is not included in
H ), and p'(r, t) is a potential created by the external
scattering system. The last term denotes the interpar-
ticle interaction; the at's and a's are the creation and
annihilation operators, respectively.

The procedure for deriving transport equations, de-
tailed in I, is as follows. We start with the equation of
motion for the microscopic one-partic}e density matrix
pAB ——a„„BanpA.Averaging over the statistical ensem-
ble we obtain the equation for the one-particle distribu-
tion function f&p& =( pzp& ) in the form

ih " = ) [(H,'+ epy'"+ eJ, «))~rfraBt

f~r(Hp +—epy'" + ep ( + ))rBj
+ih St f~P~, (3)

where Stfz& is the collision integral given by

where I~ = (p, a, b) and

1 ~ - RKK" (~ q qy)
)

&KK'(~, q, qy) ~K K (~, q, qy)

—1RKK'(~, q qy) = PKIC'(~ q- qy)

aeK (~, q. )PKK (~, q, qy) = bKK +
CIgKI (™)Q~ ) gy)

The value AeIg(u, q ) is given by Eq. (23) of I and the
quantities 1/eKK, (ur, q, qy) and bpK(u, q, qy) are the
discrete Fourier transforms of

~KK(~ q- n)

x.""(P—P )xb(p —P )x". (P')xt', " (P') d2 d~pd pe, (~, q, p, p')

qA'r ~ra) «7~ bura) )
ih

We have omitted the index n in Eq. (3) and on the
left-hand side of Eq. (4) because the QW's are assumed
identical; the notation ( )z& in Eq. (3) indicates the
matrix element with respect to the basis functions given
by Eq. (1) with n = O. The function f&~& is normalized
by the condition 2 Qz fez —

Np where Np is the total

bpIc(~ q») = X (p p )Xy(p p )b'p(~ q p)d p

respectively. As for bpoK(u, q, n) it is defined with the
help of Eq. (26') of I. For some particular cases the ex-
pression I/eI&K, (u, q, qy) is evaluated in Appendix B.
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Stf~ = Stpsf~+ ) .Stpp'fA (12)

The interparticle collision integral, Stpp, f&, is given by
I

Eq. (34) of I and the transition probability W~B, Bz, by

I

Taking the inverse Fourier transform of Eq. (6) we ob-
tain the values by&& and bp&& which determine the col-
lision integral, cf. Eq. (4). Assuming the absence of
initial correlations between the p particles and between
different QW's we can write the diagonal components of
the collision integral, Stf& = Stfez, as

Eq. (35) of I with q relaced by q and I/~eKK (cu, q) ~
by

~KK~ (~, q~) = ) .~
~K K~ (~, q~ n) I

dqy

yr )&KK (~, q~ qy) I

As for Stp, f&, which expresses particle collisions with the
external system and the relevant transition probability
W~gy, they are given by Eqs. (36) and (37) of I but now
the relevant correlators and the polarization function are
defined differently. Using the notations I~ = (p, b, a),

AK, = [& b4,' &K, ;& b4, 64, &, ;IIK(~, q )], (14)

BKK'(~)

qadi

n) =
2 [& ~pi&~Fy& &u,q, n + & ~SKI&pK &co,q, n]i—

( b+Kbp', & q ,
'—

[I/&I&(& (&, q~, n) —I/&K K(~, q~, —n)]

we can write

A = ) ) RKK (a, q~, n')RKK„(~,q, n")BK K (~, q~, n" —n')
K'K" n'a"

x/E ) RKK (~, q~, q„)RI;K (~, q qy)BK'K' (~, q~, qy)dqy.
—7r/e KIKgI

(16)

BKK (u, q, qy) is obtained from BKK (u, q, n) with n replaced by qy and eKK, (~, q, n) by eKK—(u, q, qy). The
potential correlators in Eq. (15) are given by

& byKbyK] &= d P d P'g'" P —P~ y& P —P„y",P' pter", P' & by~ P by~ P' &~ q (17)

The quantum kinetic equation as well as the energy and momentum balance equations of I, written for a single

QW, have the same form and will not be given here. The only changes for the present SL case occur in the dielectric
functions and the potential correlators as explained above. Below we give only the final expressions for the momentum
(v~) and energy (vT) relaxation frequencies which correspond to Eqs. (69) and (70) of I since we will use them in

the next section:

(v... 'I

7l AQ
2

(' kIi Tq.'/m. )
dq

sinh(~T ) sinh(~T )

xlmAe'„(~, q )ImA&'. .., (a, q )9,'. ..,, (~, q ), (18)

(., )
(vT ) 7r Agni

du ~kj3Tq /m l ~T.~T,
ImA&,'~ (~, q ) ( bC2 &„"

Slnh MT Cosh 4JT
(19)

In these equations the external system is assumed to be
in equilibrium at temperature T, , ~T = h~/21~T, and
a drifted Fermi function with eA'ective temperature T
was used. Each subband a is assumed to have its own
drift velocity u„its temperature 7, and its effective
mass m' and intersubband transitions are neglected. The
properties of the external system are specified by( bC, &
and its connection with the dielectric function is given by
Eq. (All) of I.

B. System of QW's periodic in two directions

I et us consider a system periodic along the y and z

directions with periods E& and Pq, respectively. It is con-
venient now to enumerate the cells with t, he numbel's 7ly

and n& and use the notation n = (ny, n&). The case
of a simple SL, with one QW per cell in either direc-
tion, is shown in Fig. 2. If more than one sort of par-
ticles is present we use again the label p. Q iV's of the
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FIG. 2. Two-dimensional array of quantum wires,

same sort p, in diAerent cells, are assumed to be identi-
cal. The results of the previous subsection can be taken
over with the following changes: n is replaced by rx, p„by
p = n&E&e&+n~E~e~, and qs by Q = (qz, q~). Moreover,
in Eqs. (13) and (17), (I/2n) Jdq„must be replaced by
A j&z d Q, where the integration is over the Brillouin
zone and A = 4vr2/l&E~ sin 0 is its area.

Finally, we notice that when fz and Z~ tend to infinity
(or when I does in the case of a SL in one direction) the
terms with n g 0 (or n g 0) in the dielectric functions
and correlators vanish and we recover the results of a
single QW treated in I.

III. SCATTERING OF A DEGENERATE Q1DEG
BY IMPURITIES

As an illustration of the general theory presented above
we consider the scattering of a QlDEG, in the SL array
with period 8, by two impurity configurations as shown
in Fig. 3. (i) A sheet of impurities with surface density
n,' is occupying the plane z = A;. When A; = 0 we
have interface impurities. (ii) The half-space z & E, is
occupied by impurities of density n;. This is a model for
volume doping with a spacer of width E;.

We assume that the Q1DEG, in all QW's, occupies
only the lowest subbands both in the z and the y direc-
tion, i.e. , a = b = O. Along the z direction this is the
most typical experimental situation for the relevant elec-
tron densities. Along the y direction the assumption is
made for simplicity and transparency of the results. The
QW's parallel to the z axis are assumed to lie in the z = 0

plane and to be infinitely thin along z. The confinement,
along y is modeled with a square well (S), of width W,
or with a parabolic well (P) of width A, cf. Eqs. (14) and
(15) of II. The dielectric constants for the regions z ) 0
and z ( 0 are denoted by e~ and eg, respectively.

To evaluate the momentum relaxation frequency v
as given by Eq. (19) we need the quantities Aep~p(~, q )
and & b4, &

&
that correspond to one QW. They are

given by Eqs. (89) and (35) of II, respectively, for a =
0, ~) 0, q&0:

ImAE00(ld ) q~)
2m*~ e2

h k~
~b(q —2kF)

q e' bI~-
h

hq kFI
m' )' (20)

& b4, ) = 2mb(cu) & bC2 )00, (21)

where kF = xn, /2 is the Fermi wave vector and n, is the
electron concentration. Substituting Eqs. (20) and (21)
in Eq. (19) we obtain

v = (Se m'/xh n, ) & bC, &00 (22)

Now with the help of Eqs. (8), (9), (84), and (85) we

find

& b@,2 )00
S

where

dqs Ae(0, q )~+
27r Epppp(0& qz& qy )

x I~.o(q, ) I' & b~,' &',.=',„=', (23)

) - I@op(q„—2~c/~) I

~oooo(4' q qv) +~, gq + (qv —2~c/&)

(24)

and 7 = (eq + c2)/2. In obtaining Eq. (23) we used
the equalities eK & (ur, q~, q&) = c and & bp,

p=& by, )'=' = which are valid for an infin&tely thin
Q1DEG occupying the lowest subband. The potential
correlator & by )

q q
=, for the considered impurity

configuration was calculated previously. Equation (40)
of II and Eq. (83) give

( bp' )*=*='=
~

ia'e-'"' y —'e-'"")27re ) n,
g~&gy ek ) 2J"

k = q2 + q2. (25)

As for the dielectric function of the Q1DEG it is given
by Eqs. (Bl) and (82) of II. At low temperatures, i.e. ,
for degenerate statistics, the main contribution to static
screening comes from the real part of b, e, so in Eq. (23)
we can use

2m* e
ReKcpp(0, 2kF) =

2 ln
8m'k~T (26)

2l

FIG. 3. One-dimensional array of quantum wires parallel to
the 2: axis. Sheet impurities are situated in the plane z = A,

and volume impurities in the region z & E, .

Using now Eqs. (22)—(26) and Eqs. (19) and (20) of II
for 4F s(qz), after the substitution q&

——2kFy = 7m, y,
we arrive at the following expression for the momentum
relaxation frequency v and the mobility p of the SL
array of Q1DEG's interacting with impurities (P stands
for parabolic well and S for square well):
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e
&s,s =

I,S
32e4m t' 7 Red, coo(0, 2k~)
7rh rt p & Epppo(0 2k'' 2k~y) &

xA&s(y)[(n,'/S„)e " "' ~+ (n;/2irn, S„)e " r' ~], (27)

where

2 i . Ap, s(y, )
~oooo(0, 2k~, 2kFy) n, E SC=—OO pc

y, = y —2c/ n, E, (28)

—(wAn, ,y)~/2

~(
2 sin(7m, Wy/2)

s g i,urn, W y 1 —(n, Wy/2) 2 , S =.JI
~ ~

Two limiting cases can be considered analytically. For
large l, such that n, Z )) 1, the Coulomb interaction be-
tween wires is very small and the Q'iV's can be treated as

be tr
isolated. In this case the sum in Eqs. (24) and (28)a.n ~~j can

e transformed into an integral and the dependence on L

disappears. The opposite limit n, Z « 1 is satisfied when
n, « n, , where n, " is the maximum n, that cor-
responds to one-subband occupation. For a square well
n~~ = 2/W and for a parabolic one n, " = 2~2/irA.
In this case the main contribution to the integral in Eq.
(27) coines from y ( 1 and tlie only significant term
in Eq. (28) is the one with c = 0. Therefore, the ra-
filo 7 /Ep pop(0 2k+' 2k& y) is independent of y and equal
to 2/n, E. It means that only the wires within distances
less than oi of the order of the de Broglie length, I/kF,
of the A1DEGe A1DEG participate in screening. Carrying out

I

the integration in Eq. (27) for /, , p; » 1/n, aiid for
;, A; « 1/n„we can construct the following interpola-

tion formula valid for arbitrary 8, and A;:

16e m' t' 2
2

vPs — „s ~

&+ «&&op(0, 24)
~

(nse 2+ra—A, ( /2 . ) 2~n, —r,
yx

i

E I + iree&i 1+2/n, Ac

For a numerical evaluation of v, as given by
Eq . ~ ~~—~&29&, we use the parameters appropriateFs. (
to GaAs/Al Gai As heterojunction wires: m'
0.067mo, c = 12.9. The dependence of v, on the SL e-
riod 8 is shown in Fig. 4 for volume impurities and in Fig.
5 for sheet impurities. In both figures the parameters are
n, = 5 x 105/cm, W = 50 5., and T = 10 K. As can be
seen the relaxation frequency decreases slightly with de-
creasing Z. In comparison with the case of isolated wires,
E ~ oo, the decrease is about 25% for volume impurities
at distance E; = 0 from the SL array and about 50% for
sheet impurities at A; = 0. For E; = A; = 200 A the de-
crease is about 100%. This effect results fiom the weak-
ening of the scattering potential as the screening becomes
stronger

The dependencies of v"'/n, ' and of v /n, on the dis-
tances A, and S; of the sheet aind volume impurities,
respectively, are shown in Fig. 6. The QlDEG is as-
sumed to occupy the lowest subband in a square well of
width W = 200 A, its concentration is n, = 10s/cm and)

10
10

p,.= 50 A

Z,= &00 ll

A =150 iI

tf = 200k

X,.= 200 A

10 I

100
I

350
t fkl

10 I

100
I

150

FIG. 4. R lRelaxation frequency v /n, as function of the SL7A

period E for scattering by volume impurities situated in the
region z & E, . The electron density is n, = 5 x 10 /cm, the
wire width W = 50 A, and the temperature T = 10 I&.

FIG. 5. Relaxation frequency v /n, ' as function of the SL
period E for scattering by sheet impurities situated in the
plane z = A, . The parameters are the same as in Fig. 4.
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tions show that the effect of Coulomb coupling between
the QW's can be quite pronounced, of the order of sev-
eral tens Fo. The mobility increases exponentially with
the distance of the impurities from the array. Finally
the results between the square and parabolic lateral con-
finement differ by about 15%%uo. This small difference is
expected because only the lowest subband has been as-
sumed to be occupied. If, depending on the density, sev-
eral subbands are occupied the diA'erences are expected to
be more pronounced since the subbands are not equally
in the former case whereas they are in the latter.
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FIG. 6. Lower left panel: Relaxation frequency v /n; as
function of the volume impurities' smallest distance E, . Up-
per right panel: Relaxation frequency v /n, ' as function of
the sheet impurities distance A, . The electron density is
n, = 10 /crn, the square well width W = 200 A, and the
temperature T = 30 K. The results for a parabolic ~veil of
width A = 90 A are very close to those shown.

its temperature 30 K. For the same concentration and a
parabolic well of an effective width A = 90 A the results
are very close to those of Fig. 6 and are not shown for
clarity. For planar impurities vp' ——0.89v&' at A, = 0;
at A, = 200 A we have v& ——1,09vs . For volume im-
purities v = 0.85v+ at E; = 0 and v& ——1.08v& at
I.; = 200 5 For volume impurities the equality vs = vP
is attained when 8; 80 A and for planar impurities
when A; 70 A. All the numerical results can be fitted
well with Eq. (30) for both types of confinement.

APPENDIX A

The discrete Fourier transformation, used in the text,
is defined as

A(qz) = ) A(n)e '~"", A(Q) = ) A(n)e

A(q„)e'~&"'dq„,

A(Q)e'+ ~"d Q,

(A2)

(A1)

for a 1D or 2D array, respectively. The functions A(q&)
and A(Q) are periodic and have the period of the recip-
rocal lattice. The inverse transformation is defined by

IV. SUMMARY

In this paper we have extended the previously devel-
oped dielectric formalism (cf. I and II) of a single QW
to a one-dimensional or two-dimensional array of QW's.
The wires were coupled only via the Coulomb interaction
and tunneling between them was not considered. The
only modifications of the previous formalism occurred in
the dielectric functions and the potential correlators as
explained in the text.

The general expression for the momentum relaxation
frequency and the mobility was evaluated for a SL array
of QW's in interaction with planar and volume impuri-
ties at diA'erent distances from the array. The calcula-

where BZ indicates the Brillouin zone whose area is 8 =
4m 2/l, „Etsin 0.

APPENDIX B

Below we present the relevant dielectric functions and
potential correlators (or corrrelation functions) uniform
in (i) three and (ii) two directions.

(i) If the external system is uniform in all directions it
can be characterized by the usual 3D dielectric function
e, (cu, q) and by the potential correlator ( bp, 6rp, )
where q = (q, q„,q, ). Using Eqs. (5), (10), (11), and
(Al) we obtain

& ~Ps~Ps &or, g —g„

~Iris (~~ q»'4)



10 730 YU. M. SIRENKO, P. VASILOPOULOS, AND I. I. BOIKO

where g„=(27'r jE)e„,e„being the unit vector along the y axis. The functions C (Q) are given, for square and parabolic
confinement, by Eqs. (11) and (16)—(20) of II. Using Eq. (Bl) and taking into account the periodicity of the functions
R&~(u, q, q&) in q& we can rewrite Eq. (17) in the simpler form

& bC, bC, &K,

II~(4)& q~) K I K II

( ~gs~gs )~,q

4' Imc, (~, q)
q' I"(~ q)l'

XRygI& (4), q, qy)R~~„(4/, q, qy)e~ (Q)e~ (Q)dqydq, . (B2)

(ii) If the external system is homogeneous, e.g. , in the zII plane and inhomogeneous in the z direction it can be
characterized by e, (u, q, q&, z, z') and by ( bp, big, )" defined by Eqs. (26) and (37) of II, respectively. We now

assume that the electron eigenfunction has the form g (p) = Y „(y)Z,(z) and we introduce the following functions
[cf. Eq. (28) of II]

& bp, by, &"
1 Z*"(z)Z&~ (z)Z", (z')Zt'f (z')dz dz',

C, sc, (~ q qv) e, (ur, q, qq, z, z')

where It = (It&, I&, ), Ii& ——(p, a&, b&), Ii, = (p, a, , b, ). With the help of Eqs. (5), (10), (11), (B3), and Eq. (28) of II
we rewrite Eq. (Bl) as

(B4)
( ~&K~&KI +~ V,ey

& ~&K, ~&KI &~,V, e& —u

= —) .c'~„(q„—a~)@'K (q&
—g~) 27r

4sc (~ q qv) v'q.'+ (q. —g-)"k,~, (~ q- q. —g-)
The functions in square brackets on the right-hand side have been evaluated for some model systems in II and Ref. 7.
Using Eq. (B4) and the periodicity of the function R~~I( ) with respect to qz we can reduce Eq. (17) to the form

( bc, bc, )K,
II (,q )

+ ~+KI +K" )~)V~)gy
s $ s

1 1

C."sc,'(~i q» qw))2 + q2 i ~iIt. n(~| q&, qv)
p z

««(~ q qy)RKK" (~ q '6)@&„'(6)@K„"(qs)d6.
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