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Interwell coherent tunneling in coupled quantum wells
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A theoretical investigation of interwell coherent tunneling in coupled quantum wells is presented. The
time-dependent picture of coherent tunneling of an electron wave packet is obtained by the application
of the time-development operator of the time-dependent Schrodinger equation. The interwell tunneling
is shown for under bias, resonance, and over bias conditions. In addition, the tunneling probability and
tunneling time based on this time-dependent analysis are calculated. This method improves upon the
conventional m.odel that is currently in use for the coherent tunneling in coupled quantum wells.

I. INTRODUCTION
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FICx. 1. Schematic potential profiles of coupled quantum
wells under an external electric field at under bias, resonance,
and over bias conditions.

The investigation of the quantum-mechanical proper-
ties in coupled quantum wells, which consist of two quan-
tum wells located sufBciently close together, has been a
subject of much interest. ' Steady-state properties such
as energy states and field-induced energy shifts in coupled
quantum wells have been studied. For example, sym-
metric and antisymmetric energy levels in symmetric
coupled wells have been reported. ' An enhancement of
the quantum-confined Stark effect due to the coupling of
electronic levels in coupled quantum wells has been ob-
served. '

More recently, one dynamic property of field-induced
interwell electron tunneling in coupled quantum wells has
attracted some attention. For a particle initially
confined in one of the wells, interwell tunneling occurs
with an applied field. If the energy levels in both wells
are far apart ( ~

b,E
~
)0), the tunneling is of the non-

resonant type. If the energy levels in both wells are very
close to each other (~bE~-O), then resonant tunneling
occurs. By changing the external electric field across
coupled quantum wells, the resonant condition can be
achieved. Figure 1 illustrates under bias, resonance, and
over bias conditions in coupled quantum wells due to the
external electric field. At resonance, a reduction of tun-
neling time has been observed by time-resolved photo-
current measurements and by time-resolved photo-
luminescence measurements. ' The coherent-tunneling
time obtained by the conventional model, h /2~6E~, has
been compared to the experimental results. ' There are

two discrepancies: (l) the measured tunneling time is
much longer than the coherent-tunneling time obtained
by the conventional model, and (2) at resonance, the tun-
neling time should be longer (not a reduction of tunneling
time as the measured results reported) than that at
nonresonance since ~b,E~ is smaller at resonance. Due to
these discrepancies, some have attributed the resonant
effect to phonon-assisted tunneling. '

However, the conventional model needs to be exam-
ined more carefully. This model is used to calculate the
tunneling time in symmetric coupled quantum wells.
The energy difference between the ground states of each
well in symmetric coupled quantum wells is obtained us-
ing first-order perturbation theory which requires a small
~hE~. At nonresonance, energy differences are large;
therefore, the discrepancies in the model are obvious. In
addition, electric-field effects are not taken into con-
sideration in the model. This limits the use of the model
in electric-field-control tunneling effects. Also, the tun-
neling time is obtained from the phase change in time,
which is inappropriate to describe the spatial-tunneling
effects in coupled quantum wells since the phase factor is
canceled out when considering the probability distribu-
tion function ~P~ . More importantly, the tunneling time
is expected to be strongly influenced by the barrier width.
However, this is also overlooked by the conventional
model. Thus a more detailed description of the interwell
coherent tunneling is needed to give a better insight into
the coherent-tunneling mechanism.

The purpose of this paper is to improve upon the con-
ventional model by (l) showing both resonant and non-
resonant effects, (2) including the external electric field,
and (3) using the probability distribution function ~P~ to
describe the spatial tunneling effect. The approach of
this work is to describe the field-induced inter well
coherent tunneling in coupled quantum wells by the ap-
plication of the time-development operator according to
the time-dependent Schrodinger equation while the Stark
shift in each well is determined using the time-
independent Schrodinger equation solved by the inverse-
power method. ' Field-induced tunneling in single quan-
tum wells (tunnel out of quantum wells) has been de-
scribed by this time-dependent analysis. The same ap-
proach is equally valid in the treatment of the field-
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induced interwell coherent tunneling. The evolutions of
the particles are shown at under bias, at resonance, and
over bias conditions. The tunneling probability based on
this time-dependent analysis is also calculated for various
barrier widths. It is found that the particle not only tun-
nels to the second well but also tunnels back to the first
well. At nonresonance, only a very small portion of the
wave packet ever tunnels into the second well. In addi-
tion, the tunneling time based on the time-dependent
analysis is compared to that obtained by the conventional
model.

Section II summarized the numerical techniques for
solving the time-dependent and the time-independent
Schrodinger equations. The interwell coherent tunneling
in coupled quantum wells is shown in Sec. III. The tun-
neling probabilities at under bias, resonance, and over
bias conditions are obtained for various barrier widths.
Section IV compares the conventional model to the time-
dependent analysis. The shortcomings of the convention-
al model will also be discussed.

II. METHOD GF NUMERICAL ANALYSIS

with BenDaniel and Duke's effective Hamiltonian"

H= + V(x),
—W'a 1 a

2 Bx m ~(x) Bx
(2)

so as to preserve the continuity of the wave function.
The additional potential

~
e~Fx due to the external electric

field is added directly to the potential profile of the
coupled-quantum-well structure. Equation (1) can be
discretized with respect to time and space'

To show the field-induced interwell coherent tunneling
in coupled quantum wells, the evolution of a one-
dimensional envelope wave function P(x, t) is determined
by the time-dependent Schrodinger equation

HP(x, t) =i A' P(x, t),
a

0j+1,n+1 2E. 'e 12 2

lm* +m ' && A' ' m.* +m*j+1 j J+&

1 0j —1,n+1 0j+1,n

jn+1+ ~ ~
+ emJ, +mj mj 1+mj m +, +m.

2 22e .+ e V+ 1 + 1
~

0j —1,n

m* +m.* m. +m* '" m' +m*J+&
=0, (3)

where e, j, 5, and n are the space interval, space index,
time interval, and time index, respectively. In the numer-
ical calculations, the space interval e and time interval 5
are chosen to be 1 A and 1 fsec (10 ' ). With an initial
wave function, Eq. (3) can be reduced to a standard
Ax =b matrix equation with A being a complex tridiago-
nal matrix. This matrix equation is solved by the Gauss-
ian elimination method and time evolution can be ob-
tained by iterative multiplication of the inverted matrix.

To determine the Stark shift in each well due to the
electric field, the time-independent Schrodinger equation
is employed, and is given by

a, e, a&42
(H pI) 4' '=— + +

(E, — ) (E — )

a„4„+

where p is an adjustable parameter, @,, Nz, . . . , @„are
the eigenvectors, and E, , E2, . . . , E„are the eigenvalues
of the matrix H. If p is much closer to E& than to any
other eigenvalue, (H —pI) N' ' will have a dominant
component in the direction of N, . Thus Eq. (6) can be
approximated by

HP(x) =EP(x). (4)
(H pI)—a)4)

(E )K
(7)

g2

g2

4', +1

mj+1+ mJ mj*-1+mJ m*+&+m*

+V/ =EP

With BenDaniel and Duke's effective Hamiltonian, " the
time-independent Schrodinger equation is converted to'

As the number of iterations (K) becomes large, the eigen-
vector 4& can be retrieved from the normalization condi-
tion and the eigenvalue E& can be retrieved from N&. By
varying p over energies from the bottom to the top of
each quantum well, the eigenvectors and eigenvalues can
be found in succession.

III. APPLICATION
TO COUPLED-QUANTUM-WELL SYSTEMS

using a standard central-differencing technique to ensure
Hermiticity. The difference equation can be written in a
matrix equation H4=E4. Multiplying a starting vector
@' ' by (H pI), one obtains—

First, coupled-quantum-well systems of 70-40-50 (first
well width —barrier width —second well width in
angstroms) with barrier height of 0.4 eV are studied. The
effective masses are 0.067mp in the well region and
0.1002mp in the barrier region. The energy difference AE
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1s given by
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AE =EIF
—E2 +y + ~+q

2
(8)
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Over Bias
F=60kV/cm
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70-30-50 (F =36.7 kV/cm), 70-40-50 (F =33 kV/cm),
and 70-50-50 (F =30 kV/cm) coupled-quantum-well sys-
tems. The electric fields for these three cases are chosen
so that b,E's are close ( —0.475, —0.478, and —0.458
meV, respectively). In all cases, the particle tunnels into

x(A)

FIG. 4. An interwell coherent tunneling in 70-40-50 coupled
quantum wells subject to an external electric field of 60 kV/cm
(over bias). The position of the coupled quantum wells is shown
by the dashed line at the t =0 frame. The arrows indicate the
oscillation of the wave packet. At 7 and 14 fsec the wave packet
tunnels into the second well while at 21 and 28 the wave packet
tunnels back to the first well.

the second well very rapidly at the beginning. The tun-
neling process seems to slow down and then the particle
slowly tunnels back to the first well. Again, the particle
tunnels into the second well very rapidly as the beginning
of the tunneling process. There is a very significant
difference between tunneling into the second well and
tunneling back to the first well. This shows that field-
induced interwell coherent tunneling possesses an asym-
metric oscillation e6'ect.

In addition, Fig. 5 shows some properties and their
dependence on the barrier width for close ~hE~'s. For a
narrow barrier width (70-30-50), the tunneling cycle is
shorter and the maximum tunneling probability is larger.
This indicates that for a narrow barrier it takes a shorter
time to tunnel through and a larger portion of the wave
packet is involved in the tunneling process. Another in-
teresting property associated with the coherent-tunneling
e6'ect in coupled quantum wells is the peak-to-valley ratio
of the tunneling probability, which characterizes the am-
plitude of the oscillation. The typical peak-to-valley ra-
tios for 70-30-50, 70-40-50, and 70-50-50 at resonance are
6.27, 3.58, and 2.45 X 10 . A narrow barrier also gives a
larger peak-to-valley ratio.

Figure 6 shows the tunneling probability at under bias
conditions and for various barrier widths. The electric
fields are 11.1, 10, and 9.1 kV/cm corresponding to hE' s
of —23.39, —23.37, and —23.36 meV for 70-30-50, 70-
40-50, and 70-50-50 coupled quantum wells, respectively.
The maximum tunneling probability in either case is
much smaller in comparison with that at resonance. This
indicates that, at under bias conditions, only a very small
portion of the wave packet ever tunnels into the second
well. For a wide barrier width (70-50-50), the peak-to-
valley ratio is smaller. Actually, it is so small that the
noise level becomes significant in this case.

At over bias conditions, the tunneling probability for
various widths is shown in Fig. 7. The electric fields are
66.8, 60, and 54.5 kV/cm corresponding to AE's of 26.29,
26.26, and 26.27 meV for 70-30-50, 70-40-50, and 70-50-
50 coupled quantum wells, respectively. Similarly, the
maximum tunneling probability in all cases is much
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FICz. 5. Tunneling probability defined by Eq. (9) for coupled
quantum wells with various barrier widths at resonance. The
applied electric fields are 36.7, 33, and 30 kV/cm corresponding
to hE's of —0.475, —0.478, and —0.46 meV for 70-30-50, 70-
40-50, and 70-50-50 coupled quantum wells, respectively.

FICx. 6. Tunneling probability defined by Eq. (9) for 70-40-50
coupled quantum wells at under bias conditions. The applied
electric fields are 11.1, 10, and 9.1 kV/cm corresponding to
AE's of —23.39, —23.37, and —23.36 meV for 70-30-50, 70-
40-50, and 70-50-50 coupled quantum wells, respectively.
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smaller in comparison with that at resonance. In addi-
tion, the local minimum of the tunneling probability
changes in each tunneling cycle. It seems to repeat itself
every six to seven tunneling cycles. This effect is more
significant in a narrow barrier width (70-30-50).

IV. COMPARISON TO THE CONVENTIONAL MODEL

In the conventional model, the evolution of the wave
function in coupled quantum wells is given by

o ~
I'(y +y ) isEtlh+(y y )

—isEt/ii]P(t) =e

(10)
where P» and P,v refer to the wave function in the first
and second wells, respectively, and P»+P, v has energy
Ec+5E. The 5E is obtained from the eigenvalue equa-
tion of a symmetric coupled-quantum-well system using
the first-order perturbation technique. The coherent-
tunneling time t, is defined as a time interval giving a
~/2 phase change, and is

Am h

This coherent-tunneling time represents the time for the
wave function to change phase such that P(0)-P» and
P(t, ) -P,v, where the two states are separated by I

EEI or
2ISEI.

Time(fsec)

FIG. 7. Tunneling probability defined by Eq. (9) for 70-40-50
coupled quantum wells at over bias conditions. The app1ied
electric fields are 66.8, 60, and 54.5 kV/cm corresponding to
hE's of 26.29, 26.26, and 26.27 meV for 70-30-50, 70-40-50, and
70-50-50 coupled quantum wells, respectively.

There are several disadvantages using Eq. (11). The
first one is that Eq. (11) is valid only when b,E is small,
namely, at resonance. At nonresonance, hE is large and
the perturbation technique is inappropriate to determine
hE. However, in the time-dependent analysis, AE is cal-
culated using the inverse power method. This approach
without the assumption of small hE is more appropriate
for at resonance and nonresonance in coupled quantum
wells. Also, electric-field effects are not taken into con-
sideration in the conventional model since the evolution
of the wave function using Eq. (10) depends only on b,E.
In contrast to the conventional model, the evolution of
the wave function in the time-dependent analysis is de-
scribed by the application of the time-dependent
Schrodinger equation, where the external electric field is
included in the effective Hamiltonian Isee Eq. (2)]. In ad-
dition, the conventional model uses the phase change in
time in both wells to describe the spatial-tunneling
effects. This approach has the conceptual disadvantage
of not using the probability distribution function
IP(x, t) I, which is the probability that the particle at time
t be found in the region between x and x +dx. Thus it is
more logical to use the probability distribution function

to describe the spatial coherent tunneling than the
phase change of the wave function.

At resonance, it is desirable to compare the coherent-
tunneling time based on the time-dependent analysis to
the conventional model. As shown in Fig. 5, a seasonable
way is to define the time required for a particle to reach
from a local maximum to the next local minimum as the
coherent-tunneling time. Table I lists the coherent-
tunneling time at resonance for 70-30-50, 70-40-50, and
70-50-50 coupled-quantum-well systems obtained from
the conventional model and from the time-dependent
analysis. It is shown that in the time-dependent analysis
the tunneling time changes significantly as the barrier
width varies. This effect is lost if the coherent tunneling
is simply characterized by Eq. (11). Also, the convention-
al model gives a poor prediction of the tunneling time at
resonance. It is because the external electric field is not
taken into consideration in the conventional analysis. By
including the electric-field effects in the time-dependent
analysis, the coherent tunneling becomes a much faster
process.

At nonresonance, the coherent-tunneling time based on
the time-dependent analysis can be obtained in a similar
way and then compared to the conventional model, as
shown in Table I. However, it should be pointed out that

TABLE I. Comparison of the coherent-tunneling time t, in femtoseconds {10 ") of an electron
wave packet in 70-30-50, 70-40-50, and 70-50-50 coupled quantum wells at under bias, resonance, and
over bias conditions obtained from the conventional model [Eq. (11)] and the time-dependent analysis
(Figs. 5—7).

t~

(10 " sec)

Under bias
Resonance
Over bias

Conventional model
all cases

88
4380

97

70-30-50

97
375

9

Time-dependent analysis
70-40-50

105
760

11

70-50-50

104
1110

12
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some properties could be overlooked in such a simple
comparison. For example, the peak-to-valley ratio is
small and only a very small portion of the wave packet
ever tunnels into the second well. At over bias condi-
tions, the local minimum of the tunneling probability
changes in each tunneling cycle. In comparison to the
conventional model, the time-dependent analysis provides
a more detailed picture and shows a significant difference
in coherent time between under bias and over bias condi-
tions. It is because the particle carries a significant
amount of momentum at over bias conditions. Thus the
coherent time is shorter. Again, this efFect is overlooked
by the conventional model.

solution to the Schrodinger equation in representing in-
terwell coherent tunneling in coupled quantum wells.
Time evolution of the wave packet in the coupled quan-
tum wells is shown by a numerical implementation of the
time-development operator of the Schrodinger equation.
Some improvements include (I) being able to describe the
process at resonance and nonresonance, (2) consideration
of the external electric field, and (3) using the probability
density function

~ P ~
to describe the spatial-tunneling

effect. In addition, this approach provides a detailed
time-dependent picture of field-induced coherent tunnel-
ing in coupled quantum wells and shows several effects
that are overlooked by the conventional model.
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