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We have performed quantum-mechanical and classical calculations of the magnetotransport be-
havior of two-dimensional four-terminal junctions in the ballistic regime. Experimentally, these
systems exhibit magnetotransport anomalies at small fields, suppression ("quenching") of the Hall
resistance, and enhanced bend resistance, which we have reproduced with our model calculations.
Because the structures are ballistic, scattering from geometric features of the junction are responsible
for the anomalous transport behavior. We study several different kinds of junction (including those
with soft and hard walls) and find that their Hall and bend resistances are extremely sensitive to the
geometry of the junction. Analysis of our results leads to three major conclusions. (1) In all cases
where quenching or inversion of the Hall resistance occurs, or where there is a large bend resistance
at zero magnetic field, collimation of the injected electrons is important. Collimation means that the
momentum distribution of injected electrons is weighted towards large parallel momentum due to a
gradual widening of the wires near the junction. (2) The resistances obtained from the classical and
quantum calculations differ substantially. First, the quantum result at zero temperature is strikingly
different from the classical result because of large fluctuations caused by interference between long
paths. Such effects are suppressed by temperatures of order 1 K and have been treated elsewhere.
In this work we focus on the average quantum behavior, which we extract by two different averaging
procedures. The classical and quantum results are in good qualitative agreement; however, we find
substantial quantitative differences that persist well into the many-channel (classical) limit. (3) We
analyze the classical results in terms of the type of electron trajectory that contributes to the Hall or
bend resistance and find that the ballistic anomalies are caused by short trajectories. In particular,
we find that long "scrambling" trajectories are not important in producing these anomalies. These
conclusions are reinforced and illustrated by quantum calculations of local transport quantities: the
charge density, the current density, and the Wigner and Husimi distributions. The collimation of
the injected electrons and the importance of specific short trajectories are particularly clear in the
Wigner and Husimi distributions.

I. INTRODUCTION

Transport in microstructures has been intensively in-
vestigated in the last decade. Several length scales are
important in defining the character of transport in these
systems at low temperature: the elastic mean free path
caused by impurity scattering, the Fermi wavelength con-
trolled by the density, and the phase-coherence length-
the distance over which electrons retain phase informa-
tion and therefore the distance over which quantum inter-
ference eAects can occur. By using the high-mobility two-
dimensional electron gas formed at the interface between
GaAs and Al Gai As as a basis for making wires, one
can now make junctions between wires whose size is less
than the mean free path. Transport through such junc-
tions is then ballistic. In addition, at low temperature,
the phase coherence length is larger than the size of the
junction which can be of order the Fermi wavelength. In
this regime, then, the electrons are coherent and ballistic,
and the microjunctions act like electron waveguides with

a rather complex shape. Many interesting magnetoresis-
tance eAects have been observed in various structures in
the ballistic regime.

In this paper, we concentrate on two ballistic magne-
toresistance eH'ects which are observed in single junctions:
the suppression, or "quenching, " of the Hall resistance
at low magnetic field and the existence of a "bend re-
sistance" at B=O which decays as the magnetic field is
raised. The Hall resistance RH for a junction is pro-
portional to the voltage difference between the two side
probes when current is passed straight through (inset to
Fig. 1). RH is, of course, produced by the Lorentz force
in the junction region, and in a macroscopic sample it
is linear in the magnetic field: ji!H —(1/nec)B in two
dimensions where n is the electron density. Quenching of
the Hall resistance is surprising and was not anticipated.
The bend resistance R~ is proportional to the voltage dif-
ference between two adjacent probes when current fiows
between the two opposite adjacent probes [inset to Fig.
6(b)]. In a macroscopic Ohmic structure, two wires at-
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FIG. I. Hall resistance for four-disk junction with
R/W=4. The quantum calculation for a ballistic structure
at T=O (solid line for k~W/ir = 3.5) shows fluctuations not
present in either the classical (dotted) or quantum square-
corner junction (R/W=O, dash-dotted) cases. The quantum
fluctuations are removed by a weak impurity and energy av-

erage; the resulting average quantum trace (squares) shows
enhanced quenching compared to the classical result. The in-
set shows both the structure and the lead configuration which
defines the Hall resistance. Bo = mevy /eW.

ometry in these ballistic structures. Both the large fluc-
tuations in the full quantum behavior and the fact that
the average quantum behavior shows enhanced quench-
ing compared to the classical result are evident from these
results.

In order to describe transport in the ballistic regime,
it seems reasonable to neglect scattering from impurities
completely and to view the transport properties in terms
of scattering from the geometry of the junction. Thus
it is natural to use the approach advocated and devel-
oped by I.andauer and Biittiker in which one expresses
the resistance of the system in terms of its transmission
properties between reservoirs attached to leads. In par-
ticular, Buttiker showed5 that in a multiprobe structure,
the current in any lead j, I&, is related to the voltages
applied by reservoirs to the other leads n, V„, through
the transmission probability to go from lead n to lead j,
TJA 'I

tached to the same point on the current path measure
nearly the same voltage so R~ 0; however, we will see
that in the ballistic regime, R~ can be large.

We consider several models for these two effects an d
in particular, compare classical and quantum calc2 lcula-
tions. Typically the zero-temperature resistance fluctu-
ates strongly as a function of either magnetic field or
Fermi energy, and this necessitates the definition of an
average resistance in order to compare to experiments at
T 1 K even in the ballistic regime. The classical model
itself, introduced in this context by Beenakker and van
Houten, provides one natural definition of the average
resistance. In particular, although the classical model
fails completely to reproduce the low-temperature fluc-
tuations (which come from interference), it does yield
the correct qualitative behavior of the high-temperature
resistance. Nonetheless we expect effects due to mode
quantization and diffraction of the electron waves to be
substantial in this few-mode regime, and this leads us to
attempt to define a quantum average resistance for these
systems. Much of this paper is devoted to defining two
types of quantum averages and studying their behavior,
which we find does differ substantially from the classical
results for the same structures.

Figure 1 summarizes our main results by showing four
calculations of Ji!H(B) (at a particular Fermi energy) de-
scribed in detail below. The nearly straight line (dash-
dotted) is the result for a simple square-corner junction
(Fi . 2) and is nearly equal to the two-dimensional linearig. ~ an
behavior. The smooth dotted line is the classical behav-
ior of a four-disk junction (inset to Fig. 1) which shows
quenching at small magnetic fields and enhancement of
R~ at larger fields. The remaining two calculations are
the full quantum behavior (solid line) and the average
quantum behavior (squares). The deviations of all three
calculations for the four-disk structure from that for the
square-corner structure shows the strong influence of ge-

This equation has formed the basis for nearly all of
the theoretical discussion of ballistic magnetotransport
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FIG. 2. The slope of the Hall resistance at B=O normal-
ized to its two-dimensional value as a function of Fermi en-
ergy for various square-corner junctions. ~a~ Infinite hard-
wall barriers (structure at top left) with either four identical
leads (solid) or weakly coupled voltage leads (dashed). The
dotted ticks mark subband thresholds in the wires where Ei
is the threshold of the lowest subband. (b) Harmonic con-
fining potential (contour plot at top right with spacing of
3huo) for two different temperatures. The lack of quenching
for NM & 3 shows that these square-corner models cannot

~ ~

explain the quenching seen in many experiments.
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anomalies. It can also be derived from the more familiar
Kubo-type linear-response theory in an arbitrary mag-
netic field.

After applying the appropriate boundary conditions-
one lead used to supply the current, another used to sink
the current, and zero current in the voltage leads —Eq.
(1) can be solved for the four-point resistance, defined as
the voltage difkrence between two leads divided by the
current. If one measures the voltage between leads j and
n when a current goes from lead rn to lead k, the general
expression for the resistance, R q ~„, is

R i,„——(h/e )(T~ T„g. —T~gT„)/D, (2)

where D is any cofactor of the matrix g&„——Tz„—Nb&„.
In this paper we restrict ourselves to the case of four
identical leads so that the junction has fourfold symme-
try. Using this symmetry in the general expression Eq.
(2), one finds that the Hall resistance and bend resistance
are

Ra = oTal. /D .

We emphasize that these expressions for the resistance
are those appropriate to a transport measurement in
which currents are applied and the chemical potential
of reservoirs is measured; the behavior of the electro-
static potential in the microstructure (the Hall field, for
instance) is a separate topic on which we comment briefly
in discussing recent work below.

A. Early work

The first observation of quenching of the Hall resis-
tance was made by Roukes et aL and this was followed
by a study by Ford et al. These two papers established
that quenching exists in a variety of diA'erently fabricated
structures and persists over a sizable range of density and
magnetic field ( 100 mT). The first observation of a bend
resistance by Timp et al. established that R@ is large in
the ballistic regime at zero magnetic field ( 1 kQ) and
decays over a characterist, ic magnetic field scale ( 100
mT). It was noted that the bend resistance is substantial
even when the leads are misaligned —the bend resistance
is nonlocal.

Initially, it was unclear whether quenching of the Hall

RH = (h/e')(T4 —Ti )/D

R~ ——(h/e )(T~ —TI.T~)/D,
where

D = (TIr + TL, ) [2T~(T~ + TIr + TL, ) + TL + T~], (5)

T~ is the forward transmission, TR is the probability to
turn right, and TI. is the probability to turn left. It will be
useful in the discussion below to rewrite R~ in terms of
t, he relative asymmetry between left-turning and right-
turning electrons n = (TR —Tl, )/(TR + TL, ), the total
probability to turn a corner TRI. ——TR + Tp, and D =
(e /h)D/T~L, ——(e /h)[2T&(T&+TRI. )+T&l (I+n )/2]:

resistance is an intrinsic property of narrow wires or a
property which depends in more detail on the way in
which leads are attached to the wire. By an intrinsic
property we mean, for instance, one which depends only
on the quasi-one-dimensional nature of the wires or on a
comparison of the width to a magnetic length, and several
intrinsic quantum-mechanical mechanisms were initially
proposed. ' To investigate this, It',0 was calculated for
a current-carrying wire with two weakly coupled voltage
leads —leads with a tunnel barrier between the current
channel and the voltage lead. Quantum calculations of
the resistance from the general formula Eq. (2) to lowest
order in the coupling (and within the independent par-
ticle approximation) did not show quenching. ~ i5 Thus
it was demonstrated that quenching is not intrinsic to
narrow wires.

Other theorists then considered junctions with strongly
coupled voltage probes —ones, in fact, with identical
voltage and current probes —in which the corners were
square. By a square-corner junction we mean one
in which the equipotential lines make right angles at
the junction; two examples are shown in Fig. 2, one
for hard-wall confinement and the other for harmonic
confinement. While the quantum magnetotransport
properties of square-corner junctions were found to ex-
hibit rich structure including quenching at certain spe-
cific densities, square junctions do not exhibit the
quenching over a wide range of densities seen in the ex-
periments. In Fig. 2 we show the slope of RH(B) at B=O
as a function of energy (electron density) for two square-
corner junctions. For these square corner junctions,
R~(B) is smooth —a typical trace is shown in Fig. 1—so
that the slope at B=O is both well defined and a mean-
ingful characterization of the low-B behavior. The rich
structure in the curves in Fig. 2 is connected to the se-
quence of allowed transverse modes in the quantum ~ires
which, naturally, act like electron waveguides. Note that
large deviations from the two-dimensional slope are ob-
tained only in a narrow region of energy for both confine-
ment potentials. The results for weakly coupled voltage
probesig shown in panel (a) confirm that no quenching is
obtained in this limit, though the curve shows consider-
able structure not anticipated in the early work. Thus,
quenching of the Hall resistance is not intrinsic to narrow
wires and does not occur in square-corner junctions over
a broad range of density.

The initial theory of the bend resistance was more suc-
cessful than that of the Hall resistance. In fact, calcula-
tions on a square-corner junction give the correct order of
magnitude for the bend resistance and the correct global
dependence on energy for zero magnetic field. The pres-
ence of a bend resistance in the ballistic regime was at-
tributed to the preferential transmission straight through
the junction as opposed to around the corner. Sub-
sequent calculations in square-corner junctions showed
sharp features in R~ at the threshold for the transverse
modes of the wire, investigated the decay of the bend
resistance with applied magnetic field, and studied fil-
tering and nonlocality in double-junction structures.

A second generation of experiments demonstrated the
importance of the geometry of the junction in producing



10 640 BARANCxER, DiVINCENZO, JALABERT, AND STONE

magnetoresistance anomalies. Ford et a/. found that
the incorporation of Battened corners into their other-
wise normal junction produced a Hall resistance which
was strongly negative. This "inversion" went away when
a nonconducting dot was made in the middle of the
junction. They argued that this behavior is caused by
the contribution of special paths to the Hall resistance,
namely the "rebound" trajectories which reQect from
the flattened corners (discussed further below). Chang,
Chang, and Baranger studied the Hall resistance of
structures rather different from the usual intersecting-
wire junction: pinches were patterned onto the leads of
junctions made with relatively wide wires. They found
that quenching did occur in such a system when all four
wires had pinches but not for fewer pinches. Finally, Tak-
agaki et al. showed the large magnitude of the bend
resistance in the simple single junction geometry [Fig.
6(b)]. Subsequently, a thorough characterization of the
bend resistance as a function of junction width, field,
temperature, and misalignment of the leads (nonlocality)
was performed. The main conclusion of this second
generation of experiments was that the magnetotransport
properties of microstructures are extremely sensitive to
the geometry of the structure.

B. Collimation

Quenching at a wide range of energies was obtained
theoretically by Baranger and Stone s who also showed
the importance of geometry. They calculated the Hall
resistance quantum mechanically for a junction in which
the wires gradually widen approaching the junction and
found that RH(B) has nearly zero slope for all energies
studied. They argued that the gradually widened wires
simulated the effect of rounded corners at the junction
which were likely to be present in the experimental struc-
tures because of depletion. Subsequently, it was shown
that quenching exists in structures with other kinds of
rounding: Fig. 1 shows calculated results for a structure
with circularly rounded corners which we call a four-disk
junction. The underlying reason for quenching was pro-
posed to be the collimation of the electrons by the grad-
ually widened wire or rounded corners.

Since collimation plays a crucial role in our under-
standing of these magnetotransport anomalies, we ex-
plain this concept at some length from both classical and
quantum-mechanical points of view using Fig. 3. Colli-
mation is closely related to the idea of adiabatic trans-
port introduced by Glazman et al. s in discussing the
quantized point contact conductance, and the impor-
tance of collimation in ballistic point contacts has been
discussed by Beenakker and van Houten and by Imry.
Classically, a particle injected into the rounded-corner
structure of Fig. 3 with a large transverse momentum kg
has its k vector rotated by the gradual widening of the
wire so that it is injected into the junction region with a
large component of its k vector parallel to the injecting
lead, k~~ [see the trajectory in Fig. 3(a)]. Thus particles
injected with a hemispheric distribution function far from
the junction reach the junction collimated into a forward
cone [Fig. 3(c)]: graded wires produce a collimated elec-
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FIG. 3. Schematic of the physics of col,'enation in a junc-
tion with rounded corners as shown in panel (a). (b) The
threshold energy of the transverse subbands at two places
in the structure. For gradual grading, the injected electrons
conserve their mode number (dotted lines). Current initially
injected in all modes below the Fermi energy (solid lines at xq)
is carried only by low-lying modes near the junction. (c) Dis-
tribution functions of classical particles at two places in the
structure. The grading rotates the k vector of the classical
particles into the forward direction, as indicated by the tra-
jectory in part (a). Thus particles injected with a hemispheric
distribution of k vectors emerge collimated into a cone.

tron beam. Quantum mechanically, suppose one injects
a wave packet from the left in the horizontal arm; what is
the behavior of this wave packet at later times? We show
in Fig. 3(b) the thresholds for the transverse subbands
at the two points xi and zg assuming infinite strips of
the same width as the graded wire at those points. Since
at zi the wire is narrow, the transverse subbands are
widely spaced, while at z2, the subbands are much closer
together. If the widening of the wire is gradual, the elec-
trons will travel adiabatically from point 1 to 2, and thus
will conserve their transverse-mode number. That is,
the injected wave packet sees a time-varying confinement
potential V(y, t) U(y, zq + vst) for short times. In
general this will generate transitions between the sub-
bands; however, if the time variation is slow enough, the
wave packet will largely remain in the subband in which
it is injected (adiabatic behavior). Thus, particles in-
jected from a reservoir such that the current is evenly
distributed across all the subbands below Ey [solid lines
at z& in Fig. 3(b)] end up in the low-lying transverse sub-
bands as they approach the junction (solid lines at x2).
Thus, arguing either classically or quantum mechanically,
we find that a nonequilibrium momentum distribution is
created in the junction region. It is this structure in the
momentum distribution that toe refer to as collimation

Experimentally, the presence of collimation in mi-
crostructures has been demonstrated by Molenkamp et
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aL They consider a point contact, which acts like a sin-
gle gradually widened narrow wire, connected to a large
two-dimensional region with a second point contact on
the other side. A magnetic field is used to sweep the
electrons emitted from the first point contact across the
second and show that the distribution of the electrons
in angle is smaller than expected from a diffusive source,
hence demonstrating collimation.

Collimation influences the magnetotransport proper-
ties because the scattering properties of the junction [the
Tz„ in Eq. (1)] depend on the momentum distribution in
the junction. Near the junction, the adiabatic approx-
imation breaks down since the equipotential contours
must turn through 90'. Here the wave packet is scat-
tered into different modes and into the different probes.
The fact that the scattering properties of a junction are
very different for the different modes implies that the
physical result of injecting a nonequilibrium momentum
distribution could be quite different from injecting the
current in all the modes. Indeed, by analyzing the trans-
mission properties of a square-corner junction, Baranger
and Stone found that the low-lying modes make a much
smaller contribution to RH than the high-lying modes.
The nonequilibrium momentum distribution caused by
the graded wires generates quenching.

The possible effects of collimation on RH can be made
clear by expressing RH in terms of the asymmetry be-
tween left- and right-turning probabilities and the total
turning probability as in Eq. (6). RH can be suppressed
either by (1) decreasing the asymmetry while the total
turning probability remains large (n ~ 0 while T~r,
const) or by (2) decreasing the total turning probability
quite apart from the asymmetry (T~I, ~ 0 while n
const). It is clear that collimation, and hence grading,
may reduce T~L, simply because more classical trajec-
tories will impinge on the opposite lead relative to the
adjacent lead when collimation is present. The effect of
grading or collimation on the asymmetry is less clear a
priori. An analysis of the early results showed that bo/h
of these suppression effects are present.

The possible effects of collimation on R~ can be de-
rived directly from the original explanation for the large
ballistic bend resistance: enhancement of the forward
transmission at the expense of turning transmission. Col-
limation may contribute, of course, by directly enhancing
the forward transmission. In addition, suFicient colli-
mation implies that the injection cone in one lead does
not overlap with the acceptance cone of the adjacent lead
so that direct turning paths are eliminated, decreasing
the turning probability.

Motivated by the experiments of Ford et al. and of
Chang, Chang, and Baranger the calculations were ex-
tended to investigate the effect of various geometries on
the low-field Hall resistance. For structures patterned
after those used in the experiments, qualitatively sim-
ilar results were obtained, including "inversion" of RII
in structures with flattened corners and the necessity of
having four pinches to produce quenching.

Since collimation is clearly a classical concept, a clas-
sical approach ought to give qualitatively similar results.
Indeed, Beenakker and van Houten performed a classi-

cal calculation of the transmission coef5cients through a
junction (a "billiard ball" approach described in more de-
tail below). They obtained both quenching and inversion
of RH in appropriate geometries, as well as a plateau in
RH (which was previously dubbed the "last plateau" ~o)

caused by guiding of the electrons around the rounded
corner by the magnetic field. They showed that the bend
resistance decayed as a function of magnetic field in qual-
itative agreement with the experiments. Because of the
nature of the classical calculation, the authors were able
to look at the distribution of particles close to the junc-
tion and show that the injected particles are collimated
in the geometries they considered.

The mechanism connecting collimation to quench-
ing remains controversial: classically, how does colli-
mation cause deviations from two-dimensional behavior,
or quantum mechanically, why do low-lying modes con-
tribute less to RH than high-lying modes? A useful way
of thinking about the different proposed mechanisms is
by classifying the important types of classical trajecto-
ries, as indicated schematically in Fig. 4. One proposal
discussed above is that the forward-directed paths lead
to a suppression of the total probability for turning the
corner either to the right or left [Fig. 4(a)]. We call this
mechanism the total-turning suppression mechanism or
more generally the "magnitude effect" since the absolute
magnitude of the transmission probabilities are involved
r ather than the relative magnitude of tur ning right to
turning left. A second proposal is that the asymmetry
between turning left or right is reduced by simple trajec-
tories in the junction region such as the "rebound" tra-
jectory thought to cause inversion shown in Fig. 4(b).
Collimation is important in this proposal in order to em-
phasize particular anomalous trajectories. For instance,
in the case of the rebound trajectories, there are also tra-
jectories which reflect into the left-hand probe at B=O
and which bend into the right-hand probe at nonzero
field yielding an extra large contribution to RH of the
correct sign; collimation emphasizes the rebound trajec-
tories at the expense of this latter set. We call this
mechanism the asyrrimetry suppression mechanism, or
simply the asymmetry effect. Finally, the complicated
scattering in the junction region produces long "scram-
bling" trajectories [Fig. 4(c)] which may tend to equalize
the left-turning and right-turning probabilities and hence
produce quenching, as introduced in Ref. 2. Collima-
tion is important in the scrambling mechanism because
it eliminates the possibility of directly turning the corner

FIG. 4. Schematic of the proposed explanations of
quenching. Collimation emphasizes the importance of (a)
short forward-directed paths, (b) short paths which dimin-
ish the asymmetry between turning right or left (a "rebound"
trajectory is shown as suggested in Ref. 22), or (c) long scram-
bling trajectories.
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and therefore enhances the complexity of those trajecto-
ries which do turn the corner. Reference 2 emphasizes
that a scrambling mechanism can be effective only when
the injection con& on one lead does not overlap with the
acceptance cone on the adjacent lead, a situation pro-
duced by collimation. The implication in Ref. 2, and
indeed in the term "scrambling' itself, is that an average
over many Iong trajectories is involved in the scrambling
mechanism of quenching, though this is not stated ex-
plicitly. Here we will use the term "scrambling" to refer
to long complex trajectories as distinct from short sim-
ple trajectories such as the rebound trajectories. Thus
the two central questions concerning the mechanism of
quenching are the following: do short trajectories or long
trajectories produce quenching, and is reduction of asym-
metry or total-turning probability more important?

C. Recent work

Recent experiments have emphasized a careful charac-
terization of the different magnetotransport anomalies.
Timp e$ al. showed that there is a correlation between
the Hall resistance and the bend resistance and that both
change in character as the density or width changes.
In their structures, the quenching region becomes much
smaller while the width of the bend resistance remains
approximately constant as the number of subbands in-
creases. Roukes, Scherer, and Van der Gaag studied
a series of structures with different amounts of round-
ing and interpreted their results in terms of the classical
model with disorder effects. This was the first explicit
study of the role of scattering in the experiments; the
authors emphasize that scattering cuts off the length
of the ballistic trajectories that can contribute to the re-
sistance. Because these experiments probe the degree of
ballistic behavior needed to see the transport anomalies,
they have a direct bearing on our discussion of the mech-
anisms for quenching, and we will return to discuss this
work below (Sec. III 8). Most recently, Behringer et al.s

have observed large quantum effects in the average bend
resistance of a junction and confirmed these observations
with calculations.

The more recent theoretical work has addressed a num-
ber of related issues. First, the question of the intrinsic
Hall effect in narrow wires and the nature of the electro-
static potential has been revisited with the self-consistent
field of the electrons included. Extending previous work
within the independent-particle approximation or at
high magnetic fields, " the authors show that t, he intrinsic
Hall effect is not quenched at low magnetic field in quasi-
one-dimensional wires within the self-consistent field ap-
proximation. Second, structures in which the classical
scattering is chaotic have been studied both with regard
to characterizing the classical behavior and with regard
to connecting the large quantum fluctuations to the clas-
sical chaos. Third, while most of the theoretical work
to date has been on strictly ballistic junctions, it has re-
cently been shown that disordered leads attached to a
ballistic junction modify the injection distribution which
in turn affects the magnetotransport properties.
Finally, Hall and bend resistances have been calculated

for perfectly adiabatic leads attached to a square-corner
nonadiabatic region by combining the scattering matrices
of the different parts of the structure. While one can-
not study specific geometrical effects with this approach,
one can study general properties of RH and R~ in an
especially simple way. Of particular interest is the fact
that phase breaking can be introduced in the junction
region by combining transmission intensities rather than
transmission amplitudes.

D. Overview

In this paper we address four issues which are central to
the current understanding of both quenching and bend
resistances. First, we emphasize that the geometry of
the junction has a large effect on the magnetotransport
properties. We calculate both the bend resistance and
the Hall resistance for a variety of structures —circular
rounding and linear widening of the wires, soft- and hard-
wall potentials, and junctions with a cavity. A gradual
widening of the wires or rounding of the junction cor-
ners is essential to produce quenching over a wide range
of energies. The magnitude of the bend resistance and
decay as a function of magnetic field depends sensitively
on the junction geometry. We emphasize that all of our
results can be understood in terms of structure in the
momentum distribution of the injected electrons, that is,
in terms of collimation.

Second, we investigate the relationship between the
classical and quantum results. The most apparent differ-
ence, evident from Fig. 1, is that the classical resistance
is much smoother as a function of field than the quantum
resistance: quantum fluctuations in RH(B) are large.
These fluctuations result from the interference among
the many complicated trajectories [Fig. 4(c)j trapped in
the junction region as discussed by Jalabert, Baranger,
and Stone. ss In comparing with experiments, we are con-
cerned with measurements at T 4 K in this paper
since most of the quenching and bend resistance studies
have been done in this regime. Fluctuations are not ev-
ident in these experimental results presumably because
the phase-breaking rate is sufIicient at these tempera-
tures to remove the interference effects of the relatively
long trajectories involved, The experiments done at low
temperature (T 300 mK) in the ballistic regime '
do show fluctuations which may well be caused by junc-
tion scattering as in our calculations. The relation be-
tween the fluctuations and the classical dynamics is itself
a fascinating problem, but here we wish to concentrate
on comparing the classical results to the "average" quan-
tum results, quantum results with the fluctuations caused
by long trapped trajectories taken out. Thus, we need to
find appropriate ways of extracting the quantum average.

The most straightforward way to perform this average
would be to include a phase-breaking process as in the
experiments. However, though partially phase-coherent
transport has received considerable attention recently,
calculations for only the simplest structures have been
carried out. Thus, we prefer to use the approach de-
veloped in discussing diffusive systems of averaging over
the energy, the magnetic field, and the impurity config-
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uration. We use two types of averages both of which
are physically motivated. In the first technique, we per-
form an energy average by canvolving the transmission
coeflicients with the derivative of the Fermi function [the
appropriate generalization of Eq. (1)j and then average
the resulting resistances over a magnetic-field interval.
We call this the field-energy average. The average over

nergy accounts for the thermal smearing present in the
experimental structures while the average over magnetic
field is used to extract the "typical" 1ow-field behavior.
In the second technique, we average over a distribution
of very weak random impurities as well as a small energy
window. From a semiclassical point of view, the weak
impurity average (the mean free path is kept larger than
the size of the junction) "dephases" the long trajecto-
ries while retaining the coherence of the short paths: the
small phase shifts from individual impurities accrue over
the trajectory, and the subsequent average over an en-
semble of impurities removes interference effects of those
trajectories whose total phase shift is x while retaining
interference effects of short trajectories. We call this the
impurity-energy average and use it to calculate the re-
sistances as function of magnetic field. The average over
impurities is a crude way of including some phase ran-
domization while the average over energy incorporates
finite-temperature effects. The agreement between the
two averaging techniques is very good.

Using both of these averaging techniques, we compare
the classical results to the average quant, um results. We
find that there are substantial differences in the regime
of several subbands ( 6) and deviations in some struc-
tures at even higher energies. Deviations are, of course,
expected in the few-subband limit ( 1—2) but survive to
surprisingly large energies. Compared to the classical re-
sults, the quantum results show substantially enhanced
quenching, slower decay of the bend resistance as a func-
tion of field, strong variation on an energy scale less than
the subband spacing, and periodic oscillations as a func-
tion of field in certain structures. While more details
about both averaging methods are given below, we recall
at this point the typical results discussed earlier: Fig. 1

shows a classical calculation, an unaveraged quantum cal-
culation, an impurity-energy averaged trace, and a trace
for the simple square-corner structure. Note that the
averaging does indeed remove most of the quantum fluc-
tuations while retaining the typical behavior, and that
the quantum average is substantially different from the
classical case.

The third issue we address in this paper is the mecha-
nism for quenching of the Hall resistance. By analyz-
ing classical results in terms of trajectories, we show
that the Hall-resistance quenching and bend-resistance
anomalies are both short trajectory effects. Thus we rule
out "scrambling" by long trajectories suggested in Ref.
2 as a mechanism for quenching. We analyze both the
classical and quantum results in terms of the asymrne-
try and total turning transmission as discussed above
in connection with Ref. 3. The relative importance of
these two mechanisms depends on the geometry: in the
four-disk junction, the magnitude eff'ect (suppression of
total-turning transmission) is small while in the linearly

graded structures it is large.
Fourth, we discuss the local properties of the junction,

especially in the coherent regime. By local properties
we mean the charge density, current density, and ma-
mentum distribution of particles inside or near the junc-
tion. While this has received some attention in the clas-
sical case or in simple quantum structures, this is the
first work on such properties in these rounded junctions.
We find t,hat the charge density and current density are
highly structured because of quantum interference. We
illustrate collimation directly in the momentum distribu-
tion and indirectly in the current density pattern. The
importance of "rebound" trajectories in flattened-corner
structures is evident in the standing-wave pattern in
the charge density and in the momentum distribution
near the reflecting wall.

The organization of the rest of the paper is as follows.
We explain our methods of calculation, bath classical
and quantum, in Sec. II. The classical results —resistance
traces, analysis in terms of trajectory length, and asym-
metry analysis —are presented in Sec. III. Section IV cov-
ers the quantum results using the field-energy averaging
technique and emphasizes the general properties of the
different geometries as well as deviations from expecta-
tions in specific structures. The impurity-energy aver-
aged results are in Sec. V in which the emphasis is on
differences between the classical and quantum results.
Finally, the local properties of the junction are discussed
in Sec. VI. Concluding remarks and a discussion of the
implications of our results for previous interpretations
of magnetotransport anomalies are in Sec. VII. The ap-
pendixes contain further information on recursive Green-
function methods for multiprobe structures and attain-
ing the classical results fram the semiclassical limit of the
quantum calculation.

II. METHODS OF CALCULATION

A. Quantum transmission

In order to calculate the resistance according to Eqs.
(2)—(4), we must evaluate the probability of transmission
between all pairs of leads. Because all of the scattering
occurs in the junction region, the leads act as electron
waveguides in the quantum regime. It is natural to intro-
duce a set of transverse wave functions, or modes, y~(y„)
which are a function of the transverse coordinate in lead
n, y„. The quantum scattering problem, then, consists
of finding all the transmission amplitudes, tz„ i, , from
mode a in lead n to mode b in lead j. The total trans-
mission is then Tz„—P & ~tz„ i, ~

. The assumption in
using this expression for Tz„ in the relation between cur-
rents and voltages, Eq. (1), is that the reservoir feeds
equal current into each mode. This results from the well-

known cancellation between the Fermi velocity and t,he
density of states in one dimension and from assuming
that the connection between the reservoir and the wire
is reflectionless. ~ 5 4 There are three essential ingredients
to our method of calculating the amplitudes: the relation
of transmission amplitudes to the Green function, the
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discretization of the continuum problem to obtain a tight-
binding Hamiltonian, and the recursive calculat, ion of the
discrete Green function.

The first ingredient is to obtain an expression for the
transmission amplitudes in terms of the Green function
for the quantum scattering problem. The scattering wave
states provide a complete orthonormal basis:"7 gt

&
is

) ) ~

the state with an incoming wave with wave vector k in
lead n and mode a. The behavior of the scattering-wave
states far from the junction is simply related to the trans-
mission amplitudes and transverse wave functions. The
retarded Green function in the spectral representation

48

G+(x, x') = dn @t (x)@t (x')/(s —s + iq),

where o. represents all the quantum numbers, n, a, k. The
asymptotic behavior of the Green function in terms of the
transverse wave functions and transmission coeKcients
can be evaluated by a contour integration. In the absence
of a magnetic field, the transmission amplitude is simply
the projection of the Green function onto the transverse
wave functions,

lt~„g, l
= hgvgv,

where i and j label the sites in the lattice. In the ab-
sence of a magnetic field, the hopping matrix elements
are constant, and Eq. (9) is the lowest-order finite differ-
ence approximation to the continuum Schrodinger equa-
tion. The connectivity of the structure can be varied
by setting the hopping matrix element equal to zero
between select sites. In a magnetic field, we use the
Peierls substitution U; = exp(ieA, /hc) and U,.".
exp(ieA," /he) to relate the hopping matrix element to
the vector potential. In all of our calculations, the flux
per unit cell of the lattice is small (( 0.01he/e) so we
expect this t,o be a good approximation to the contin-
uum problem. The single-site energy z;& in the Hamil-
tonian can be chosen at will; in particular, it can be
chosen to follow the potential confining the particles to
the microstructure. The ability to choose the single-site
energies and the hopping matrix elements is central to
our work since it allows one to study different junction
geometries and to vary the connectivity of the structure.

Finally, the Green function for the discrete problem
must be evaluated. We use a standard approach based
on Dyson's equation which relates the Green function
G of a system in the presence of a perturbation U to the
Green function Gp in the absence of U:

G = Gp + GpUG = Gp + GUGp

x G+(x, , x'„)

where v is the longitudinal velocity of mode a (at the
Fermi surface). In fact, this projection can be done at
any point in the lead outside the scattering region since
the population of the various transverse states will not
change in the ideal lead. In all of the calculations per-
formed here, the projections are done in zero magnetic
field; the magnetic field is graded from the value in the
junction to zero in the leads. For the low-field properties
discussed here, we expect that this approximation should
be accurate and checked in several cases that the rate of
the grading did not affect the results. For high-field cal-
culations, the full relation between the amplitudes and
the Green functions should be used.

Next, in order to calculate the Green function numer-
ically, one needs to discretize the continuum problem.
We use the usual tight-binding Hamiltonian on a square
lattice:"

—) (U,.".li, j)(i,j + 1
l + H.c.),

Here and throughout much of this paper, we drop the +
sign on the Green function since we shall only deal with
retarded Green functions. By judiciously choosing the
unperturbed system and the perturbation, one can derive
recursive relations for the Green functions needed. 4s We
review the two-probe case—an infinite strip containing a
finite scattering region —in this section to illustrate the
method. For multilead junctions, we derive new recursion
relations using the same basic idea; t,hese somewhat more
complicated relations are presented in detail in Appendix
A.

In the simplest case of an infinite strip, one can use
a semi-infinite half-strip plus a disconnected column as
the unperturbed system and the hopping matrix elements
connecting these two as the perturbation. I et the ma-
trix Q„be the Green function of the left half-strip termi-
nated at column n and g be the Green function of the~A+
isolated column n+ 1. G„can be calculated exactly if the
cross section of the half-strip is uniform, as it is outside
the scattering region. Furthermore, let Q„(n, n) be the
part of Q„ that connects column n to n and Q(n, n + 1)

L

be the hopping matrix element, that connects column n
to n + 1. Taking matrix elements of Eq. (10) between
column n+ 1 and n+ 1, one obtains the exact relation

G„+,(n+ 1, n+ 1) = [I —g, U(n+ 1, n)G„(n, n)U(n, n+ I)] 'g

Here I is the identity matrix. Using this equation, then, one can start with a perfect left half-strip and work across
the scattering region. In order to attach a perfect right half-strip to obtain the full Green function for the strip, take

—n+2Gp ——G„+G„+2+g where R denotes a right half-strip and use Eq. (10) with U connecting column n+ 1 to both
the left and the right:
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G(n+ 1,n+ 1) = (I —g [U(n+ I, n)G„(n, n)Q(n, n+ 1)

+Q(n+ 1, n+ 2)G„+2(n+ 2, n+ 2)Q(n+ 2, n+ I)]} g

This Green function provides the reflection coefIicient
from the right via Eq. (8) from which one obtains the con-
ductance. In the case of a junction, we use these relations
to move down each lead individually with the matching
at the junction done as a single step in the recursion;
details are in Appendix A. An important advantage of
this recursive technique is its numerical stability; naive
transfer matrix techniques, for instance, are unstable for
these problems.

B. Classical transmission

The arguments given for the relation between trans-
port and transmission probabilities, Eq. (1), have been
made explicitly for the quantum regime. However, it
seems reasonable that the expressions for the resistance,
Eqs. (2)—(4), should remain valid in the classical regime
with the understanding that the transmission coeKcients
must be evaluated for classical ballistic particles. Taking
this point of view, Beenakker and van Houten2 calcu-
lated the classical resistance of ballistic junctions through
an intuitive Monte Carlo evaluation of the transmission
probabilities: they traced ballistic trajectories among the
leads and counted how many went between each pair of
leads. %'e use the same basic method in calculating clas-
sical resistances.

A crucial quantity in carrying out this procedure is the
probability for injecting a particle into the junction with
a given transverse coordinate and wave vector. Since one
is interested in the transmission of current in a trans-
port experiment, we will call this the "current injection
distribution. " Beenakker and van Houten argued based
on classical kinetic theory that the current injection dis-
tribution in a hard-wall lead in zero magnetic field is
uniform across the lead and varies as the cosine of the in-
jection angle. They were unable to give analytically the
current injection distribution either for soft-wall confine-
ment or in a magnetic field but obtained the distribution
numerically in these two cases,

Using two diA'erent arguments, we give a formal justi-
fication for this intuitively appealing classical approach;
indeed, these two arguments amount to a derivation of
the relation between current and voltage through trans-
mission probabilities, Eq. (1), in the classical regime.
First, the classical approach has been derived from a
Boltzmann equation in which Fermi-Dirac statistics is as-
sumed but the particles are otherwise treated classically.
This method gives an explicit prescription for calculating
the current injection distribution in any case of interest.
Second, we show that a semiclassical form of the Green
function used in the expression for the quantum trans-
mission coupled with a further classical approximation
produces the same classical approach. %e now briefly
summarize these two arguments.

In the Boltzmann-equation approach, the basic
quantity is the distribution function f(r, k) which is not

equivalent to the current injection distribution. One as-
sumes, as in the quantum case, ' that each lead of
the junction is attached in a reflectionless way to a (two-
dimensional) reservoir characterized by a chemical poten-
tial. The Boltzmann equation coupled with "reservoir"
boundary conditions —that the limit of f down a lead
away from the junction be the Fermi distribution charac-
terized by the appropriate chemical potential —is a well-
posed differential equation for f(r, k). In the absence
of a scattering term as in a ballistic problem, the solu-
tion of this equation is that the distribution function be
constant along any classical trajectory. The prescription
for f(r, k), then, is to follow each trajectory at r, char-
acterized by k, backwards in time until it is clear from
which reservoir the particle came, say n; this direction in
k space at r is therefore filled to energy zp ——p„.

Using this general prescription, we derive, first, the dis-
tribution function at injection and, second, the current
injection distribution, in three simple cases of interest in
this paper. (1) In a straight wire with hard walls and
zero magnetic field, all the particles moving towards the
junction, v~1 & 0, came from the reservoir attached to
that lead. Thus all the trajectories moving towards the
junction are filled to the chemical potential of the inject-
ing reservoir: the distribution function of particles going
into the junction region is uniform in angle and indepen-
dent of transverse coordinate. Because the current for
this distribution function is equally distributed across all
transverse wave vectors, this distribution corresponds to
the quantum injection condition of equal current in each
mode used in Landauer-type arguments. In order
to find the injected current from this distribution func-
tion, one must multiply by v~~ which is proportional to
the cosine of the injection angle and integrate over the
transverse coordinate. Thus, the current injection distri-
bution is uniform across the lead and varies as the cosine
of the injection angle, as introduced by Beenakker and
van Houten. (2) In a wire with soft walls and B=O,
again all the particles with v~~ ) 0 in lead n came from
reservoir n, so that these trajectories are filled to p„.
Because the density of states in two dimensions is con-
stant, the change in injected density caused by a change
in chemical potential bp„ is independent of transverse
coordinate. Thus, the distribution function of particles
going into the junction region is uniform in angle and
independent of transverse coordinate, as before. The in-
jected current is again given by multiplying by v~~ and
integrating over the lead. Because the velocity depends
on the transverse coordinate y, the current injection dis-
tribution is no longer uniform across the lead but rather
is proportional to v~(y) = (2[E~ —U(y)]/m)~~~, peaked
in the center of the lead. The distribution in angle varies
as the cosine of the injection angle, as before. (3) Fi-
nally, in a hard-wall wire of width W with a nonzero
magnetic field, it is no longer true that all the particles
with v~~ ) 0 in lead n came from reservoir n; in fact, if the
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cyclotron radius E, is smaller than W/2, some trajectories
are not connected to any reservoir and do not contribute
to transport. However, following the general prescription
for finding f, we find the injection distribution function
for particles moving to the right with clockwise cyclotron
orbits: if the transverse coordinate y measured from the
bottom side and the angle measured from the horizontal,
0, satisfy

l0l & n/2+ arcsin[1 —y/E, ], y & 2E, & W,

l&l & z/2+ arcsin[(W/2 —y)/E, ], W & 2E, ,

the trajectory originates from the reservoir at the left
characterized by p. These trajectories, then, are filled to
p and this constitutes the injection distribution function.
Multiplying by v~~ and integrating over y, we find that
the current injection distribution has the same spatial
distribution as given in Eq. (13) but has an additional
factor of cos0 superposed on the angular distribution.
In carrying out a Monte Carlo simulation in this case,
note in addition that care must be taken to avoid double
counting of those trajectories which traverse the given
cross section twice before hitting one of the walls.

For simplicity, in the magnetic-field calculations done
in this paper, we neglect the effect of the magnetic field
on the distribution function at injection. Thus we use
a distribution function which is uniform in angle and
uniform across the wire. In several cases, we added a
constant or adiabatically increasing magnetic field in the
leads and checked that this made no difference in the
results. We expect all the results shown here to be insen-
sitive to this approximation because we work exclusively
at small fields.

An alternative derivation of the classical transmis-
sion method can be given starting from the semiclassical
WKB expression for the transmission amplitude; this ap-
proach makes the relationship to the quantum amplitude
somewhat clearer. We briefly summarize the argument
here; details are given in Appendix B for the hard-wall
case and Appendix C for the soft-wall case. In order
to arrive at a classical approximation to the quantum
transmission, Eq. (8), we start by using a WKB expres-
sion for the Green function in terms of a sum over classi-
cal paths. By neglecting interference among the differ-
ent classical paths and taking the number of transverse
modes to infinity, we obtain the same classical current in-
jection distribution as by the Boltzmann equation argu-
ment, e.g. , uniform across the lead and varying as cosine
of the injection angle for the hard-wall case. This calcula-
tion shows explicitly, then, that the usual quantum injec-
tion condition —equal current in each incoming mode—
yields the now familiar classical current injection distri-
bution. Finally, we note that in deriving these results we
have neglected the fluctuation effects which are so promi-
nent in the quantum calculations (see Fig. 1). Our nu-
merical studies of the dependence of these fluctuations on
the number of modes N suggest that the classical results
are not approached as N ~ oo at zero temperature. 5

In fact, in Appendix B we show that the classical results
for the transmission coefIicients are obtained from the

semiclassical expression when N ~ oo and an average of
the transmission coefIicient is performed over an infinite
range of energies. Of course, the structures that we study
in this paper and those of experimental interest do not
have N )) 1 and do not offer a very large energy window
for averaging, suggesting that there may be differences
between the average quantum and classical transmission
as we find in Secs. IV B. and V B.

C. Local quantum properties

To obtain the charge density, current density, or mo-
mentum distribution of the particles, it is necessary to
compute the full scattering wave function for states at
the Fermi energy. The calculation of the transmission
coefIicients does not permit us to obtain this wave func-
tion without further computation. This is most easily
seen by considering the relationship between the Green
function and the scattering wave function:

2

@t,(x) = — dy„'G+(», x„')(D' x„)
2YA

(14)

Here D' is a gauge-invariant gradient operator acting on
the primed variables. The important feature of this
equation is its dependence on G+, the retarded Green
function at energy z. Its second space argument is con-
fined to a surface C„deep inside lead n (which is inte-
grated over), but its first argument can be anywhere in
the interior of the sample.

However, t, he calculation of the transmission coefFi-
cients requires only G+(x, x'„), the Green function with
both its space variables deep into the leads [see Eq. (8)].
So, additional calculations must be done. Of course, it
is not necessary to obtain G+(x, x' ) to get @, and in
fact we compute the scattering wave function directly
from our knowledge of the asymptotic Green function
G+(x, x'„). The scheme is as follows: (1) Obtain the
asymptotic scattering wave function @t (x ) in all leads
m using Eq. (14) and the Green functions used previously
in Eq. (8). (2) Solve the Schrodinger equation with this
as a boundary condition.

It is worthwhile here to say a few words about the nu-
merical implementation of this procedure. As described
above, we approximate the free-electron motion in the
ballistic cross geometry using a lattice Hamiltonian de-
fined on a square lattice with sites labeled by i and j, Eq.
(9). The set of equations to be solved to obtain the scat-
tering wave function is most easily written down by first
considering the Hamiltonian of the system with all the
hopping interactions (i.e. , the V's) set to zero across the
lead surface [C„'s of Eq. (14)]; call it H" Then the set.
of equations to be solved for the scattering wave-function
amplitudes gt, (x) = @t,(i,j ) is

= (b,„+b, „)Vgt,(x„) . (15)
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Equation (15) has the form of a set of sparse inhomo-
geneous linear equations, and we have used a standard
conjugate-gradient technique to solve them.

This formulation of the solution has the difFiculty that
if the Hamiltonian of the isolated system H" happens to
have a bound state at energy s, then Eq. (15) will have a
homogeneous solution as well, the wave function will not
be unique, and the numerical calculation will fail. This
problem could be avoided by matching to the asymptotic
solutions along two rows of lattice points along the lead
surfaces C; however, in practice we found it better to
continue to do the matching along just one row as Eq.
(15) prescribes and add a small imaginary part ig to the
energy z. This eliminates spurious bound-state solutions,
and we found that we can set g to be on the order of
lo 5 of the bandwidth of the system, which adequately
stabilizes the conjugate gradient calculation and causes
no significant changes in the results described below.

We now give a description of the computation of the
current density j(x) and the charge density n(x). The
density n(x) = n(i, j) is very simply obtained; within our
lattice Hamiltonian the density is most naturally defined
on the sites of the lattice, and is computed as matrix
elements of the (purely local) density operator n p(i, j) =
~i, j)(i, j~ between the scattering states described above.
n(x) is presented in contour plots in the figures below.

The current density j(x) in our lattice model is most
naturally described as flowing along the nearest-neighbor
bonds of the lattice. The natural operator expression for
current fiowing along the bond between site i, j and site
i+ l, g is

J(i,j i+1,j) = —. (V, , [i, j)(i+I,g~

—&;,'li+ 1,j)(i, jl) (16)
I

This expression is given in units where the lattice spacing
is unity. There is a similar expression for vertical-bond
current, i.e. , between site i, j and site i, j + 1.

There is a technical subtlety involved in defining a cur-
rent operator whose real-space representation is the bond
operator of Eq. (16). The standard expression for the
current density operator for the continuum Schrodinger
equation is

above (A) the diagonal, and a piece that is only nonzero
below (B) the diagonal. Then using the commutator def-
inition, it is natural to split the velocity operator into v
and v+p ([x p, H ] = 0). With these, the current den-
sity operator can be split into two separate Hermitian
operators:

j (x) = e[n p(x)v" + v n p(x)]/2,

j (x) = e[n p(x)v + v n p(x)]/2 .

These are Hermitian because v = v . The bond cur-
rent operator of Eq. (16) is obtained from these opera-
tors, using the lattice definitions for n» and x &.

Thus, the current density is obtained as a current pat-
tern on a grid analogous to a resistor network. To cal-
culate the current streamlines as shown in the figures,
one more piece of general theory is useful: Given a two-
dimensional (2D) vector field j(x) which is divergenceless,
it is easy to show that the vector field z x j(x) is curl-
free. Such a vector field can be written as the gradient
of a scalar field:

V'p(x) = z x j(x) .

Then the contours of P(x) are the streamlines of j(x).
To compute P on the lattice from Eq. (19), we set up a
discrete version of the line integral, noting that P(x) is
most naturally defined on the plaquettes of the original
lattice.

III. CLASSICAL RESULTS

Because of the absence of interference and the re-
sulting fiuctuations, and the absence of effects due to
modal quantization, the classical results are smoother
and cleaner than those of the quantum calculation. We
start by presenting these classical results in order to es-
tablish the general characteristics of the various struc-
tures that we study. As emphasized in the Introduction,
while the qualitative behavior of the classical and quan-
tum results agrees, there are substantial differences be-
tween the two which will be studied in Secs. IV and V.

j(x) = e[n p(x)v p + v pn p(x)]/2

(n p(x)[x p, H] + [x p, H]n p(x)). (17)

We have used the commutator expression for the velocity
oPerator v p, and x p = P, x(i, j)~i, j)(i, j~ is the Po-a1
sition operator. However taking matrix elements of the
operator in Eq. (17) in our lattice Hilbert space will not
produce the bond current of Eq. (16); instead it yields
a site current operator which can be thought of as the
average of the bond current on adjacent links.

The bond current operator can be obtained from the
following definition. In a discrete Hilbert space it is al-
ways possible to define a new pair of Hermitian operators
by the following procedure: decompose the Hamiltonian
operator into three parts, H = H + H + H . This
denotes that the Hamiltonian matrix should be split up
into a diagonal (D) piece, a piece which is only nonzero

A. Resistance traces

We start by presenting our results for the Hall re-
sistance and bend resistance from the classical billiard-
'ball model and use this to introduce the four classes of
structures that we have studied. Three of these classes
involve confinement by infinite hard-wall barriers. For
these cases, the Fermi energy enters the classical prob-
lem only in determining the speed of the particles and
can easily be scaled out to yield curves appropriate for
all energies. For free electrons (parabolic dispersion) in a
structure where the leads have width W (independent of
energy for hard walls), we measure resistance in units of
Ro ——(h/e )x/k~W and use B/Bo = cu, /Wv~ = W/8,
for the magnetic field, where ~, (l, ) is the cyclotron fre-
quency (length) and k~ (v~) is the Fermi wave vector
(velocity). In these units, the classical two-dimensional
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quantum results below.
For our third class, we study structures in which the

trajectories are unquestionably very complicated but for
which collimation is definitely absent: concave cavities
formed by removing a quarter circle from each corner of
the junction (inset to Fig. 7). This structure is similar to
the stadium billiard, an intensively studied fully chaotic
billiard. Nonetheless, both the Hall resistance and the
bend resistance, Fig. 7, are close to the two-dimensional
values in all three structures despite the complex classical
dynamics of the system. This shows clearly that chaotic
dynamics alone is not sufficient to cause anomalies in the
classical transport coefficients; it also strongly supports
our view that collimation is essential for the appearance
of all the anomalies.

Fourth, we consider a class of potentials with soft
rather than hard walls. We let the potential in the junc-
tion region have the form z"y" (n=2, 4, and 6) and match
this onto a form z" in the leads [Figs. 8(c)—8(e)]. The
strength of the potential is chosen so that the equipoten-
tial contour at the highest energy considered widens by
a factor of 2 in going from the lead to the interior of the
junction. Notice the equipotentials have the same form
for all three structures; only the steepness of the confin-
ing wall varies with n. In these soft-wall structures, the
energy of the particles can no longer be scaled out. We
continue to remove the trivial effect of changes in energy
by scaling the resistance by the injected flux and using
an effective wire width to scale the magnetic field so that
the two-dimensional slope remains 2/x. s As in the hard-
wall structures, to obtain resistance in real units multiply
by h/e2 divided by the number of modes; the magnetic
field must be converted using an approximate width of
the wires.

Figure 8 shows that quenching does occur in these

structures and is enhanced by soft-wall confinement. As
in the four-disk class, we see the strong influence of
geometry —the behavior of RH changes from linear (n=6)
to quenching (n=4) to inversion (n=2). While the sen-
sitivity to geometry is somewhat less than in the four-
disk case, the character of the anomaly in RH, and in
particular quenching, is still not robust. This qualita-
tive conclusion is valid for other energies, though the
details of the resistance traces change slightly. In par-
ticular, the relative width of the anomalies in RH and
R@ changes with energy: at lower energy for n=2 (dash-
dotted lines) the field at which RH becomes positive is
approximately equal to that at which R~ becomes nega-
tive, but at higher energy (solid line) the bend resistance
is more than a factor of 2 wider. This curious energy
dependence has been noted experimentally.

In summary, from our classical resistance calculations,
we find that (I) gradual widening is essential for quench-
ing (four-disk and linearly widened structures), (2) com-
plicated dynamics is not sufficient to produce magneto-
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0.3

0.0

b)

l.0

CC 0.5

0.2 0.0

0.0
I

0.1

I

0.2
B/Bp

0.3 0.4

0.0
0.2

C)
CC

~ 0.1-
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'S.o I

0.1
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0.3
I

0.2 0.4
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FIG. 7. (a) Hall resistance and (b) bend resistance cal-
culated classically as a function of magnetic field for three
concave-cavity structures. 8/W=0. 7 [solid, inset to (a)],
1.0 (dashed), and 4.0 (dotted). Though many scrambling
trajectories are present, RH and R~ are close to the two-
dimensional [light solid in (a)] and square hard-wall junction
[d a sh- do t ted in (b)] b eh av io r.

FIG. 8. (a) Hall resistance and (b) bend resistance cal-
culated classically as a function of magnetic field for three
soft-wall structures with potential contours in panels (c)—(e).
For three traces, the potential has the form x"y" with (c)
n = 2 (solid), (d) n = 4 (dashed), and (e) n = 6 (dotted) and
the energy of the particles is such that the equipotential at
Ez widens by a factor of 2 (approximately the highest con-
tour shown). For the fourth trace (dash-dotted), n = 2 and
the energy is 0.3 of the energy for the solid curve. A hard wall
inhibits quenching and decreases the bend resistance. At the
lower energy (dash-dotted) the width of the quenching and
bend resistance regions are about the same, but at higher en-
ergy (solid) the quenching region is smaller than the region of
substantial R~.
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transport anomalies (concave cavity structures), and (3)
soft-wall confinement enhances Hall resistance anomalies.
The classical results are very sensitive to geometry and
rarely produce robust quenching behavior. In this section
we have not discussed the role of the amount of widen-
ing, as distinguished from the rate, but treat this issue
in connection with the quantum results below.
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Using the classical results, we now investigate the
mechanism producing the Hall and bend resistance
anomalies in these structures. As summarized in the
Introduction, one aspect of the cont roversy concerning
the quenching of the Hall resistance is whether parti-
cles which spend a long time in the junction region are
crucial —our interpretation of the "scrambling" mecha-
nism of quenching advocated in Ref. 2. The classical
calculations provide a straightforward way of checking
the role of scrambling trajectories (see Fig. 4) since one
can analyze the Hall and bend resistances in terms of
the length of the trajectories . We carry this out by cal-
culating transmission coeKcients using only trajectories
less than a given length LT . Using these transmission
coefficients to find resistances (note that the current con-
servation sum rules on the transmission coefFicients are
still satisfiedso), we plot RH and R~ as a function of I,T
in Figs. 9—12.5 The direct straight-through length of the
junction, ID, serves to normalize the trajectory length.
An alternate way to perform the analysis is to include all
trajectories with fewer than a certain number of collisions

3
LT/LD

5 0 5 10
Collisions

I

15

FIG. 10. Hall resistance (upper panels) and bend resis-
tance (lower panels) calculated classically as a function of
length of trajectory I z and number of collisions for two hard-
wall linearly widened structures (insets to Fig. 6). The grad-
ually (abruptly) widened case is shown in solid and squares
(dashed and triangles). Short trajectories produce the quali-
tatively different behavior in these two structures. Curves are
obtained as in Fig. 9, B/Bp = 0.04 for R~, and B = 0 for
A~.

with the walls in the the transmission coefFicients; these
results are also shown in the figures. In either case, the
value of the resistance converges to its full value as more
and more trajectories are included. If long trajectories
cause quenching, plots of this type should show lack of
quenching for short lengths changing over to quenching
as longer and longer trajectories are added to the calcu-
lation.

For the four-disk geometry, we show results in Fig. 9
for B/Bo ——0.04 at which the behavior of the three differ-
ent structures is qualitatively difI'erent: RH is enhanced
for R/W = 2, near zero for R/W = 4, and negative
for R/W = 6. It is clear that this qualitative behavior
is well established by including LT,~ LD & 1 .5 or up to
three collisions. For comparison, the mean number of
collisions in these structures is approximately 3, 6, and
9 for R/W = 2, 4, and 6, respectively. The bend re-
sistance also converges quickly, though not quite as fast
as the Hall resistance. Longer trajectories modify the

0
1 3

LT/L 0
4 5 0

d
h ~ *

d & ~ I I I ~ ~ a
I

5 10 15
Collisions 0.06

FIG. 9. Hall resistance (upper panels) and bend resis-
tance (lower panels) calculated classically as a function of
length of trajectory Iz and number of collisions for three
four-disk structures (inset to Fig. 5). For R/W=2 (dotted,
triangles), 4 (solid, squares), and 6 (dashed, pluses), the re-
sistances converge quickly to their full value (tick marks on
right) showing that short trajectories produce the deviations
from two-dimensional behavior. For RH, B/Bp = 0.04 while
for R&, B = 0. Curves are obtained by including all trajecto-
ries up to length I7 or having no more than a given number
of collisions in the calculation of the transmission coefficients
and hence the resistances. I z is scaled by the direct length,
L D = 2B + W, for transmission straight through the struc-
ture. Rp = (Ii/e )(n'/kp. W), Bp = mcvF/eW

0.04

0.02
0 0 O D 0 0 0 O 0 D 0 0 0 C

0.0
1 3

LT/L 0

I

5 0
I

5 10
Collisions

15

FIG. 1 1 . Hall resistance calculated classically as a func-
tion of length of trajectory LT and number of collisions for a
concave-cavity structure (R/W=0. 7, inset to Fig. 7). R~
converges quickly showing that short trajectories produce
the basic behavior even in this case where there are many
scrambling trajectories. Curves are obtained as in Fig. 9,
B/Bp ——0.04 for R~, and B = 0 for R~.
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short-trajectory behavior quantitatively, in the direction
of quenching for RH, but it is clear that quenching in
four-disk structures is a short trajectory phenomenon:
long scrambling trajectories are not important,

The conclusion from the four-disk structures holds true
as well for the linearly widened structures in Fig. 10. Here
:he convergence is somewhat slower than for the four-
disk structures, but the difference between quenching for
the gradually widened structure and positive R~ for the
abruptly widened structure is established by Lz /LD ——2.
Trajectories with more collisions seem to be important
in these structures, especially in the bend resistance,
perhaps because of trajectories with many collisions in
progressing down a given lead.

The concave cavity structure produces many compli-
cated trapped trajectories, and thus one might expect
a scrambling mechanism for quenching to be especially
effective. However, Fig. 11 shows that the Hall resis-
tance in this geometry (R/W = 0.7) converges rapidly
as a function of length or number of collisions to its full
value.

Finally, we check whether these conclusions hold in
soft-wall potentials. It has been suggested that the
scrambling mechanism for quenching should be more ef-
fective in potentials with soft rather than hard walls. 2

We choose a field (B/Bo ——0.052) for which RH in the
z"y" potentials is qualitatively different for n=2, 4, or
6. Figure 12 shows that this qualitative difference is es-
tablished by LT/LD = 2 and practically converged by
LT/LD = 3. While this is a somewhat slower conver-
gence than for the four-disk structures, clearly it is short
trajectories, not scrambling trajectories, that are deter-
mining the qualitative behavior of these structures. We
find no evidence for the importance of long scrambling

~i~~~
0 0 0 % 4 ~ 0

2 3 4
LT/L D

FIG. ]2. Hall resistance (upper panel) and bend resis-
tance (lower panel) calculated classically as a function of
length of trajectory LT for three soft-wall structures, n = 2

(solid), n = 4 (dashed), and n = 6 (dotted) [Figs. 8(c)—8(e)j.
E+ is chosen so that the equipotential at E~ widens by a
factor of 2. While convergence is slower than in the hard-wall
cases, short trajectories produce the basic behavior, namely
enhanced deviations in softer potentials (n = 2). Curves are
obtained as in Fig. 9, B/Bp = 0.052 for RH, and B = 0 for
Rg.

trajectories in any of the structures we have examined.
Recent experimentss2 have addressed the role of scat-

tering in microjunctions by studying the dependence of
the ballistic anomalies on density in structures of vari-
ous shapes. The authors use the variation of the mean
free path with density to probe the connection between
the resistance anomalies and the degree of ballistic trans-
port. Because the transport mean free path is long in
these structures, the implication is that long trajecto-
ries are important in causing the anomalies, perhaps
through the scrambling mechanism. However, the fail-
ure of scrambling to appear as an important mechanism
for quenching in any of the structures we have studied
reduces the likelihood that it is important in these ex-
periments. We therefore suggest an explanation for the
results of Ref. 32 based solely on short trajectories.
The important point is that the short-path explanations
that we advocate depend on structure in the momentum
distribution (collimation) and thus will be degraded by
all scattering events rather than just the backscattering
events that degrade the current. The fact that the total
mean free path is typically an order of magnitude
less than the transport mean free path in heterostructure
devices means that our short-trajectory point of view is
completely consistent wit, h the experimental trends as a
function of density and the magnitude of the mean free
path in Ref. 32.

C. Asymmetry analysis

A second issue in discussing the mechanism for quench-
ing of the Hall resistance is whether a simple enhance-
ment of the forward transmission, a "magnitude effect, "
or a more subtle suppression of the asymmetry between
left- and right-turning trajectories, an "asymmetry ef-
fect, " is more important. Following the approach of Ref.
3 summarized in the Introduction, we write RH in terms
of the normalized asymmetry o. and the total turning
probability T~l. as in Eq. (6). By combining square-
corner and rounded-corner results, we define two quan-
tities designed to evaluate the importance of magnitude
or asymmetry eff'ects. Ri = &roun e d(TdQ /DI)square in-
cludes only the effect of rounded corners on asymmetry
and hence evaluates the effectiveness of this mechanism;
R2 = cssqua&e(&~L, /D)«&u„ded, on the other hand, includes
only the effect of rounded corners on the magnitude of
T~L, . The denominator D is nearly insensitive to where
the particles go for the cases studied here. Note that only
the normalized asymmetry enters into the expressions
for R~ and R2 so that these "resistances" correspond to
changes in the transmission coefBcients which are consis-
tent with the current-continuity constraints. By compar-
ing traces of R~ and R2 to the true RH, one can evaluate
the importance of the different mechanisms.

Figure 13 shows traces of R~ and R~ for three different
structures. In the four-disk structure with R/W = 4,
Rp is identical to RH at low fields; deviations only be-
come apparent in the rapidly rising part. Similar results
hold for R/W = 2, 6 (not shown). Thus, suppression of
asymmetry plays the dominant role in these structures.
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ergy at low field. A typical T=O trace, RH(B), shown
in Fig. 1 illustrates the character of the magnetic-field
fluctuations involved in this average. For the magnetic
field, we continue to use the units suggested by the clas-
sical calculation in order to remove trivial scaling eA'ects;
typically the magnetic-field interval is from B = 0 to
B/Bp O. l or 0.2. For the energy, the quantum prob-
lem has a natural unit of energy, namely, the threshold
energy of the lowest subband, Eq, T ranges from values
less than Fq to several Ei depending on whether we are
concentrating on specific or general behavior. We first il-
lustrate the dependence of the Hall resistance averaged in
this way, RH, on geometry in the quantum case and then
discuss how the quantum results diA'er from the classical
results.

A. Geometry dependence

The average Hall resistance for the four classes of struc-
tures is shown in Figs. 14, 16—18 as a function of energy
for relatively high temperature. ss RH(E) is normalized
to the two-dimensional value to clearly show the geome-
try dependence.

For the linearly widened structures, Fig. 14, the qual-

(b)

FIG. 15. Schematic of the horn used in testing the adi-
abaticity of (a) the gradually widened junction and (b) the
R/W=2 four-disk junction. In (b), the dotted lines indicate
widening of a factor of 1.5 while the solid lines show the full
widening of about 2.2.

itative results are that the gradually widened structure
shows a very robust quenching region while the abruptly
widened structure does not, as in the classical calcula-
tion. In addition we show the results for a square cavity
(no Hall-eff'ect quenching) and a structure with gradually
widened leads and flattened corners —a strongly inverted
(i.e. , negative) Hall resistance. This latter structure,
which we shall call the "adiabatic-rebound structure, "
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0.0 0.1 0.2
B /Bp
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I5
I

20 30
EF/Ei

40

-2— FIG. 16. Average quantum R~ near B = 0 normalized
to the 2D value as a function of energy for the four-disk
structures shown [R/W=2 in (a), R/W=4 in (b)]. The more
gradually widened case, (b), shows robust quenching behav-
ior while the more abrupt structure, (a), shows deviations at
low energies but 2D behavior at higher energies. The dotted
ticks mark subband thresholds in the narrow region where
Eq is the threshold of the lowest subband. Curves are ob-
tained as in Fig. 14. Ticks on the right mark the classi-
cal result averaged in the same interval. The inset shows

(R~(B)) obtained by a weak impurity average for structure
(a) at E~/Ei ——19.5 (solid) and 35 (dashed). The dotted
line is the classical result, and the straight solid line is the 2D
result. Comparing these traces to R~ at the appropriate en-

ergy in the main figure, we see that both averaging methods
give the same behavior. The traces indicate that the devi-
ations from 2D behavior are caused by distinct oscillations.
Rp ——(h/e )(x/kgW)(mvF/hkz), Bp = mcvy/eW

:5
10 400 20 30

EF/E

FIG. 14. Average quantum RH near B = 0 normalized to
the 2D value as a function of energy for the four structures
shown. Gradual widening produces large deviations from the
2D behavior. The dotted ticks mark subband thresholds in
the narrow region where Eq is the threshold of the lowest
subband. Curves are obtained by convolving with ( 8f/Be)—
for a temperature of 2Ei (which corresponds to 3.2 K for
W=200 nm) and then averaging RJr(B) in the range B/Bp &
0.15. Ticks on the right mark the classical result averaged in
the same interval for structures (b) and (c). The dotted lines
in (b) and (c) show an inscribed square whose side is twice
the width of the leads.
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Mpr Mpr

) ) Ty. —M~/Mw
a=1 b=l

M~ —M~2/Mw
(20)

where M~ (Mw) is the number of modes in the narrow

is patterned after the experimental structures of Ford et
al. ; note that both a gradual widening and fiattened cor-
ners are essential in producing inversion. These results
are consistent with the underlying importance of collima-
tion in producing quenching: trapping or widening at the
junction is insufFicient in itself, suKciently gradual widen-
ing being the key. In fact, the presence of collimation in
this structure is directly demonstrated in the quantum
regime in Sec. VI. In any transport measurement a dis-
tribution of particles is injected. From a classical point
of view, the role of collimation in the adiabatic-rebound
structure is to enhance the contribution of those spe-
cial trajectories which "rebound" into the wrong lead
[see Fig. 4(b)]. Such trajectories are also present in the
abruptly widened structure, but other trajectories (not
present with gradual widening) render the rebound tra-
jectories ineA'ective. For instance, a particle from the
left which rebounds at B=O into the upper lead but is
bent into the lower lead at B g 0 is certainly present in
the abruptly widened case but may not be present once
gradual widening has produced collimation.

In the linearly widened structures, it is straightforward
to study the eA'ects of the rate of widening and the to-
tal amount of widening. In Fig. 14, the total amount of
widening for both the gradually and abruptly widened
structures is a factor of 2: the side of a square inscribed
in the junction is twice the width of the wire. Keeping
this total amount of widening constant, we varied the
slope and found that while some suppression is present
for a slope of &, quenching requires a slope of 3 and is

only robust for slopes approaching
&

as in the gradu-
ally widened structure shown. For a constant slope of-
to ensure good collimation, we varied the total amount
of widening and found that quenching requires widening
by greater than a factor of about 1.5. This is plausible
since direct transmission around a bend is suppressed if
the injection cone in k space of the collimated particles
does not overlap in k space with the acceptance cone of
the perpendicular lead. Lack of overlap requires a beam
of angular width x/2 (or less) which occurs for a total
widening of ~2 in the adiabatic approximation, close to
our observed 1.5.

In order to characterize the degree of collimation in
the quantum calculations, we look at the transmission
through a single widening lead connecting two wires of
different widths, as shown in Fig. 15. Since collimation
is equivalent to a selective population of the low-lying
modes in the wide region for transmission from the nar-
row to the wide region, the amount of current carried
by the low-lying modes in the wide region compared to
either the amount for a perfectly adiabatic horn or the
amount for equipartition among the modes provides a
measure of the degree of collimation. To be precise, we
calculate

I

I5

0.5—
n=6

0.0
4

-1.0—

-i .5—
0 10

EF/Ei(n 4)
15 20

FIG. 17. Average quantum RH near B=O normalized to
the 20 value as a function of energy for three soft-wall struc-
tures shown in Fig. 8 (U x"y" in the junction). As in the
classical results, a soft potential enhances quenching. The
solid ticks mark subband thresholds in the n = 2 wire while
the dotted ticks mark those for n = 6. The energy is scaled
by the threshold of the lowest subband for n = 4. Curves are
obtained by convolving with ( Df/Be) for a—temperature of

Eq(n = 4) 0.4Eq(n = 2) (which corresponds to 4.2 K for
t/V=200 nm at the threshold for the fourth mode in the n = 4
case) and then averaging RH{B) in the range B/Bo ( 0.18.
Ticks on the right mark the classical result averaged in the
same interval.

(wide) wire and the indices on Tq label mode number.
This quantity is then averaged over energies for which 3—
6 subbands are contributing. For a perfectly adiabatic
horn, f=l, while for a horn which completely mixes the
particles so that the current is distributed equally in all
the output modes, f=0 Fo. r the linearly widened struc-
tures with a total widening of 2, f=0 88,. 0.70, and 0.33
for slopes of 4, &, and 1, respectively, showing that colli-
mation is present in the structure with quenching. In fact
for all our structures, we have seen quenching if and only
if f ) 0.85 for a widening of 1.5 or greater. In some re-
cent experimental work, the junctions do not have this
minimum amount of widening yet anomalous behavior in
R~ is observed. We emphasize that if the experimental
junctions do not include widening by at least a factor of
1.5, none of the conceptual models discussed in this pa-
per will explain the anomalous behavior. Some evidence
for such anomalies occurs in two of our structures and
will be discussed in the next subsection.

The results for the four-disk structures shown in Fig. 16
are that at energies where there are several subbands, the
R/W = 4 structure shows quenching while the R/W = 2
structure does not, as in the classical regime. While the
total amount of widening for R/W = 2 is 2.2 so that
col1imation is in principle possible, the rate of widening
is such that the adiabatic part is quite short. We remind
the reader that the entire junction cannot be adiabatic
as the wall of the structure turns through 90'. In fact,
f = 0.59 for a horn using the full lead of this structure
(see Fig. 15); if the lead is cut at a widening of 1.5 so
that collimation is tested only up to this point, f = 0.81
which is still insufhcient (barely). For R/W = 4 the total
widening is very large —3.3—and the extent of the adia-
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batic re~ion is large enough to produce good collimation.
While f = 0.46 for the full lead, f = 0.86 if the lead is
cut at a widening of 1.5.

As in the classical calculations, a soft-wall potential
enhances quenching. Figure 17 shows the results for the
z"y" potentials with the n = 2 results being considerably
more anomalous than the n = 6 results. The strength
of the confinement potential is chosen so that the total
widening is about 2 for the highest energies considered.
The values of f are consistent with collimation: for the
total widening f=0.95, 0.86, and 0.81 for n=2, 4, and 6,
respectively.

B. Comparison of quantum
and classical results
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FIG. 18. Average quantum A~ near B=o normalized to
the 2D value as a function of energy for a concave cavity
(R/W=0. 7, see Fig. 7) at two temperatures: k~T = 2Ei
(solid) and T = 0 (dotted). Note the striking deviations from
2D behavior at a relatively high energy (7-8 subbands con-
tributing). The dashed ticks mark subband thresholds in the
narrow region where the energy threshold of the lowest sub-
band is Eq. Curves are obtained as in Fig. 14. The tick on
the right marks the classical result averaged in the same inter-
val. The inset shows (RH(B)) obtained by a weak impurity
average at EJ;/Ei = 20 (dotted), 52 (solid), and 80 (dashed).
The traces show that the deviations from 2D behavior are
caused by oscillations of a distinct period.

While at the broadest qualitative level, our quantum
and classical results agree, there are important discrep-
ancies between them. First, the region of anomalous be-
havior (compared to the two-dimensional result) is sub-
stantially larger in magnetic field in the quantum cal-
culations and lasts to surprisingly high energies. The
magnetic-field window used in the quantum average is
from 0 to 0.15 or 0.20, yet the classical region of anoma-
lous behavior is only about 0.1. To show this quantita-
tively, the classical average Hall resistances (averaged in
exactly the same way as the quantum results) appears
as ticks on the right axis of Figs. 14—18. In all cases,
the classical result averaged in this way lies substantially
above the quantum value, in some cases predicting no av-

erage quenching when the quantum results are strongly
quenched (i.e., in the gradually widened and R/W = 4
four-disk geometries). While quantum deviations from
the classical results are expected in the extreme quan-
tum limit —one or two modes in the leads —it is surpris-
ing that such deviations persist undiminished when five
or six modes are contributing, unlike the deviations in the
square-corner junctions (see Fig. 2), for instance, which
are large only in the regime of one or two modes. In fact,
for the gradually widened structure, we performed cal-
culations up to the threshold for the eleventh mode and
saw no decrease in the discrepancy between the quantum
and classical results. On the other hand, the argument in
Appendix B shows that as the number of modes becomes
very large and all interference effects are eliminated, the
quantum result reduces to the classical one. Our numer-
ical results show, therefore, that average quantum effects
remain surprisingly important in the many mode regime
in this structure.

A second type of discrepancy between the quantum
and classical results are large deviations that occur only
in a fixed energy window in certain structures. The two
examples of this are the R/W = 2 four-disk structure
(Fig. 16) and the concave cavity (Fig. 18). Denoting the
threshold of the nth mode E„,we find that the Hall resis-
tance in Fig. 16 is suppressed for energies below E5 but
is close to the classical value for energies above E6. While
the discrepancy is not limited to the extreme quantum
limit, it does occur at low energy where quantum effects
are expected to be larger. In contrast, the discrepancy in
the concave cavity consists of a suppression in the energy
range E7 to Eg bordered by regular behavior on each side.
This feature may be related to anomalous behavior seen
in experiments on nominally square-corner junctions.
When we discuss the impurity-energy averaged results in
the next section, we will see that this feature, as well as
that in the R/W = 2 four-disk structure, is connected
to periodic oscillations in RH (insets to Figs. 16 and 18)
with a periodicity of a quantum of flux through the cav-
ity.

Finally, several structures exhibit discrepancies on a
small energy scale, of the order of the subband separa-
tion. To demonstrate this effect we use a smaller tem-
perature in the results of Fig. 19 and 20 and show the
T=O results in addition (which are field averaged only). ss

Note the fluctuating T=O results in all three structures
which are especially large in the extreme quantum limit,
E~ ( Es. For the gradually widened structure [Fig.
19(a)], the energy averaged trace (solid line) has a strik-
ing oscillating component up to E5 and perhaps beyond.
This is not a statistical eft'ect from averaging the T=O
fluctuations (increasing the number of energy points pro-
duces no change in the amplitude of the oscillations) but
rather is fine structure in the average quantum resistance.
Such fine structure depends sensitively on the geome-
try: for the R/W = 4 four-disk structure in panel (b),
there is only one small dip between E3 and E4, the other
structure being statistically insignificant. Perhaps, the
longer trapping time and more random scattering in the
R/W = 4 four-disk structure obscures the subband ef-
fects. The behavior of the n = 4 soft-wall structure in
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short-range elastic scattering sites into the junction re-
gion (but not the leads). The basic idea is that weak im-
purity scattering will introduce a suKcient phase change
along long trajectories to eliminate the interference ef-
fects of these long trajectories after an ensemble average
over impurities. On the other hand, the interference be-
tween short paths is retained since the total phase change
caused by impurities along these short paths is small for
all impurity configurations. The impurity average, then,
is meant to mimic the phase-breaking processes occurring
in experimental structures. Of course, the structures are
no longer completely ballistic, and the average resistance
of the structure will be modified by an impurity strength
that is too large. It is important to establish, then, if
an impurity strength exists which will average the Auc-
tuations but not change the typical ballistic behavior. In
addition, a small amount of energy averaging serves to
smooth the traces further and is physically sensible in
terms of incorporating some of the effects of a nonzero

temperature.

A. Justification of the method

An example of the results of this averaging technique
is given in Fig. 21 which compares ballistic traces at five
closely spaced energies to an impurity-energy averaged
trace for the R/W = 4 four-disk structure [Fig. 16(b)].
Since our calculation is always performed on a lattice, it

is trivial to include impurity scattering within the An-
derson model of disorder: the on-site energies are chosen
uniformly from the interval [—WD, WD]. Such impurities
are placed throughout the entire junction, i.e., the region
where the walls of the leads are not parallel. These impu-
rities are certainly not meant to be a realistic represen-
tation of the impurity potential in these structures but
rather a tool for extracting the average quantum behav-
ior. The energy averaging was done using the five ener-
gies for which ballistic traces are shown; WD ——0.13 for
which the mean free path in the junction in terms of the
direct transit length is 171D (averaged over energy).
For both the bend resistance and Hall resistance shown,
the average trace lies in the middle of the five ballistic
traces at all fields. This confirms that the averaging sup-
presses the large quantum fluctuations while yielding a
faithful representation of the typical behavior.

In the absence of energy averaging, we found
that quantum fluctuations remained for this impurity
strength: the average over disorder was insufFicient to
bring out the true average behavior. However, for larger
impurity strengths, the average trace clearly did not rep-
resent the typical ballistic behavior. Thus, an energy av-

erage over a narrow interval —one in which the resistance
fluctuates but much less than the subband spacing —is es-
sential in revealing the average quantum behavior. On
the other hand, similarly smooth traces from only energy
averaging require a larger energy window and hence the
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FIG. 21. Quantum calculation of (a) Hall resistance and

(b) bend resistance as a function of magnetic field in a four-
disk junction with R/W=4 (inset). The solid line results
from an average over both weak disorder (Wa = 0.13) and
k~W/ir in the range [4.44,4.56]; the error bars represent the
statistical standard deviation. The dotted lines are results
without disorder at specific energies in the same range and
the light solid line is the 2D result, The averaging suppresses
the fluctuations in the ballistic traces and produces a trace
showing the typical behavior of the set of ballistic results.
R = (k/e )(ir/k W)(m ~/5k'-), Bp — co~/ W.
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FIG. 22. Quantum calculation of (a) Hall resistance and

(b) bend resistance as a function of magnetic field in a four-
disk junction with R/W=4. Impurity-energy averaged results
(solid lines) using three different strengths of disorder (WD =
0.13,0.25, 0.5, bottom to top in Rtt and top to bottom in Rn)
are compared to an energy average without disorder (dashed).
For clarity, statistical error bars are shown on only one solid

line; the others have comparable errors. The range of energies
is ky W/ir C [4.44, 4.56] and the light solid line is the 2D result.
Stronger impurity scattering suppresses both the quenching
and the bend resistance.
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sacrifice of energy resolution. The impurity-energy aver-
aging that we use provides a smooth magnetic-field trace
at a relatively well-defined energy; we average over about

6 of the subband spacing in the results shown here.
Figure 22 shows the effect of different impurity

strengths: impurity-energy averaged traces for three dif-
ferent strengths are compared to a pure energy averaged
trace. Stronger impurity scattering eliminates the trans-
port anomalies: the quenching of the Hall resistance
and the magnitude of the bend resistance are both sup-
pressed. The mean free paths for the three cases shown
are 1.2, 4.4, and 17ID for t/t/"D ——0.5, 0.25, and 0.13,
respectively. The quantum Ouctuations and impurity
effects are particularly strong for the bend resistance.
While weak impurity scattering has a larger effect on R~
than RH, R@ seems more robust to strong impurity scat-
tering, as indicated in experiments. For the weakest im-
purity strength, the impurity-energy averaged traces are
in qualitative agreement with the purely energy averaged
ones.

of order the subband spacing is present in both averages.
Second, the deviations on a larger energy scale seen in
the R/W = 2 four-disk structure and the concave cavity
are confirmed by the traces in the insets to Figs. 16 and
18, respectively. In both cases, (RH(B)) shows oscilla-
tions of a definite periodicity, suggesting that the devi-
ations result from interference of special paths. In the
concave cavity, the period is approximately a Aux quan-
tum through the area of the cavity. This result is easily
understood if one assumes coupling to a single "quantum
dot" state, but why such coupling should be particularly
effective in the energy range E7 to Eg at such low fields
remains a mystery.

Using the quantum average traces, we perform the
same kind of asymmetry analysis as for the classi-
cal results (Sec. III C) in order to determine whether
the ballistic anomalies are caused by a decrease of the
total-turning probability, which we have been calling
a magnitude effect, or by the suppression of the left-
right asymmetry. Recall that we write the H all re-

B. Quantum magnetic-field traces

Figures 23—25 show impurity-energy averaged quan-
tum traces, (RH(B)) and (R~(B)), and classical traces
for three of the structures studied in this paper: the
R/W = 4 four-disk structure (Fig. 23), the gradually
widened structure (Fig. 24), and the n = 4 soft-wall
structure (Fig. 25). The quantum traces mostly show
the same qualitative behavior as the classical traces, in-
cluding, for instance, the very large magnitude of R~ in
the gradually widened structure. However, these traces
show explicitly the large quantitative differences between
the classical and quantum results: the quenching width
is substantially larger in both the four-disk structure and
the soft-wall structure, and the traces are very different
for the gradually widened structure.

In these three figures, quantum traces at three differ-
ent energies show how the quenching and bend resistance
change as the number of modes contributing changes
from 3 to 4 to 6. For the four-disk structure (Fig. 23),
the bend resistance is largely unaffected while there is a
slight narrowing of the quenching region. The linearly
widened structure (Fig. 24) is very sensitive to energy,
as we noted in connection with Fig. 19 above, showing
inversion, quenching, and normal linear behavior of the
Hall resistance at these three energies. The bend resis-
tance for this structure is especially large. Finally, for the
soft-wall structure, Fig. 25 shows that the quenching re-
gion in the Hall resistance becomes narrower (in reduced
units) as the energy increases while the bend resistance
remains roughly unchanged. This change in the relative
width of the ballistic anomaly in R~ and R~ as energy
changes is observed in some experimental traces.

The impurity-energy averaged traces provide confirma-
tion for some of the more unusual results obtained us-
ing field-energy averaging in the last section. First, the
traces (RH(B)) for the gradually widened structure are
in good agreement with RH(E) (Fig. 19) at the six ener-
gies shown in Fig. 24 and the inset to Fig. 19. Thus the
large variation of the quantum average on an energy scale
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FIG. 23. Quantum calculation of (a), (b) Hall resistance
(on two difFerent scales) and (c) bend resistance as a func-
tion of magnetic field in a four-disk junction with R/W=4.
Impurity-energy averaged results (WD = 0.13) at three en-
ergies [ky W/ir = 3.5 (dotted), 4.5 (solid), aud 6.5 (dashed)]
are compared to the classical result (dash-dotted) and the 2D
result (solid straight line). The region of anomalous behav-
ior is larger in the quantum results than in the classical trace.
There is little variation with energy after using reduced units.
The solid tick mark in (c) is the value of R~ in a square-corner
junction.
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FIG. 24. Quantum calculation of (a) Hall resistance and

(b) bend resistance as a function of magnetic field in the grad-
ually widened structure [Fig. 14(c)]. Impurity-energy aver-

aged results (W~ = 0.13) at three energies [k»W/7r = 3.5
(dotted), 4.5 (solid), and 6.5 (dashed)] are compared to the
classica1 result (dash-dotted) and the 2D result (solid straight
line). The quantum results are strikingly difFerent from the
classical trace and vary substantially with energy (see also
Fig. 19). The solid tick mark in (b) is the value of R~ in a
square-corner junction.

ment with experiments for the soft-wall potential. (3)
The quantum anomalies are caused by the same balance
between asymmetry and magnitude effects as the clas-
sical anomalies: asymmetry effects appear to be essen-
tial in producing anomalies, but stable suppression of
the Hall resistance over many geometries is greatly aided
by the magnitude effects.

VI. LOCAL QUANTUM
PROPERTIES OF JUNCTIONS

In this section, we present results for the current den-
sity j(r), the charge density n(r), and the quantum
phase-space distribution functions W(r, p) (the "Wigner
distribution") and H(r, p) (the "Husimi distribution"),
to be explained shortly, for the states at the Fermi en-
ergy in the types of ballistic cross geometries described
above. These functions are primarily tools for visual-
ization; they allow us to understand the spatial struc-
ture of electron transport which is responsible for the
properties discussed above: the pseudorandom structure

0.10

0.05

A QQ
K
V
-0.05

sistance in terms of the normalized asymmetry and
the total-turning probability, Eq. (6), and then com-
bine square-corner and rounded-corner results in defin-
ing Ri —= crrounded(T»rL/D) qu rsawehich includes only
the effect of rounded corners on asymmetry, and R2 =
~square(TRL/D)rauuded, which includes only the effect of
rounded corners on the magnitude of T~I. . By comparing
traces of R~ and R2 to the true RH, one can evaluate the
importance of the different mechanisms.

Figure 26 sho~s traces of Rq and R~ for three differ-
ent structures. As in the classical calculations (Fig. 13),
the suppression of asymmetry dominates in the four-disk
structure (R/W = 4), the magnitude effect being very
small. In contrast, the magnitude effect is substantial
in both the gradually widened structure and the n = 2
soft-wall structure, also in agreement with the classical
results. Similar results hold for all three energies studied
(k» W/x = 3.5, 4.5, and 6.5, only one shown). It is par-
ticularly interesting that the quantum-mechanical effects
simply enhance the mechanism which produces the classi-
cal ballistic anomalies rather than introducing a different
mechanism for the ballistic anomalies.

In summary, we have used the quantum magnetic-field
traces (R(B)) to make three points about the average
quantum behavior of these ballistic junctions. (1) The
ballistic anomalies in both RH and R~ are enhanced in
the quantum regime compared to the classical regime.
(2) The quantum traces vary with energy, quite dramat-
ically for the gradually widened structure and in agree-
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FIG. 25. Quantum calculation of (a), (b) Hall resistance
(on two different scales) and (c) bend resistance as a func-
tion of magnetic field in the n = 4 soft-wall structure.
Impurity-energy averaged results (W& = 0.13) at three en-
ergies [k»W/s = 3.5 (dotted), 4.5 (solid), and 6.5 (dashed)]
are compared to the classical result (dash-dotted) and the 2D
result (solid straight line). The region of quenching in R~ is
substantially larger than in the classical trace and is enhanced
at lower energy. The solid tick mark in (c) is the value of R& in
a square-corner junction. Ro = (k/e )(s'/k» W)(rnv»/hk»),
Bo = mcv» /eW.
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e f(x, p)dp = n(x),

p f(x, p)dp = j(x) .

(23)

In quantum mechanics, x and p are noncommuting
variables, so it is not possible to simultaneously spec-
ify their values for a transport electron. However, it is
(almost) possible to construct a distribution for such elec-
trons, and this is what the Wigner and Husimi functions
do. The Wigner function for a wave function g is

w(x, p) = f exp i p x'Pi+ePic
x+1/2x'

—1/2x'
A(x") dx" @'(x+ 1/2x') g(x —1/2x') dx' . (24)

This is given in a gauge-invariant form, which is not of-
ten found in the standard references. The line integral
over the vector potential A can be taken over any path
between x —1/2x' and x+ 1/2x', but the straight path
would be conventional. (In our numerical calculations,
we Taylor-expand A about the point x and keep only
the zeroth-order term in line integral. This is no longer
exactly gauge invariant, but it is a very good approxima-
tion for our purposes. )

The Wigner function has several important proper-
ties in common with the classical distribution function.
They satisfy the same moment conditions [Eq. (23)]. In
some (very delicate) limit, which may be referred to as
"h —+ 0" the Wigner function goes over to a classical
distribution function. ' As we will see below, in a very
practical sense the same kind of intuitive information can
be gleaned from the Wigner function as from the classical
distribution function.

The Wigner function has several undesirable features
as well. In general, it is not positive everywhere, so it

H(x, p) = (1/ /)
—(«—«') /a —n(p —p') /a

x W(x', p')dx'dp' . (25)

The parameter o, , which apportions the uncertainty be-
tween position and momentum, may be taken to have any
convenient value. One desirable property of the Husimi
function is that H(x, p) ) 0, which follows from a rewrit-
ing of the expression for the Husimi function:

cannot be directly interpreted as a probability measure.
Associated with this is the fact that it also tends to have
"ghost" features: structure in phase space which goes
away in the classical limit, and requires careful interpre-
tation in the quantum problem. We will point out some
examples of ghost structures below.

The Husimi function H(x, p) cures some of the prob-
lems of the Wigner function. It is defined as the Wigner
function, broadened by a minimum-uncertainty Gaussian
function in phase space:

H(x, p) =
/

/' 1

q2~h)
(x') g' (x')dx'

X

(26)

)
— / —(

' — )'/ A(x") dx"

Another advantage of the Husimi function is that it tends
not to have the "ghost" structures mentioned above for
the Wigner function, so that the classical interpretation
of features in the Husimi function tends to be easier. On
the other hand, H(x, p) fails to satisfy the moment iden-
tities of Eq. (23), although in the cases we are interested
in the violation is reasonably small.

B. Results: Four-disk structure

With these tools in hand, we now proceed to present
the results of numerical calculations of these local quan-
tities for several ballistic-electron structures. Figure 27
shows the T=0 charge density and current density for the
R/&=4 four-disk structure [shown in Fig. 16(b)]. The

square-lattice scale of the calculation is quite fine, with
about 20 lattice points across the width of the lead. This
is a structure which exhibits collimation efFects, with an
accompanying substantial reduction of the Hall coeffi-
cient at low magnetic fields. The scattering states are
taken to be incident from the "West" lead and the Fermi
energy is chosen such that there are four modes occu-
pied. [Hereafter, we refer to leads as North (N), South
(S), East (E), and West (W).] j(x) and n(x) have reflec-
tion symmetry because of the symmetry of the potential
and because B = 0. Within the Landauer-Biittiker pic-
ture, these results correspond to the true transport cur-
rent density and charge density for a situation where the
chemical potential is raised in the W lead, and held at
its equilibrium value in all the other leads. In this plot



10 662 BARANGER, DiVINCENZO, JALABERT, AND STONE

of the current density and in all subsequent plots, the
current streamlines are drawn so that an equal amount
of current flows between every pair of streamlines, and
between the bounding streamlines and the walls.

While some collimation effects are present in current
density in part (b), most such "classical" eff'ects are ob-
scured by the large amount of spatial quantum inter-
ference structure. This manifests itself in the frequent,
pseudorandom twists and turns of the current stream-
lines, in vortices in the current field, and in frequent,
pseudorandom maxima and minima in the charge den-
sity. These features occur on the scale of the Fermi wave-
length, which is about

&
of the width of the leads in this

case. Not surprisingly, these features change rapidly as
the energy or magnetic field are varied, as for RH and
Rgy.

Some structure which is more regular can be seen, for
example, the bunching up of current density in the E
lead, which continues in a regular fashion into the asymp-
totic region; this structure arises from interference be-
tween partial waves of the scattering states exiting in
different outgoing modes. This sort of structure tends to
persist up to higher temperatures, as we will see below.

The appearance of pseudorandom structure in the

(a)
b

FIG. 27. Quantum-mechanical charge and current densi-
ties for scattering states at the Fermi energy in a hard-wall
four-disk geometry [R/W=4, Fig. 16(b)]. Incoming waves en-
ter from the left, EF = lSEq (four modes occupied), k~T=O,
and B=O (a) Equal. ly spaced contours of the charge den-
sity. (b) Streamlines of the current density. The states have
a high degree of spatial structure resulting from spatial wave,
interference. An equal amount of current flows between each
pair of streamlines, and between the last streamlines and the
walls.

charge density and current density are reminiscent of ef-
fects which have been seen in previous studies of "quan-
tum chaos. " The more-or-less uniform overall amplitude
of the density n(x) in the scattering region is similar to
the structure of "ergodic" states in closed systems as dis-
cussed by Heller. ~ The general semiclassical theory of
eigenstates predicts that occasionally, the eigenstate
should show "scars" =nhanced amplitude of the state in
the vicinity of the path of some closed classical particle
orbit in the system. Berry's general analysis, although
performed for a closed system, seems to be applicable to
scattering problems as well. However, we have only rarely
seen evidence of such scars in our calculation; when they
do occur, the enhancement tends to be comparable to
that seen in the charge density of Fig. 27 near the junc-
tion with the E lead. Further investigation is needed to
determine whether the phenomenology of quantum chaos
is applicable to our studies.

Figures 28(a) and 28(b) show the same quantities as
Fig. 27, but at a temperature corresponding to about
one-tenth of the subband spacing. All other physical pa-
rameters are kept the same. We now need to do an energy
integral as part of the trace of Eq. (21); we find that a
48-point approximation for this integral is adequate.

As we have seen earlier, this amount of energy aver-
aging has a dramatic effect on the transport coeKcients,
removing most of the quantum interference structure and
leaving quantities which vary smoothly with energy and
magnetic field. Likewise, most of the spatial interference
is removed from j(x) and n(x), leaving only much more
regular (and easily interpretable) features. Two types of
features survive this degree of averaging.

The first is a spatial interference effect which is also
wave mechanical in origin, has no classical analog, but
survives because of its regularity. This shows up in the
charge density of Fig. 28(a). n(x) does not become uni-
form in space—it still has considerable variations in am-
plitude. However, these variations are no longer pseudo-
random, but have a very regular, simple pattern. One
sees a regular sequence of strips of maxima and minima
on both the SE and NE walls inside the junction. These
are in fact s/anding waves, which have a wavelength of
about A~ (the Fermi wavelength). They have a simple
semiclassical interpretation: they indicate that carriers
are undergoing near-normal reflection from these walls,
and one thus obtains interference between the incident
and reflected wave. Since this effect is not very energy
dependent (A~ varies only slightly in our energy win-

dow), it survives up to relatively high temperature. The
reflection phenomenon does not produce a noticeable fea-
ture in the current density, except that the magnitude of
the current is fairly small in this region, suggesting that
the total current has canceling (i.e. , counterpropagating)
contributions. This standing wave is a valuable diagnos-
tic of Hall resistance suppression, as we illustrate below.

The second kind of feature which survives our finite-
temperature averaging is related to classical effects. The
best example of this is the collimation effect seen in the
current density of Fig. 28(b). As the current streamlines
leave the W lead, they remain concentrated near the mid-
line of the device and are attenuated near the walls; this
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FIG. 28. Quantum and classical results for hard-wall four-disk geometry (R/W = 4) for zero magnetic field. (a) Equally
spaced contours of charge density for scattering states thermally averaged around the Fermi energy (E» 18Ei, k~T 0.6Ei).
There are standing-wave patterns on the lower right and upper right walls inside the junction, indicating the presence of some
flux of counterpropagating electron waves reflecting off these walls. (b) The same as (a) for the current density streamlines.
Note how temperature averaging has removed much of the spatial interference structure in both (a) and (b) compared with
the zero-temperature results (Fig. 27). A and B indicate positions where the Wigner distribution function is shown in Fig.
29. (c) Current density streamlines for a classical sheet resistance in the same structure. The inset shows that the quantum
current density (solid) is much more concentrated near the midline of the structure than the diffusive-classical current density
(dashed), a result of collimation. Here j(x) is shown for the two cross sections indicated in parts (b) (solid) and (c) (dashed).
The classical curve should be completely smooth; the small maxima it exhibits at the edges are a lattice effect.

is the classical effect of increasing the longitudinal mo-
mentum at the expense of transverse momentum via col-
lisions with the walls. A good qualitative way to see that
collimation is really taking place is to compare the quan-
tum current distribution in Fig. 28(b) with the Drude
(i.e. , classical diffusive) current distribution in Fig. 28(c).
This is simply obtained by solving the Laplace equation
on the same quarter-circle cross. The inset shows the
current-density profile across the cross sections indicated.
The quantum ballistic current is clearly larger near the
center and smaller at the walls.

Figure 29 establishes the collimation effect more quan-
titatively by showing the Wigner distribution for elec-
trons in this part of the device. Obviously, since W(x, p)
lives in a four-dimensional phase space, it is not possible
to exhibit the behavior of the entire function. Our choice
is to fix x: and give contour plots of W as a function of
p and pz.

We first show the signer function of electrons at the
position marked A in Fig. 28(b); since this location is
well into the input lead, we expect the momentum distri-
bution to be characteristic of the incident modes. Clas-
sically, the incident electrons [recall Fig. 3(c)j would be
uniformly distributed on the right-hand side of the Fermi
surface (i.e. , p ) 0, corresponding to right-moving elec-
trons); the total classical distribution would also have
some reflected electrons on the left side of the Fermi
sphere, which would be small in this ballistic structure.

Much of the quantum distribution is likewise concen-
trated near the right half of the Fermi surface. (The
Fermi surface is almost a circle as indicated, but it is
slightly distorted because of lattice dispersion effects. )
The electrons on the Fermi surface have a substantial
spread of momentum (much greater than k»r T smearing);
this is a quantum-mechanical effect resulting from mo-

mentum uncertainty due to spatial confinement of elec-
trons in the lead: this momentum spread Lp is roughly
given by W'Lp h. This transverse confinement has
another effect, which is to quantize the allowed trans-
verse momenta: k~ ——nz/W (n is an integer). This
is responsible for the four peaks indicated in the figure,
which correspond to the four propagating modes at this
energy. The other features inside the Fermi surface are
interpretable as ghosts due to interference between differ-
ent wave vectors on the Fermi surface; they can be either
positive or negative depending on the relative phases of
the Fermi-surface contributions.

Figure 29(b) shows W(p, pz) at the position marked B
in Fig. 28(b), where we expect the electron distribution to
show marked collimation. Indeed, all the Fermi-surface
peaks slide around towards forward momentum, in a way
which is consistent with the adiabatic-invariant idea,
which would predict that the peak positions would vary
according to k~ W(y) = const, where W(y) is the varying
width of the lead as it enters the junction. Of course, it is
clear from the figure that this is not precisely what is hap-
pening. In fact, the widening is becoming nonadiabatic
at about this point in this structure; it is known that
there are additional diffraction effects when the widen-
ing is rapid, and these tend to merge the distinct peaks
in the signer distribution together. There is additional
structure in the Wigner function at point B, including
somewhat increased reflected flux, which has no simple
explanation.

C. Results: Adiabatic-rebound structure

%e turn now to some calculations which relate more
directly to anomalies in the Hall coeKcient. Figure 30
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shows calculations for the adiabatic-rebound structure:
a junction with gradually widened leads and fIattened
corners. As shown in Fig. 14, this creates a much more
pronounced anomaly in the low-field Hall resistance, with
a substantial field range in which the sign of the Hall
coefFicient is opposite the conventional two-dimensional
result. The Fermi energy is the same as in the figures
above, and we show the results for the same temperature.

Figures 30(b) and 30(c) show the charge and current
densities when the magnetic field is fixed such that the
Hall coefficient has the maximum anomalous value (tick
mark in the inset). The sign of the field is such that
the classical Lorentz force sends electrons emerging from
the W lead down towards the S lead; nevertheless, more
electrons end up flowing into the N lead, as the current
density in Fig. 30(c) shows. The charge density indi-
cates that a rebound mechanism is responsible for this
reversal. Compare the standing-wave structure in n(x)
at finite B with the B=O result [part (a)j. The stand-
ing wave disappears on the NE wall at finite B, and the
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FIG. 29. The signer distribution as a function of wave

vector for two different positions, for the device and conditions
of Fig. 28. The Fermi surface is shown dashed. The contours
are equally spaced (except that the zero contour is removed);
positive contours are solid, negative contours dashed. (a) The
injection distribution at position A in Fig. 28(b). The func-
tion is largely concentrated on the Fermi surface, as expected
from semiclassical considerations. The four maxima labeled
1—4 correspond to the four incident modes. (b) The distri-
bution in the widened part of the lead, at position B in Fig.
28(b). Note that the main weight of the Wigner function has
moved towards the front of the Fermi surface; this is colli-
mation, in which the transverse momentum decreases at the
expense of the longitudinal momentum.

A~ oscillation on the SE wall becomes much more pro-
nounced. The classical interpretation which is implied
is that electrons incident from the W lead have a high
likelihood of being deflected down by the Lorentz force,
missing the NE wall but striking the SE wall and being
reflected into the N lead.

This picture is definitively confirmed by the Husimi
distributions of Fig. 31. Parts (a) and (b) tell the same
story about the incident distribution and its collimation
as Fig. 29. As discussed above, the Husimi distribu-
tion, compared with the Wigner distribution, is slightly
cleaner insofar as the distribution is everywhere positive
and shows no ghost features; on t, he other hand, the fea-
tures tend to show slightly poorer momentum resolution
in H(x, p). Note several small but important changes in
Fig. 31(b) compared with the B=O case. First, the col-
limated, forward-directed peak is directed slightly down-
wards by the Lorentz force. Second, a noticeable peak
appears on the upper left of the Fermi surface. This sig-
nals that the collimated current density in Fig. 30(c) is
beginning to deflect upwards as it emerges from the W
lead. This eA'ect becomes much more dramatic farther
inside the junction.

Figure 31(c) shows H(p, pz) at position C in Fig.
30(b), in the middle of the standing-wave region. The
collimated peak (labeled D for "direct" ) has evolved
smoothly from part (b), but has been deflected down-
ward much farther in its cyclotron orbit, . A very large
new feature (R for "rebound" ) has emerged, which has
the obvious classical interpretation just described. It is
evident that from this plot that the current at point C,
which is (approximately) the first moment of this distri-
bution, should be quite small since the two peaks almost
cancel, and indeed this current is small in Fig. 30(c).

So, it is evident that even the very classical idea of re-
bounding electron paths has a very quantitative and ob-
vious manifestation even in a fully quantum-mechanical
transport calculation.

Finally, we show one example of the current density for
different boundary conditions in the adiabatic-rebound
structure: those appropriate for the bend resistance—
current flowing in the W lead, out S, and zero in N and
E—rather than for injection from one lead with the oth-
ers grounded. Figure 32 shows that the current density
for the bend resistance is dramatically different in the
quantum ballistic case as compared with the diffusive
case. Collimation has a large effect on the current distri-
bution near both the injecting and collecting leads, and
the rebound from the NE flat surface has produced a very
unusual current density distribution in this quadrant.

VII. CONCLUSIONS

In this paper, we have concentrated on four issues in
the theory of ballistic magnetotransport anomalies, as il-

lustrated in the Hall resistance and bend resistance of a
single junction. First, we emphasize that the geometry
of the junction is crucial in both the classical and quan-
tum results. A gradual widening of the wires or rounding
of the junction corners is essential to produce quenching
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FIG. 30. Quantum results for the adiabatic-rebound geometry [Fig. 14(d)] for Ey 18Ei and k~T 0.6Ei. This structure
shows a substantial reversal of the Hall resistance at small magnetic field. (a) Contours of charge density for zero magnetic field.
Note the standing waves on the lower and upper right walls inside the junction, indicating a "rebound" effect. (b) Contours
of charge density for magnetic field corresponding to maximum reversal of the Hall resistance {B/BO=0.14—the dash in the
inset showing the T=O Err). The sign of the field is such that the classical cyclotron orbits rotate clockwise. Note the strongly
enhanced standing wave on the lower right wall inside the junction, indicating a strong rebound effect at this magnetic field.
Figure 31 shows the Husimi function for positions A, B, and C. (c) Same as part (b) for the current density streamlines. The
large lux transmitted into the upper lead compared with the lower lead indicates the reversal of the Hall coefEcient. An initial
collimation is also evident.

of the Hall resistance over a wide range of energies, as
seen 3 2 in many of the experiments, The rnag-
nitude of the bend resistance and its decay as a function
of magnetic field depends sensitively on the junction ge-
ometry. A soft-wall potential leads to enhanced quench-
ing and substantial energy dependence of the traces. We
reproduced the curious experimental behavior of de-
creased quenching compared to the width of R~ as den-
sity increases, indicating indirectly t hat these exp erimen-
tal wires have rather soft walls.

Our second main result is that the classical and quan-

turn results are qualitatively similar but quantitatively
very diAerent. Therefore, one should not expect quan-
titative agreement between experiments done in the few

( 5) subband regime and the classical model. In ad-
dition to the obvious large quantum fluctuations (Fig.
1), we find substantial diH'erences between classical re-
sistances and average quantum resistances, defined by
either a field-energy average or an impurity-energy aver-
age. DiA'erences are, of course, expected in the limit of
one or two subbands, but we find that they survive to sur-
prisingly large energies —half a dozen subbands in many
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FIG. 31. The Husimi distribution as a function of wave vector for three diR'erent positions, for the device and conditions

of Fig. 30(b). The Fermi surface is shown dashed. The contours are equally spaced; the function is positive everywhere, as
discussed in the text. {a) The injection distribution at position A in Fig. 30(b). This is very similar to Fig. 29(a). (b) The
distribution in the widened part of the lead, at position B in Fig. 30(b). This shows the same collimation phenomenon as Fig.
29(b). However, note that the distribution no longer has reflection symmetry, because of the magnetic field. The main weight
of the distribution is pushed slightly below the axis because of the Lorentz force. (c) The distribution in the standing-wave
region of the structure, position C in Fig. 30(b). The main weight of the distribution in part (b) has been pushed further down
by the Lorentz force (the maximum labeled D for direct); a new maximum labeled R (for rebound) appears, resulting from
electron waves reflected oR' the lower right wall inside the junction. This provides further detailed evidence for the importance
of "rebound" trajectories in this structure.
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cases and up to nine subbands in the concave cavity. The
quantum results show substantially enhanced quenching,
slower decay of the bend resistance as a function of field,
strong variation on an energy scale less than the subband
spacing, and periodic oscillations as a function of field in
certain structures. Since many of the experiments have
been done in the few-subband regime so, ss, 22, 23,3s jt is
likely that the quantum enhancement of quenching has
played a substantial role in these experimental results.
We believe that the recent claim that all observed
ballistic junction effects have a classical basis has been
overstated.

Third, we analyze the mechanism for quenching of the
Hall resistance. From classical results as a function of
trajectory length, we show that quenching and bend re-
sistance are both short-trajectory effects. Long complex
trajectories play no role in determining the qualitative
features of the classical resistance in the structures we

have studied and only a small role quantitatively, casting
doubt on the "scrambling" mechanism suggested in Ref.
2. We analyze both the classical and quantum results in
terms of both the asymmetry for turning left or right and
the total magnitude for turning. The relative importance

J 0

of these two effects depends on the geometry, ranging
from a small magnitude eA'ect in. the four-disk junction to
a large magnitude eKect in the linearly graded structures.
All of the trends in our results can be understood in terms
of collimation, by which we mean structure in the mo-
mentum distribution of the injected electrons. The mag-
nitude eA'ect is clearly connected to collimation through
the enhancement of the forward transmission at the ex-
pense of turning probability (the forward-enhancement
mechanism). The suppression of left-right, asymmetry is
caused by "rebound" trajectories in certain structures,
where it is crucial that these trajectories are preferen-
tially selected by collimation. Other less obvious tra-
jectories may also contribute to suppression of left-right
asymmetry or the magnitude effect.

Fourth, we discuss the local properties of a junction in
the coherent regime. We find that the charge density and
current density are highly structured because of quantum
interference. Collimation is directly evident in the phase-
space distribution (the Wigner and Husimi distributions)
as is the importance of the "rebound" trajectories. Colli-
mation affects both the current density —current is con-
centrated more towards the center than in the sheet resis-
tance case used for comparison (particularly clear in the
bend resistance boundary conditions of Fig. 32)—and the
charge density —the standing wave caused by rebound
trajectories. While the underlying classical features of
ballistic transport are evident in these local properties,
large quantum interference and quantum uncertainty ef-
fects are also clear.
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APPENDIX A: MULTILEAD RECURSIVE
GREEN-FUNCTION TECHNIQUE

FIG. 32. Current density stream hnes for bend resistance
boundary conditions, for the adiabatic-rebound geometry.

(a) Current density for E~ 18Ey (four modes occupied),
k~7 0.6Eq, and B=O. Dashed lines indicate the hard walls

of the structure. (b) Diffusive classical current calculated as-

suming a classical sheet resistance. Note that the quantum
current density emerges from the lead much more forward-

directed than the diffusive-classical current density; this is a
consequence of collimation. An equal amount of current bows
between each pair of stream lines, and between the last stream
lines and the walls.

In this appendix we describe the recursive Green-
function technique used to find the transmission coeK-
cients in the four-probe junctions discussed in this paper.
The method is motivated by the two-probe case reviewed
in the text in Sec. II A. The basic idea is to use Dyson s
equation [Eq. (10)] with a judiciously chosen perturba-
tion to piece together parts of the structure. In the two-
probe case, one adds on one column of the lattice at a
time, Eqs. (11) and (12). Here our approach will be to
move down one lead towards the junction using the two-
probe technique, then add on a cross strip (two leads),
and then continue in the fourth lead moving away from
the junction. This approach can be easily iterated to add
on more than one cross strip and hence to consider six-
or eight-probe structures. We describe the technique
for structures in which all four leads are different, as used
in the impurity averaged traces of Sec. P. For structures
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be the left half-strip terminated at column n plus the
disconnected column n + 1, Qe = Q„+g, , and let
the perturbation be the hopping between columns n and
n + 1, Q = Q(n, n + 1) + Q(n + 1, n). For the trans-
mission coefficient, one takes matrix elements of Dyson's
equation [Eq. (10)] between columns 0 and n+ 1 yielding

Q„+&(0, n+ 1) = Q„(0,nfl(n, n + 1)Q„+&(n +1, n+ 1) .

(Al)

j+m

2j+m+1

D
d

The recursion relation for Q„+i(n + 1, n + 1), Eq. (11),
provides, then, a simple recursion relation for Q„+&(0,n+
1); an analogous equation holds for Q„+&(n+ 1,0). Sim-
ilarly, taking matrix elements between columns 0 and 0,
one finds

FIG. 33. Diagram of a typical junction showing the hard-
wall frame (heavy lines), the lattice (firie lines), and the num-
bering and identification scheme used in explaining the multi-
probe recursive Green function technique.

with four identical leads (Sec. IV), straightforward sim-
plifications based on symmetry save considerable com-
puter time.

To fix our notation, we show a generic four-probe junc-
tion in Fig. 33. The heavy lines are the hard walls of the
structure, and the fine lines show the lattice. (For the
soft-wall cases, the hard walls shown are the "frame" in
which the potential-energy surface varies. ) The sites are
numbered by row (0 to 2j + m + 1) and column (0 to
2k+ i + 1) as shown. We will refer to several special sets
of sites by the letters a—d, A—D, and n—b. For example,
A consists of the sites in column k+ 1 and rows j + 1 to
j + m, i.e. , coordinates ([j + 1,j + m], k + 1). Likewise,
the coordinates for P are (0, [k + 1, k + i]) and those for
B are (j+ 1, [k+ 1, k+ i]). The arguments for the Green
functions will refer either to column numbers as in the
main text (lower-case italic letters) or to these special
sets of sites.

The discussion of our technique divides naturally into
three parts: (1) the recursion along the horizontal strip
before the cross strip (columns 1 to k), (2) the addition of
the cross strip to the horizontal half strip (up to column
k+i) and subsequent recursion out probe 3 (up to column
2k + i + 1), and (3) the calculation of the appropriate
elements of the Green function of the cross strip.

1. Two-probe recursion

G„+,(0, 0) = G„(0,0)

+Q„+,(0, n+ 1)Q(n+ l, n)Q„(n, 0) .
(A2)

Equations (Al) and (A2) are also valid for attaching the
right half-strip after crossing the scattering region, as in
Eq. (12), if one replaces Q„+i by the total Green func-
tion Q. Thus, these equations combined with those in
the text, Eqs. (11) and (12), provide a method for recur-
sive calculation of all the elements of the Green function
needed to determine the scattering matrix in a two-probe
geometry.

2. Addition of a cross strip

We assume for this section that one knows the Green
function for the cross strip, columns k + 1 to k + i in
Fig. 33, disconnected from the horizontal strip. We call
this Green function g and discuss how to calculate the
required elements in Sec. 3 of this appendix once we know
which elements are needed. The problem, then, is to find
the Green function for the structure up through column
k + i, Q&+;, in terms of g and Q&. The appropriate
perturbation to use, then, is the coupling between sites
a and A: Q = g(a, A) +Q(A, a).

To continue the recursion beyond the cross strip into
probe 3, we will need to know G&+, (C,C). Taking various
matrix elements of Dyson's equation, one finds

Q *( ) =g.( )+g( )Q( )Q ( C)

0&+;(a, C) = Q& (a, a) U(a, A) G&+;(A, C), (A3)

Q&+;(A, C) = [I —g(A, A)Q(A, a)Q& (a, a)Q(a, A)]
xg(A, C) .

We use the two-probe recursion technique for the hor-
izontal strip for columns n ( k and n ) k+ i. In order
to calculate the full scattering matrix, one needs several
recursive relations in addition to those in the text, Eqs.
(11) and (12). In particular, these equations provide only
the reflection coeFicient from the right; we need in ad-
dition both transmission coeKcients and the reflection
coe%cient from the left. Consider the same Dyson equa-
tion as for Eq. (11), namely, let the unperturbed system

This is the required expression for Q&+, (C, C) in terms
of elements of g and Q& . Starting with Q&+;(C, C), one
can use the method of Sec. 1 of this appendix to continue
the recursion into lead 3.

In addition to this part of the Green function, we
need the elements necessary for ultimately calculating
the scattering matrix. Thus, formulas for elements of
Q&+; between all combinations of the sites n, P, b, and
C are required. For combinations of the sites P, 6, and C,
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the formulas are exactly analogous to Eq. (A3): simply
replace the left-hand or right-hand argument C by the
desired one. For elements involving sites n, the formulas
are slightly modified, and we give two examples. First,
for sites a and C,

Q~+, (~, C) = &~(~ a)U(a A)&i-+;(A C) (A4)

where G&+;(A, C) is given in Eq. (A3). The right-hand
argument can clearly be either P or 6 in addition to C.
Second, for sites n connected to themselves, the tran-
scription G~ ~ Q, a ~ A, and C ~ n in Eq. (A3) yields
a valid equation. Thus we have given formulas for all the
required elements of L&+, .

3. Green function of the cross strip

In the last part, we assumed that the Green function of
the disconnected cross strip g was known; now we must
state how to calculate the required elements of this Green
function. Looking at the equation for attaching the cross
strip, Eq. (A3), we see that all elements for combinations
of sites P, b, A, and C are needed. Our basic approach
is to obtain these elements through recursion along the
vertical strip from top to bottom; for notation we refer
to the top part as the left half-strip. First, the elements
involving combinations of sites P and b can be obtained
using the recursive formulas of Sec. 1 of this appendix
and are therefore trivial.

Second, we consider elements involving combinations
of sites P or 6 with sites A or C. These elements could be
easily obtained if one knew the diagonal elements of g in
the junction region: using row numbers to label elements
of g (sites P correspond to row 0), one obtains

Q(0, j + n) = g.+„,(O,j + n —1)Q(j + n —1,j + n)

xiL(j+ n, j+ n), (A5)

where n ( m. g(0, j + n) yields two required elements,
one for each of g(P, A) and g(P, C). The diagonal ele-
ments of the full Green function g can be obtained from
Eq. (12) in the text if one knows the Green function for
the right half-strip. Our method, then, is to do two re-
cursive passes, one in the forward direction from row j to
j+ m+ 1 in which we store g. and one in the reverse

direction between the same rows in which we calculate
g.+„and hence g(j + n, j + n) from Eq. (12). Equation

(A5) and its analogue for row 2j + m + 1 instead of 0,
then, gives g between combinations of P or h and A or
C.

Finally, we must find the elements ofg between combi-
nations of A and C. To do this we disconnect the square
at the intersection of the two strips by breaking the b-B
bonds and the d-D bonds (in addition to the a-A and
c-C bonds). Call this Green function Q' and suppose we

know its elements between combinations of sites A or C
and sites A, B, C, and D. Then, taking the perturbation
to be the b-B and d-D bonds, one finds

g(A, A) = G'(A, A) + G'(A, B)Q(B,b)Q(b, A)
+G'(A, D)U(D, d)g(d, A), (A6)

where either argument A can be replaced by C. The ele-
ments of g that are required here can be found as in the
last paragraph with b and d replacing P and b, respec-
tively. (These can, of course, be calculated at the same
time. ) To calculate the elements of G', we use very weak
bonds (10 5 of the usual hopping matrix strength) to
attach sites A and C of the square to perfect half-strips
(constant cross section). For this (fictitious) horizontal
strip, the methods of the last two paragraphs yield ele-
ments of G' between combinations of sites A or C with
sites A, B, C, and D. The purpose of the weak bonding
to perfect half-strips is to eliminate singularities in the
Green function of the closed square without significantly
aA'ecting its typical values. Our results are not sensitive
to the strength of these bonds for strengths in the range
10 —10 . G' calculated in this way yields the desired
elements of g through Eq. (AG).

In summary, then, our recursive multilead method con-
sists of several series of recursions to calculate the Green
function for elements of the junction followed by a past-
ing together of these various elements. First, we find
the required elements of the Green function of the cross
strip g as outlined in Sec. 3 of this appendix. Second,
we perform recursion down lead 1 towards the junction
as described in Sec. 1 of this appendix. Third, we attach
the cross strip to lead 1 using the method of Sec. 2 of
this appendix. Finally, we continue the recursion in lead
3 moving away from the junction, basically as in Sec. 1
of this appendix. The scattering matrix Q is obtained
from the Green function by projecting onto the trans-
verse wave functions as in Eq. (8). To check our method
we calculate the diagonal elements of +St which should
each be 1 by unitarity. In the results presented here, the
average deviation from this expectation is 10 and
the maximum deviation is 10 . In terms of compu-
tational efficiency, this method scales in the same way as
the two-probe recursion method, namely as the cube of
the width times the length, because only strip recursion
is involved; the prefactor is larger because of both the ad-
ditional passes in the junction region and the connecting
of the various segments.

APPENDIX 8: CLASSICAL IN SECTION
DISTRIBUTION FROM THE SEMICLASSICAL

GREEN FUNCTION

In this appendix we obtain the expression for the classi-
cal transmission coefFicients in a ballistic structure from
the semiclassical approximation to the quantum Green
function and discuss the limiting procedures that lead to
the classical results. The starting point is the quantum-
mechanical expression for the transmission amplitude in
terms of the Green function Eq. (8) coupled with the
mell-known functional integral expression for the Green
function. A stationary phase approximation to the func-
tional integral yields an expression for the Green function
in terms of a sum over classical trajectories. For hard-
wall leads of width W, Ref. 38 used this expression for
the Green function to show that the semiclassical trans-
mission amplitude between two modes a and b at the
Fermi energy E is given by
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where the sum is over trajectories s between two cross
sections in the asymptotic regions of the incoming and
outgoing leads, with energy E (or momentum p
+2mE) and the same transverse momentum as the trans-
verse wave functions in the leads. The initial and fi-
nal angles are therefore given by sin 8 = az/kw and
sin8 = bx/kw (a = ka, b = +b). Since a, b are integers
we see that the semiclassical approximation yields the in-
tuitive result that only trajectories which enter and exit
at discrete angles corresponding to the allowed quantized
transverse momenta contribute to transmission. The pre-
exponential factor is

1 KOy

mv cos 8' gct8' (B2)

and the reduced action (virial) is given by

S(b, a, E) = S(yo, yo, E) + h~ayo/W —h~byo'/W,

ti, ——— ) sgn(a)sgn(b) D
(2z ih)'/z

.(a, b)

2
x exp —S, (b, a, E) —i —v,

Ih
' ' '

2

(B1)

T=).Iti. I'
a, b

(B4)

Each term
I ti, I

is given by the sum over pairs of tra-
jectories with the appropriate incoming and outgoing an-
gles.

Since the momentum (which is a classical quantity)
is related to the wave vector by IpI = hk, the allowed
angles become continuous as h ~ 0, or equivalently as
N ~ oo where N = kw/x is the number of modes.
Thus to obtain the classical transmission coeFicient we
first let the mode index in the leads become continuous,
convert the sums over a and b to integrals, and then
change the integration variables from mode indices to
initial and final angles:

where yo and yo are the transverse coordinates (measured
from the edge of the wires) of the extreme points of the
trajectory. The expression for the Maslov index v can be
found in Ref. 38 but will not be needed in what follows
due to the approximations used. To simplify the nota-
tion, we are not writing in Eq. (Bl) the lead indices, nor
the irrelevant phase factor associated with the choice of
the positions of the cross sections in the leads.

The transmission coe%cient between two given leads
is obtained by summing the magnitude squared of the
transmission amplitudes for the occupied modes of these
leads:

xh
2W

x/2
d0 cos 0

(i
db) ) (—I)"~'"& D, D„exp I

—(S, —S„)—i (v, —v„) I—
qh

' "
2

The sums are over classical trajectories s and u with ini-
tial and final angles 8 = +8 and 8' = +8', n(s, u) = 0
if the number of positive angles is even and n(s, u) = 1
otherwise.

Second, we neglect interference terms and keep only
the terms of Eq. (B5) where the two trajectories s and u
are identical, obtaining

k
Tclass-

27r

vr/2

d0cos 0
x/2

d8, ) - It' y.
&I. &cl8') s

x/2
d8 P(8)f (y, 8), (B6)

P(y) = —,P(8) =
2 cos8 .

W
(B7)

Notice that in Eq. (B6) the prefactor kW/7r = mvw/hz

where f (y, 8) = 1 if the trajectory with initial conditions
y, 8 exits by the chosen outgoing lead and f(y, 8) = 0 oth-
erwise. In the last step we have changed variables from 0'
to y and introduced the spatial and angular distributions

is the number of modes in the incoming lead, so that
T,i, scales to infinity as h ~ 0. The occurrence of h
in the expression for T,~, results from the use of Fermi-
Dirac statistics for the classical particles, as shown by
the Boltzmann equation argument given in the text (Sec.
II B) and in Ref. 21.

The Monte Carlo evaluation of the integral Eq. (B6)
consists of generating random values of y and 8 (or trajec-
tories) with probability distributions given by Eq. (B7)
and counting the number of trajectories which go be-
tween the two leads being considered. This is exactly the
intuitive Monte Carlo method originally introduced by
Beenakker and van Houten2 and used here to produce
our classical results.

An important question at this point is the relation-
ship between the exact T(k) and T,~, . Intuitively one
expects that in the limit h ~ 0 (which is equivalent to
k ~ oo for fixed W), distinct classical trajectories should
have arbitrary and rapidly varying phases, allowing one
to neglect the interference terms in Eq. (B5) as we have
done in deriving Tc~, . To make a more precise mathe-
matical statement we consider an energy (or k) average
of Eq. (B5). Since T ~, oc k and scales to infinity as
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k ~ oo (or N), it is natural to scale the average by k
to yield a finite result in this limit. This is particularly
convenient when the scattering region is a billiard, for
which the trajectories are independent of k and the ac-
tion takes the simple form S = hkL where L is the path
length. We define the average over wave vector by

where we require the lower cutoff N, = k, Wjx &) 1 in
order to make the continuum mode approximation valid.
From Eq. (B5) the average of T(k) jk is given by

d0 cos 0 dP ) ) (—1)"&' "&
I

',
~ ~

',
~

exp (
—a —(v, —v, )) (exp [~k(1,, —L„')]}.«'~, «'),

(B9)

In analogy with the reduced action, the reduced length
L, is defined by L, = I, + sin 0, yo, —sin0,'y&, . The
average over k gives a Kronecker delta and therefore
L, = L„. Since the number of trajectories entering at
angle 0 and exiting at 0' is discrete, in the absence of
exact symmetries between classical trajectories, the dou-
ble sum over s and u becomes a single sum over s yield-
ing the strictly diagonal approximation (SDA) of keeping
only pairs of identical trajectories, Eq. (B6). Thus the
quantum T(k) converges to Tci~, when averaged in this
way, once N )) 1. Since the numerical energy-averaging
results in the text were not obtained for N &) 1, it is
not surprising that significant discrepancies remain (see
Secs. IV B and V B). Moreover, this argument does not
imply that T(N ~ oo) —T~i~, ~ 0 since we have ne-
glected terms of order 1jN in 7 or order one in T. In
fact we find numerically that the conductance fluctua-
tions treated in Ref. 38 apparently persist to arbitrar-
ily large k and remain of order unity; so apparently
T(N ~ oo) —T,i, 1 as one findss2 for the universal
conduct ance fluctuations.

Further interesting questions arise when exact symme-
tries are present, so that the condition L, = L„pairs not
only identical trajectories but also symmetry-related tra-
jectories. We call this the quasidiagonal approximation
(QDA) in contrast to the strict diagonal approximation
(SDA) when only identical trajectories are paired. If, for
example, we have mirror reflection symmetry along the
direction of the wires (as we do for all the billiards consid-
ered in this paper), the condition I, = L„ for symmetric
trajectories s and u implies that 0, = 0,'. Therefore the
QDA gives an extra factor of 2 with respect to the SDA
for the 0 = 0' contribution to the integral in Eq. (B9).
Similarly, in the presence of time-reversal symmetry, the
QDA gives an extra factor of 2 to the 0 = 0' contri-
bution to the reflection coefficient. This is the ballistic
analogue of the well-known weak-localization backscat-
tering enhancement. Although such symmetry effects
are quite interesting, because they only affect diagonal
contributions they enter in the total transmission or con-
ductance at order unity; hence they may be neglected to
leading order in calculating T. Thus, although strictly

speaking only the QDA can be obtained as the average
of the quantum transmission coefticient for an infinite k
window, in the limit N ~ oo this gives the same pre-
scription, Eq. (B6), as the SDA, that is, T,~, —NT

The effects of the exact symmetries on the semiclas-
sical transmission can be seen more dramatically before
summing over modes. First, we consider the individual
transmission amplitudes ti„, Eq. (Bl). If we consider two
trajectories s and u related by mirror reflection symme-
try, then S,—S„=0 and the difference in reduced actions
is S, —S„= hx(a, —b, ). Hence if the modes a and li

have different parity we have destructive interference and
tb ——Q, consistent with the parity selection rules. When
the modes have the same parity we get constructive inter-
ference. Second, we consider the individual transmission
intensities

~
ti,

~

and argue that the diagonal approxima-
tion is unphysical for this quantity. An immediate result
of the behavior of the amplitudes is that the strict di-
agonal approximation violates parity rules for symmetric
structures. Although this problem does not occur if one
pairs all trajectories having the same action (S, = S„),
even this approach has the unphysical feature of chang-
ing discontinuously under infinitesimal perturbations of
a symmetric structure. Within this approximation, if we
perturb a structure with mirror symmetry,

~
&b

~
will

jump from zero to a finite value for modes with different
parity and be reduced by a factor of 2 for modes with
the same parity, no matter how small the perturbation
is. Thus, because of the parity constraints, we find that
both of these naive diagonal approximations are unphys-
ical for the transmission intensities between individual
modes.

Turning our attention back to the total transmission
summed over modes, Eq. (B4), we immediately conclude
that the diagonal approximation is inapplicable in the
one-mode limit, since in this case T =~ tii

~
. However,

if we consider the opposite limit of a continuum number
of modes, the extra factor of 2 from parity-allowed pairs
exactly compensates the cancellation of parity-forbidden
pairs in the coarse grain sum over modes, and we obtain
again exactly the same result as the strict diagonal ap-
proximation, Eq. (B6). To summarize, we find that the
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diagonal approximation to the total transmission, and
hence the classical approximation for the conductance, is
valid in the limit of a continuum of modes after an av-
erage over an infinite energy range and is certainly not
valid in the extreme quantum limit.

tb, = —xh(v, vs)'~2 dy' dy xs(y')x. (y)G(y', y, E),

(C1)

APPENDIX C: SEMICLASSICAL LIMIT
WITH SOFT WALLS

In this appendix we derive the classical transmission
coeFicients when there is soft-wall confinement in the
leads. The calculation will be done in two steps, the
first of which is to obtain the semiclassical transmission
amplitude between two modes, analogous to Eq. (Bl).
From this we consider the classical limit and obtain the
classical transmission coeKcient for the soft-wall case,
akin to Eq. (B6). The first step follows closely the pro-
cedures of Ref. 38, while the second step is an extension
of Appendix B. The main difference between the hard-
and soft-wall cases is that in the former we knew the ex-
act transverse wave functions, while we will be using the
WKB approximation for the soft-wall confinement.

An exact starting point for the transmission amplitude
between modes a and b at the Fermi energy E is7

where v, (vs) and y~ (gb) are the longitudinal veloc-
ity and transverse wave function for the mode a (b).
E = h k, /2m+ s~ = h k& /2m + ss, where the first term
is the energy of the longitudinal motion, while s (ss) is
the eigenenergy of the transverse wave-function y (ys)
in the confining potential U(y) of leads. In order to sim-
plify the notation we are taking the same confining po-
tential in both leads and we are not writing lead indices.
G is the retarded Green function between points (z, y) on
the incoming lead and (z', y') on the outgoing lead. We
are not writing the irrelevant phase factor dependent on
z, z', nor the dependence of the Green function on its lon-
gitudinal coordinates. We will maintain this convention
of not writing dependences on z and z' since the trans-
verse sections used to define the transmission amplitudes
will be fixed.

To approximate t~, we replace G by its semiclassical
path integral expression52

G(y', y, E) = . ) QD, exp
~

—S, (y', y, E) —i —p, ~

~(ww l

(C2)

where S, is the action integral along a classical path s at energy E, D = (v'cos0'/m)
( (80/Oy')z ~, 8 and 8' are

the incoming and outgoing angles, and p is the Maslov index given by the number of constant-energy conjugate
points. Consistently with the semiclassical form of the Green function, we will use the WKB approximation for the
transverse wave function

I 2,/m (I
yo(y)=,( cos

~

—„dz/2m[e, —U(z)] ——
~ (C3)

The allowed energies z are given by the WKB quantization condition

dz+2m[s, —U(z)] = (a+ 2)irh,

where yi and y2 are the classical turning points, U(yi) = U(yz) = s . The normalization factor T(s, ) is the period
of the classical orbit with energy c

g2 dz
T(s ) =2m

+2m[s, —U(z)]

Breaking up the cosine of the WKB transverse wave function into the sum of two exponentials, the integral over y in
Eq. (Cl) can be performed by use of the stationary-phase (SP) approximation, valid in the semiclassical limit. The
SP condition for the first (second) term is

~

~

cjS ) = p„= mv sin 8 = ++2m[s, —U(y)] .
Dyp „I

(C6)

That is, the incident transverse momentum of a contributing classical trajectory p& equals the momentum at the
initial point of the trajectory of a classical particle moving in the confining potential U(y) with an energy s . The
incident longitudinal momentum of the classical trajectory is that of the propagating mode a, /2m(E —s ). For
convenience in the evaluation of the quadratic displacements around the SP point, we define for the first (second)
term an effective angle



10 672 BARANGER, DiVINCENZO, JALABERT, AND STONE

(c, —U(y) 5
'~'

p = 0 / arcsin
~ ! 6 arcsin gs, /E . (C7)

For trajectories satisfying the SP condition p = + arcsin gs, /E = g(s ). The SP integration over y then yields

1/2 1

+T(s-)

2
x exp —S,(y', yo, E) + —sgn(g)

yo .7r .7r
dz +2m[s, —U(z)] —i —sgn(g) —i —P,4 2

(C8)

The new prefactor is D = (v' cos 0'/m) i
! (By/By')~ !. I'he new Maslov index p is given in terms of the original p and

the sign of the second derivative of the exponent at the SP point. Since we have in mind the diagonal approximation
of the classical transmission coefFicient the form of the Maslov indices is not important and we will not be writing
explicit expressions for them.

The integration over y' in the exiting transverse section can also be carried out in the SP approximation. The SP
condition is analogous (up to a minus sign) to Eq. (C6) and with an effective angle y defined as in Eq. (C7) the
semiclassical transmission amplitude between modes a and 6 can be written as

1 q 1/4

tb. = (2~a)'i' ) !gT(.)T( ),(...1
&4 '[ ~ —U(y. )][ —U(y'. )]i

g .7r 7r
x exp

~

—S,(g', g, E) —i [sgn(—g) —sgn(p')] —i v, !—
(h ' ' 4 2

'

The sum is over trajectories with fixed effective angles P(c ) and P (sb). yo, 0, and c are related by the SP condition
(C6) [or in the notation of Eq. (C7), p = p(s )], and an analogous relationship holds at the outgoing cross section.
The reduced action (virial) is

~(PI O' E) = S(yo», E) + sgn(P)
yo

I
yp

dz/2m[a', —U(z)] —sgn(p') dz+2m[sb —U(z)]
I

(C10)

and the new prefactor is

m /By)
v'cos0' (Bp') ~ v=v, v'=v'

(C11)

The expression (C9) for the semiclassical amplitude is analogous to Eq. (Bl), with the effective angles g and P playing
the role of the angles 0 and 0 of the hard-wall case. The value of the effective angle for a contributing trajectory is
determined by the transverse energy of the mode. As in Appendix B we obtain the classical transmission coeKcient
by neglecting off-diagonal terms in! tb, ! and converting the sum over occupied modes into an integral. In term, this
integral can be converted into an integral over transverse eigenenergies since the quantization condition (C4) implies
that d(ha)/dc = T(s )/2x The classical t.ransmission coefficient is then given by

C].RSS (,)
+4m [~ —U(y)][(sb —U(y')]

x/2

xh
dycos csin p

vr /2

x/2
dp' cos p' sin &p' )

,
l

sin 0 sin 0' /4m2 [E —U(y)] [E —U(y')]
(C12)

In the last step we changed in each lead from the trans-
verse eigenenergies to the effective angles by using the
relationships sing = gs /E, and sing' = grab/E

So far the partial derivatives in the prefactors D have
been taken at fixed s, and sb (or P and g') and they
incorporated the effect of the neighboring trajectories to
a stationary one (for a given pair of incoming and out-
going modes). Now we are integrating over modes, and

it is useful to express partial derivatives with respect to
the effective angles g and g . For contributing (station-
ary) trajectories a fairly simple exercise in taking partial
derivatives shows that

(
Op' sino'cosg' U y'1—
By' sin P' cos g' E ( By'

(C13)
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Changing the integration variables from (g, g ) to (8, y) P(y) = ~ V'I —U(y)/E,
1

~.fI
Tclass—

(E)

xh (E)
dy P(y)

7I /2

7I /2
d8 P(8)f(y, 8) .

(c14)

P(8) = 2r cos 8 .

The effective width W,~ is defined by

S~(E)
W, fr = dypl —U(y)/E

~I(E)
(C16)

f(y, 8) = I if the trajectory with initial conditions y, 8
exits by the chosen outgoing lead and f(y, 8) = 0 other-
wise. e~ is the Fermi velocity at the middle of the wire

[v(y = 0)j, yq(E) and y2(E) are the classical turning
points at energy E, and the spatial and angular distribu-
tions are

and corresponds to the width of a hard-wall lead that, at
the Fermi energy E, has the same number of modes as in
the present case. As in Eq. (86) the prefactor of T,~, is
the number of occupied modes. The soft- and hard-wall
cases have the same angular distribution P(8) but differ
in their spatial distribution P(y).
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