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Heavy-hole cyclotron harmonic resonance to sixth order, and light-hole cyclotron harmonic reso-
nance to third order, have been observed in high-purity Ge by means of optically detected cyclotron res-
onance (ODCR). It is found that hole cyclotron resonance and its harmonics are more pronounced in
ODCR than in ordinary cyclotron resonance, possibly leading to a clearer description of the hot-hole
distribution under resonance conditions. Hot holes produced by fundamental cyclotron resonance are
distributed rather uniformly in wave-vector space; on the other hand, hot holes produced by harmonic
resonances are localized in such a region that k3 =0, where k3 is the wave-vector component parallel to
the external magnetic field.

I. INTRODUCTION

Degeneracy at the valence-band edge in cubic sernicon-
ductors, such as Si and Ge, is the origin of the charac-
teristic behavior of holes in transport as well as optical
properties of these materials; namely, cyclotron harmonic
resonance, ' many quantum lines of cyclotron resonance
(CR), ' negative effective mass, and laser action using
heavy- and light-hole bands. In this paper we will re-
port observations on cyclotron harmonic resonance in
high-purity Ge among these topics.

Cyclotron resonance was first introduced to solid-state
physics as a direct method of determining the effective
masses of carriers, and subsequently developed into a tool
to investigate scattering phenomena in semiconductors.

With regard to harmonics, Dresselhaus, Kip, and Kit-
tel reported them as extra lines of cyclotron resonance,
while Dexter, Zeiger, and Lax' identified them as the
second and third harmonics of heavy-hole cyclotron reso-
nance. Concerning higher-order harmonic resonance of
heavy holes and that of light holes, there is only a brief
report by Gverdtsiteli, Aleksandrov, and Ovchinnikova.
Here, we have observed harmonics of heavy holes to sixth
order and those of light holes to third order not by means
of ordinary cyclotron resonance but by optically detected
cyclotron resonance (ODCR). Observation of such
higher-order harmonics in ODCR has not been, to our
knowledge, previously reported.

Optically detected cyclotron resonance was observed in
Ge by Baranov et al. ' Later ODCR was used on some
other materials, " ' but the use of the technique did not
make significant progress because of the poor signal-to-
noise ratio. Recently, we have succeeded in observing
very clear ODCR signals. ' In that paper we discuss the
mechanism as well as the advantage of ODCR.

Detailed experimental as well as theoretical studies of
the valence-band edge in Ge were made by Hensel and
Suzuki, ' to determine accurately the five parameters in
Luttinger's Hamiltonian' ' by means of cyclotron reso-
nance with the help of uniaxial stress. They exactly pre-

dieted peak positions of quantum hole cyclotron reso-
nance and explained well experimental results under
thermal equilibrium. However, the hot-hole problem has
not been studied enough so far. Optically detected cyclo-
tron resonance signal directly rejects the information of
hot holes, not to mention that of hot electrons, which will
be discussed in Sec. IV.

In what follows, we will report pronounced harmonics
in optically detected hole cyclotron resonance. We will
further discuss a relation between the experimental re-
sults and the hot-hole distribution problem.

II. EXPERIMENTAL PROCEDURE

We used a high-purity Ge sample in this experi-
ment, where E„—N~ ( 10' cm and sample
size of 3.5X3.5X1.6 mm . After both (110) crystal-
lographic faces of 3.5X3.5 mm were mechanically pol-
ished, the sample was etched by CP4A solution
(HNO3:HF:CH3COOH =5:3:3).

Optically detected cyclotron resonance is observed as a
change in the photoluminescence spectrum caused by cy-
clotron resonance. In order to get ODCR signals, we
monitored the LA-phonon-assisted electron-hole droplet
(EHD) line on the photoluminescence spectrum of the
sample and took ODCR signals by sweeping external
magnetic field.

The experimental setup is basically the same as that in
Ref. 17. Figure 1 shows the block diagram of the
measuring system. A part of the equipment related to
optical fibers has been improved (see Fig. 2). Using the
improved system, we have been able to observe very small
changes in the photoluminescence signal due to cyclotron
resonance. The sample was set in a rectangular
waveguide for 35-CrHz microwaves —one (110) face of
the sample was pasted on the interior of the waveguide by
Apiezon grease —in such a way that the microwave elec-
tric field was always perpendicular to the (110) plane of
the sample. The sample was directly immersed in liquid
helium in order to avoid the heating effect. Experiments
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the [001] crystallographic direction, respectively. Since
the EHD are broken through impact of free carriers
which are heated up through cyclotron resonance absorp-
tion, the intensity of the EHD line on the photolumines-
cence spectrum decreases at resonance positions. Dips in
ODCR traces in Figs. 3(a) and 4 indicate cyclotron reso-
nance of free carriers.

The resonance condition of harmonics as well as funda-
mental resonance is given by the relation co=neB, /m*,
where cu, B„m*, and n are the angular frequency of the
microwaves, the resonance magnetic 6eld, the effective
mass of the charged particles, and an integer, respective-
ly. The nth harmonic resonance is, accordingly, observed
with magnetic 6eld one nth as high as the fundamental
resonance. In other words, harmonic resonance would
occur as if charged particles had heavy- or light-hole

effective mass divided by an integer. Angular dependence
of the hole effective masses obtained from dip positions of
ODCR signals is shown by open circles in Fig. 5. Some-
times harmonic signals, especially the second, of heavy-
hole resonance are not resolved because of the overlap-
ping by the strong electron resonance line. The top solid
line shows the angular dependence of heavy-hole effective
mass theoretically estimated from the expansion formula
for effective mass and the band parameters given by Lev-
inger and Frankl, ' whose values are probably most accu-
rate of all obtained so far through classical cyclotron res-
onance experiments. The solid line for the theoretical
effective mass of light holes was estimated in the same
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FIG. 4. (a) ODCR signals under the same condition as in Fig.
3 except for external magnetic-field direction. Three resonance
lines, i.e., electron cyclotron resonance, the forth and fifth har-
monics of heavy-hole resonance, overlap at -0.1 T. Electron
resonance is dominant for —11 dB microwave power, while the
fourth and fifth harmonics of heavy-hole resonance are dom-
inant for —5 dB microwave power. (b) Local magnification of
(a). The second and third harmonics of light-hole cyclotron res-
onance are clearly observed.

FIG. 5. The angular dependence of hole e6'ective masses ob-
tained from dip positions of ODCR signals, using the relation
co=e8, /m*. See text about the solid lines. At some directions,
resonance positions are hard to identify. For example, the
second harmonic of heavy-hole cyclotron resonance cannot be
distinguished in low-angle regions because of the overlapping by
the strong electron resonance line. In the case of the magnetic-
field direction being in a (110) plane of the sample, the sixth
harmonic of heavy-hole cyclotron resonance is observed only
when the magnetic field is applied along 30'—40 otF the [001]
direction.
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1st
2nd

3rd

Light holes

No large variation
No peak at 0 —10', and graudal increase
at 15 —90'
Gradual decrease at 0 —55', and gradual
increase at 55'—90

way. Band parameters obtained by classical cyclotron
resonance (thermal energy much greater than cyclotron
energy) are somewhat diFerent from those obtained by
quantum cyclotron resonance (thermal energy much less
than cyclotron energy). This is because the classical cy-
clotron resonance line is a gathering of all quantum reso-
nance lines, and yet analysis is done as the classical limit.
In dealing with the resonance of hot holes, we should use
the parameters in the classical region. The other solid
lines in Fig. 5 were obtained from the effective mass of
heavy or light holes divided by the integer. Agreement
between experimental effective masses and solid lines is
fairly good as shown in Fig. 5; slight disagreement mainly
arises from the uncertainty of the band parameters. In-
tensity of the resonances we identify as harmonics in
Figs. 3(a) and 4 increases with microwave power, so that
these resonances are not the quantum lines arising from
transitions between low-lying Landau levels but harmon-
ics of cyclotron resonance. The quantum cyclotron reso-
nance is prominent only when the microwave power is
low and the carrier population at lower Landau levels is
large.

Figure 3(b) shows an ordinary cyclotron resonance sig-
nal under the same condition as we have obtained the
ODCR signal in Fig. 3(a). We have briefly reported in
Ref. 17 that the relative intensity of harmonic against
fundamental resonance is larger in ODCR than in ordi-
nary cyclotron resonance. The characteristic is just seen
in Fig. 3, that is, harmonic resonances are more pro-
nounced in ODCR than in ordinary cyclotron resonance.
For example, the sixth harmonic is observable in Fig.
3(a), while not in Fig. 3(b). Because of this characteristic,
we have clearly observed harmonic resonance to the third
order for light holes and to the sixth order for heavy
holes by means of ODCR. Harmonic resonances of light
holes are shown in Fig. 4(b).

In Table I we show only the qualitative result for the
angular dependence of the observed signal intensity. We

TABLE I. Qualitative dependence of signal intensity of cy-
clotron harmonic resonance on magnetic-field direction. Angles
in the table show those between the magnetic-field direction and

[001] direction of the sample. The magnetic field is rotated
within the (110) plane: 0 corresponds to B~~ [001], 55 to
B(([111],and 90' to B)([110].

Heavy holes

1st No large variation
2nd Gradual increase at 65 —90'
3rd Gradual increase at 55 —90', but impossible

to judge at 0'—55 owing to overlapping peaks
4th Relatively weak at 0'—15', while relatively

strong at 40' —80
5th Relatively strong at 0'—45' and weak at 65 —90
6th Observable only around 30' to 40'.

TABLE II. Selection rules of cyclotron harmonic resonance
at various magnetic-field directions, obtained from the theory
based on Luttinger's Hamiltonian. General selection rules are
given in Table IV of Ref. 3. Circles show allowed transitions,
while crosses show forbidden ones. Transverse or longitudinal
cyclotron resonance is the case when the microwave electric
field is perpendicular or parallel to the external magnetic field,
respectively (Ref. 2). The wave-vector component parallel to
the magnetic field k, is an important element for the selection
rules. The selection rules are common to light and heavy holes.
The fifth harmonic in the case of k3 =0 at 8~~[111] satisfies the
selection rules about rotational symmetry and parity conserva-
tion, so that it is an allowed transition in accordance with Table
IV in Ref. 3. A concrete expression (Ref. 22) of Luttinger's
Hamiltonian, however, indicates that it is forbidden. We take it
as forbidden.

Magnetic-field
direction

Transverse
k3 =0 k3&0

Longitudinal
k3 =0 k3&0

1st

2nd

3rd

4th

5th

6th

[001]
[111]
[110]
[001]
[111]
[110]
[001]
[111]
[110]
[001]
[111]
[110]
[001]
[111]
[110]
[001]
[111]
[110]

0
0
0
X
X
X

X
0
X
X
X
0
X
0
X
X
X

0
0
0
X
0
X
0
X

X
0
X
0
0
0
X
X
X

X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
0
X
0
X
a
X
0
X
X
X
X
0
0

also show selection rules of cyclotron harmonic reso-
nance in Table II for reference. Focusing our attention
on the third harmonic of light-hole resonance, one finds
that the result in Table I and selection rules in Table II
are consistent with each other. The reason why the third
harmonic was observable at 8~~[111] is probably due to
weak mixing of longitudinal resonance caused by disor-
der of microwaves in the waveguide. As for the second
harmonic of light-hole resonance, on the other hand, we
cannot explain the experimental result. Table I shows
that the signal intensity of the second harmonic is strong-
est in case of BE~[110]. Table II, however, shows that in
this case the transverse resonance is forbidden and only
the longitudinal is allowed, which should be very weak in
our experimental configuration. Nevertheless, we ob-
tained a very strong signal. Such a strong longitudinal
resonance cannot be explained merely by disorder of mi-
crowaves.

One may also note in Fig. 3 that the relative intensity
of the hole cyclotron resonance against the electron reso-
nance is larger in ODCR than in CR. This indicates the
difference between hot-hole and hot-electron states, and
the difference in EHD-dissociation efficiency between hot
holes and hot electrons. '
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In addition, one may note that the photoluminescence
intensity slightly increases for the magnetic field of
0.23 —0.38 T with the influence of microwaves when the
relative microwave power is —11 dB in Fig. 3(a). This is
probably due to interaction between EHD and the rni-
crowaves, say for example, enhancement of the EHD for-
mation rate induced by microwaves. Detailed discussion,
however, will be given in a separate paper.

IV. DISCUSSION

The mechanism of ODCR is as follows: Free carriers
are first heated up through cyclotron resonance absorp-
tion and become hot. Next they collide against radiative
objects contributing to the monitored photolumines-
cence, say EHD, and break radiative objects through an
impact dissociation process. ' Signals of ODCR, accord-
ingly, ofFer two kinds of information to us: (1) that of hot
carriers, and (2) that of an impact dissociation process on
hot carriers against radiative objects. As for the latter,
we have discussed in Ref. 23 that interaction between the
same kind of charged particles is dominant in the impact
dissociation process. In this section we treat the former
and discuss the momentum distribution of hot holes un-
der the resonance condition, by considering the warped
energy surface of hole bands derived from a semiclassical
treatment and by considering the transition probabilities
of cyclotron resonance and its harmonics calculated from
quantum theory. Here the difference between fundamen-
tal and harmonic resonances is emphasized. Finally we
try to clarify the reason why harmonics are more pro-
nounced in ODCR than in CR.

The appearance of harmonics in cyclotron resonance
spectra originates in the warping of the energy surface at
the valence-band top. This warped energy surface is
given by

[Ak +[B k +C (k k +k k +k k )]'g2

2777 p

C2

4(B2+ ] C2)1/2[ A +(B2+ i C2)1/2]

(see Ref. 2). The wave-vector dependence of g reflects the
warping and does cause cyclotron harmonic resonance.
When an external magnetic field is applied, it is con-
venient to introduce a new set of coordinate axes by the
following relations:

11 12 13 k1

k2 =T k2ky 21 t22 23

31~32 33 k3 k3

(6)

where T is an orthogonal matrix, k3 the wave-vector
component parallel to the external magnetic field, and k1
and k2 two other perpendicular components. First, let us
examine those holes whose wave numbers are such that
k3 »k1 +k2 Here k1 +k2 is a good parameter to dis-
cuss cyclotron resonance, because the wave vector
changes in a constant energy surface perpendicular to the
external magnetic field. Substituting Eqs. (6) into Eq. (4)
and expanding it in powers of ki/k3 and kz/k3, one ob-
tains

4 g tn 3tn i

g=n Xt', 3 1+
m 3

4t„3

4+t nt 32n

+

pter

k2 2+ ~ ~ e

k3 3

Using simple algebra and the property of the orthogonal
matrix, one can easily show that g„t„3t„„etc.are of the
order of unity at most and the following inequalities hold:

(8)

Ak (1+g),
2&l

(2)

where

m:—mo[A+(B + ,'C )' ]— (3)

Function g is given, with a maximum error of approxi-
mately 0.9% for germanium, by

k-' k,
'

k.
'

g ='g + + (4)
2
3

where

where 3, 8, and C are band parameters, mp the free
electron mass, and k=(k, k, k, ) the wave vector. The
subscripts x, y, and z indicate the crystal principal axes.
The (+) and ( —) signs refer to light- and heavy-hole
bands, respectively. Rewriting this equation artificially,
one gets

If k, /k3 and k2/k3 are small enough compared to unity,
then we have, in the zeroth-order approximation,

g =ng t', 3
——

—,
'

m

thus g becomes independent of wave vector. In this case
the warping disappears and the transition probability of
harmonic resonance vanishes. If such an assumption that
k 3 » k, +k 2 is not applicable, then g explicitly becomes
a function of ki, k2, and k3, that is, the warping effect
remains and the transition probability of harmonic reso-
nance exists except for special external magnetic-field
directions.

The same conclusion can also be drawn from quantum
theory. Then we see a clear distinction between funda-
mental and. harmonic resonances in transition probability
calculated from Luttinger's Hamiltonian. Details in the
calculation of transition probabilities are described in the
Appendix. The calculation with perturbation theory is
applicable only when 8~~[001]. For such holes, whose
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(10)

Landau quantum number n is much smaller than
g =A'k3/eB, the transition probabilities of fundamental
cyclotron resonance as well as the third and the fifth har-
monics are given by

1 (yir2+rz+3y3)'
(n +1),

2 r2

9 yz 'Y3 (n +2)(n +3)

Conduction

Free
Exciton

and

225 (y2 Y3) [Yl(Y2 3r3)+r2)'
(n +1)

2048 y ~(y, y ~+ y2+3y3 }

(n +2)(n +3)(n +4)(n +5)X
8

(12)

EF--

multiplied by 2M e BE2/motto for light holes (upper
signs) and heavy holes (lower signs), respectively (see the
Appendix). Here y„y2,and y3 are Luttinger's band pa-
rameters' and E2 the microwave electric field. The
even-numbered harmonics are forbidden for Bii [001].
One remarkable result is that the transition probability of
fundamental resonance has no g dependence, while those
of harmonics rapidly approach zero as n /g is decreased.
This characteristic is the same as that obtained in the
preceding consideration based on the wave-vector depen-
dence of the warped energy surface. Landau quantum
number n and g in the quantum-mechanical treatment
correspond to k, +k2 and k3, respectively, appearing in
the semiclassical treatment.

Let us next discuss the hot-hole distribution problem in
terms of the above results. Figure 6 is a schematic energy
diagram for the conduction, free-exciton, EHD, and
valence bands in the presence of an external magnetic
field. Only a single parabola is drawn, for simplicity, for
the free-exciton or conduction band. We assume that hot
holes populated in regions A and B have enough kinetic
energy to break EHD. The transition probability of fun-
damental resonance has no k3 dependence, so that hot
holes produced by fundamental resonance can be distri-
buted widely in the band; in other words, both in region
A and in region B. The transition probability of harmon-
ics, on the other hand, rapidly approaches zero, as n /g
or ( k, +k z ) /k 3 is decreased, so that harmonic resonance
can hardly occur in region B. Hot holes produced by
harmonic resonance, accordingly, tend to occupy region
A. Only a limited number of holes are brought about in
region B through relaxation process of high-energy holes.
It is thus concluded that hot holes produced by harmonic
resonance mainly populate region A.

Finally we discuss the impact dissociation process of
EHD by hot holes, referring to Fig. 6. The impact disso-
ciation process occurs through the transition from a state
below the Fermi energy in EHD to a free exciton state,
and at the same time through the transition from a high-
energy state of holes to a low-energy state, that is, the
transition of an electron-hole pair from region E or I' to
region G or H, and the transition of a hole from region 2
or B to region C. The density of states of energy bands in

Vatence

- k3

FIG. 6. Schematic energy diagram of the conduction, free-
exciton, EHD, and valence bands in the presence of a magnetic
field. Only a single parabola is drawn to express the free-exciton
or conduction band for simplicity. The light-hole band is also
abbreviated. The states of free excitons and EHD may be re-
garded as those of electron-hole pairs. A pair of solid arrows in-
dicates dominant process in the impact dissociation
phenomenon of EHD by hot holes. The inset shows schematic
density of states of energy bands under the magnetic field.

D (s)5E ~ g 5k, 5k, 5k, ,
a=const

where

$2
(kf+k~+k3) .

2m

(13)

(14)

If we introduce cylindrical coordinates, Eq. (13) is rewrit-
ten as

D (s)5s ~ g +2m s/fi k3 5p5k3, —
a=const

where

(k2+k2 )1/2

(15)

(16)

the presence of a magnetic field is characterized by the
one-dimensional scheme. At any energy level, the density
of states mainly consists of the states such that k3 =0 (see
the inset in Fig. 6). Here note that this situation holds
even under no magnetic field. The reason is as follows:
Assuming isotropic e6'ective mass m, one can write the
density of states D (E) by
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Each term an the right-hand side is largest when k3 =0.
Thus at any energy level, the density of states mainly con-
sists of the states such that k3 =0. Though the free exci-
ton or EHD states in the presence of a magnetic field are
generally complicated, the same situation as above will
still hold. In Fig. 6, regions A, C, F, and G consist of a
number of states. The dominant process will be the tran-
sition between the regions with accumulated density of
states. For an electron-hole pair in EHD, the transition
from region F to region G should be dominant in the im-
pact dissociation process. It is hot holes in region A that
can contribute to this process to satisfy the law of
momentum conservation. If hot holes in region B drive
electron-hole pairs in region F to region G, the process
needs to include phonon absorption or emission to con-
serve momentum. That is a transition of higher order.
As a result, the transition probability of this process is
small. It is true that hot holes in region B can also drive
electron-hole pairs from region E to region G as well as
from region F to region 8 without phonon absorption or
emission. But regions E and H consist of only a small
number of states. Consequently, the transition rates of
these processes must be small.

From the above discussion, we expect that hot holes in
region A are eKcient for breaking EHD, while those in
region B are not. Hot holes produced by harmonic reso-
nance mainly populate region A, so that they break EHD
more efhciently than those produced by fundamental res-
onance, which populate region B as well as region A.
For this reason, we can conclude that the relative intensi-
ty of harmonic against fundamental resonance is larger in
ODCR than in CR.

resonance compared with that of the electron resonance
is more pronounced in ODCR than in CR, and (2) rela-
tive strength of the cyclotron harmonic resonance to the
fundamental is larger in ODCR than in CR. Owing to
these two advantages, the ODCR technique is considered
to be exceedingly successful in observing characteristic
behavior of hole cyclotron resonance and its harmonics;
and we have clearly observed harmonic resonances to
third order for light holes and to sixth order for heavy
holes by means of ODCR.

By considering the wave-vector dependence of warped
hole bands and the transition probabilities of cyclotron
resonance as well as its harmonics, we have proved that
hot holes produced by cyclotron fundamental resonance
are distributed rather uniformly in the wave-vector space,
while those produced by harmonic resonance are local-
ized in region A in Fig. 6. On the basis of this situation,
we have explained the reason why harmonic resonance is
pronounced in ODCR. Peculiar signals of harmonics in
ODCR reAect one-sided distribution in the wave-vector
space of hot holes produced by harmonic resonance.
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APPENDIX

V. SUMMARY AND CONCLUSIONS

We have investigated ODCR and CR under the com-
pletely identical condition. There exist two remarkable
characteristics; namely, (1) strength of the hole cyclotron

We will calculate the transition probabilities of hole cy-
clotron resonance and its harmonics for B

~ ~
[001] by

means of perturbation theory using Luttinger's Hamil-
tonian. ' We choose units such that %=1 for simplicity,
and later restore A. Luttinger's Hamiltonian is given by

k
D = [(y, +—', y ~ ) y~( k J„+ky J—+k, J, )

—2y3([k, k J [J„,J J+ [k~, k, J [J~,J, ]+[k„kx[[J„J„J)+e~J 8+eq(J B„+JB +J,B,)],
(A 1)

where

[k,k J
=

—,'(k„k +k k ), etc. ,

k=p+e A .

(A2)

(A3)

Here y „y2,y3, ~, and q are Luttinger's band parameters,
p the momentum operator, and A the vector potential.
The operators J satisfy commutation relations of spin —', .
The subscripts x, y, and z indicate the crystal principal
axes. We confine ourselves to the magnetic field in the
(110) plane. If we call 0 the angle between the field and
the z axis, then we can choose such a new (1,2,3) coordi-

nate system that

k = —(ck, —k2+sk3),1

2

k = —(cki+kz+sk3),1

2

k, = —sk, +ck3,

(A4)

where s =sinO and e =cosO. The 2 axis and 3 axis are
parallel to the [110j direction and to the magnetic field,
respectively. The relation between J Jy J and Ji J2 J3
is also given by (A4). We define
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+
k =~.B '+'

8

+
k2 =&eBi

v'2

k3= &—eB g,

(A5)

where [a,a+]=1 because of [k„k2]=eB/i. Now we
confine ourselves to B~~[001], leading to c=1 and s=0.
Since q is very small, we use an approximation of q=0.
Then (Al) is rewritten as

+ /2(a +a+ )(IJ3,J, ] +~J3 . (A6)

Here we chose the following representations for J&, J2,
and J3.
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(A7)

00 —
—,
' 0

0 0 0 —3

The choice of these representations is slightly different
from that in Ref. 19. Now we get a concrete representa-
tion of (A6), i.e.,

D =Do+D

with

I

+
I

+

I

+

+

I
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Here N =a+a. From now on, we consider the case of g, g /n ))1. We solve the eigenvalue problem by regarding D,
as a perturbation. Since the zeroth-order Harniltonian D0 breaks up into two 2X2 matrix operators, we can easily ob-
tain eigenvalues e and eigenvectors g:

eB y3
2r2) + rl+r2 3—

Alp 2 y2

2
1 y3n+ —y +y —6 +3m1 2

2
3 'Y3 n+1

( )
yl

2 r2 g'
" r, y2

—3 2(n+1) +0y 1

y2
(A 10)

0
1,n

C1Qn

C2Qn+1

3 'Y3 (n+1) 1
Qn

~6 'Y3 &n+1 9 'Y3 n+1 n+1 1
Qn+1

(Al 1)

and

2

s2,.= (rl+2r2)
2

+ rl y2+—3
Alp y2

2
3 y3 n

n + —,'(yl —y2+a)+—,2n—
2 y2

y1 K

y2 y2
—3 n +0y 1

y2

(A12)

0
2, n

I
C 1Qn —1

2Qn

+6 y3+n
1

9'Y3 n n 1

3y3n12

4r,'r'

Qn —1

(A13)

from the upper 2 X 2 block, and similarly

2 2

e3 „= (yl+2y2) + yl —y2+3 n+ —y, —y2+6

3 y3 n+12

2 y2

2
—2(n +1)— + +3 (n +1) +0y1 K y3 1

y2 y2 y2
(A14)

0
3, n

I
C3Qn

I
C4Qn+1

3 y3 n+1+O 1

4r2
v'6 'Y3 &n+1 9 ys n+1 n+1 1 0 1

4y,' Qn+1

and

2

(yl —2y2) + yl+y2 —3 n +—'(yl+y2 —3x')

2
3 y3 n+2 r2 g2

2
y1 ~ y3—2n — + +3

2
n +0

y2 y2 y2
(A16)

&6 'Y3 &n 9 'Y3 n + n + 1 + 1
Qn

C3Qn —1

C4Qn 3 y3 n 1
2

4r', ~' "n

from the lower 2X2 block, where n =0, 1,2, . . . and Q„is the eigenfunction of the harmonic oscillator. The function
Q 1 has no signi6cance. The second-order eigenvector is given by the formula of perturbation theory:
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(eli D lio ) (elle D Io )( lo D «lie )
an an i I p p p p p p

i, 1 ~a, n ~t', l il , j, m (ea, n Ei, t )(Ea, n Ej, m )

', I(vs D )( . D )

i, l (e „—s, , )
(A18)

Here a = 1,4 and a =2,3 correspond to heavy- and light-hole types, respectively.
The perturbation giving electric dipole transitions induced by the microwave electric field E=E2e2, where e2 is a unit

vector of the 2 axis, is given by introducing a vector potential

A'=(i/co)E . (A19)

The perturbation matrix D2 is obtained by replacing lt in (A3) by 4+e A, and retaining terms of first order in E. The
result is

1
(y&+y2)(a —a )

+
v'2

—+3/2(y2+ y3)a

—+3/2(y2 —y3)a+

eE~
D2 = --- &eB

COOCO

+3/2(yp+y )a+

+&3/2(y2 —y3)a

(y y )(a a+)

(y y )(a a+)

—&3/2(y2+ y3)a

—&3/2(y2 —y3)a+

(A20)

&3/2( yz+ y 3)a +

+&3/2(y2 —y3)a

(y +y )(a a+)

If we revive A', the transition probability is given by

(A21)

The cases of n= 1 and a =4 lead to the same results, and similarly for the cases of a =2 and o.=3. If we retain terms of
the lowest order in (1/g) in the final results, the transition probabilities of fundamental resonance, the third harmonic,
and the fifth are given by

1 (YtY2+Yz —3Y3)'
(n +1),

2 y

9 'Y2 'Y3 (n +2)(n +3)
(A22)

225 ('Y2 'Y3) I. 'Vt(Xz 3'Y3)+'YH (n +2)(n +3)(n +4)(n +5)
(n +1)

2o48 Y,'(Y,Y, + Y',+3Y', )'

multiplied by 2M e BE&/m pro, respectively. Here the upper signs are for light holes and the lower signs for heavy
holes. The transition probability of the third harmonic is identical for both light and heavy holes. The even-numbered
harmonics are forbidden.
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