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O'W-approximation energies and Hartree-Fock bands of semiconductors
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CR'-approximation calculations have been performed for diamond, silicon, germanium, gallium
arsenide, and indium phosphide using refined numerical techniques. We obtained good but not
perfect agreement of the GW-approximation energies with experiment. Exchange- and correlation-
energy contributions and the Hartree-Fock bands of these substances have also been calculated.

I. INTRODUCTION

When band-structure calculations based on the local-
density approximation (I DA) reached a stage of good
convergence, it became clear that, in spite of the good
description of the dispersion of the energy bands, the
energy differences between conduction bands and valence
bands in semiconductors and insulators calculated within
the LDA scheme are in general too small compared with
experiment.

The central goal of this paper is to demonstrate how
this can be improved by means of the so-called GW
approxima/ion. The principles of this method will be
reviewed shortly in Sec. II. Section III shows the details
of the method used for this work. Section IV compares
the calculated GW-approximation energies with the cor-
responding LDA energies and experimental values for
diamond, silicon, germanium, gallium arsenide, and in-
diurn phosphide. It also shows the contributions of ex-
change and correlation energies for these substances sep-
arately and the corresponding Hartree-Fock band struc-
tures. Section V gives a comparison with previous work.
Finally, the paper concludes with a brief summary in Sec.
VI.

gLDA( I.
) PLDA( ) b(r r I) (2)

This is constructed in such a way as to give an ex-
act solution for the case of the homogeneous electron
gas. 8 The good agreement of LDA band structures
and the excitation spectrum of solids is therefore some-
what unexpected. 5 Nevertheless the agreement is not per-
fect, leading to several attempts to improve the LDA ap-
proximation of the self-energy (2).~~ ~~

A systematic way of constructing calculable approx-
imations of the self-energy operator was initiated by
Hedin. 3 The simplest approximation within this scheme
is the GW approximation (GWA): The self-energy

gGWA(

is approximated in GWA by a convolution with respect
to the frequency variable of the Green's function

this quasiparticle equation where the self-energy opera-
tor is approximated by a local and energy-independent
potential

II. PRINCIPLES OF THE CALCULATIONS
IN GW APPROXIMATION

In the Green's-function technique, all one-particle
properties can be obtained from the quasiparticle ener-
gies sk„and the corresponding wave functions gk„(r).
These are the solutions of the quasiparticle equation

Hgk„(r) = Ho@k„(r) + d r Z(r, r';zk„)gk„(r')

where the Hamiltonian Ho includes the kinetic energy
and the potential energy due to the ion cores and the
valence electrons, and the self-energy operator E sum-
marizes the many-body efI'ects.

The Kohn-Sham equation —the wave equation which
has to be solved in the LDA scheme to obtain the ground-
s/a/e properties —can be regarded as an approximation to

with the screened Coulomb interaction lV along the real
axis. This led to the name of this approximation.
denotes the Fermi energy.

The construction of EG A already includes the quasi-
particle wave functions and energies. Therefore, the ho-
mogeneous electron gas was for a long time the only sys-
tem where GWA results could actually be calculated.
After some first attempts to apply the GVVA to real
systems Hybertsen and Louie~ proposed an iterative
scheme for the calculation of the quasiparticle wave func-
tions and energies by using its LDA counterparts as
"starting values" for the computation. They claimed that
they had already reached convergency after the first itera-
tion, with excellent agreement of the LDA wave functions
with the final quasiparticle wave functions

@LDA( .)
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and very good agreement of the calculated energies with
experimental energies.

III. DETAILS OF THE METHOD

The good agreement of the pseudofunctions~~ used by
Hybertsen and Louie with the wave functions calculated
by the empirical pseudopotential method~ ~s (EPM) is
the basis of the method of von der Linden and Horsch for
the calculation of energy differences between GWA and
LDA. This method was used for the calculation of the
GWA energies reported in this paper and will therefore
be briefly reviewed including the technical improvements
introduced by this work.

Choosing the norm and the overlap of the wave func-
tions as

where the polarization

Ma" (k, q) =
Iq+ &I

ds y ( )]+ —i(g+al r

multiplied by

xgk+~„( ) (14)

f(s~) =
I . ++ 1

&z —~ —i0+ z+~+ iO+) (15)

Paai(k, qi~) = ) Ma "(k, q) [Mai"(k, q)]*
rn: val
n:ron

xf(~~+&, —sk, , ~)
is expressed in terms of matrix elements of the momen-
tum operator

ds y LDA( )]+@LDA( )

d'~ Rk. "(r)] &~ (r) =1

the quasiparticle equation (1) leads directly to

G WA LDA
kn kn d'~'[@~. (r)1

d'~ [@k-(r)] V.', "(r)&~-(r)

-~" "(r r')1@k-(r')
(8)

As the quasiparticle wave functions are expected to be
approximated by the LDA wave functions in an excel-
lent way in (5) gk„(r) can be replaced by gk„(r) to a
good approximation. The superscript LDA for the wave
functions will therefore be omitted from now on in this
paper.

The expectation value of the LDA self-energy can then
easily be evaluated:

The band index m runs over all (occupied) valence, n
over all (empty) conduction bands. For the calculation
of the frequency integral in the evaluation of the GWA
self-energy expression (3) we parametrize the frequency
dependence of the screened Coulomb interaction W
or equivalently of the dielectric function —by means of
a plasmon-pole function.

Following von der Linden und Horsch, 6 the dielectric
matrix is determined using the concept of the dielectric
band s]rnctnre.

The static dielectric matrix saai(q;u = 0) is a Her-
mitian matrix in the reciprocal lattice vector indices and
can therefore be diagonalized yielding the dielectric band
structure representation

saa (q;~ = o) = ) &~a(q)& r[4 (q)]

The orthonormal eigenvectors Pa(q) are assumed to
be frequency independent and the eigenvalues are ap-
proximated by the plasmon-pole form as

2 ( ~ —(cu~p —i0+)

The GWA part requires a much more complicated con-
struction. First, the screened Coulomb interaction W
has to be evaluated. This is most easily done using the
Fourier representation:

W(r, r';~) = —) Q e'~"+ l' Waai(q;~)
q G,G'

M + ((d&g —10+))

z~g
—[1 —A~g(~ = 0)]

and by means of the f-sum rule

(18)

The plasmon-pole parameters, in turn, are determined
by the eigenvalues calculated for u = 0,

Within the GWA screening is described by the dielectric
matrix.

saa (q;~) = 6aa —47re V) Paa (k, q;~), (12)

~p& g + (q+ +) p(+ G') (q+ +')

(19)x Pa, (q)

p(G) is the Fourier transform of the electron density and
wp~

—[p(0)4+e /m] ~ denotes the plasma frequency. ~4

The expectation value of the GWA self-energy
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r E r, r jkn kmr

= (4n.e /V) ) ) MP" (k, q) [MG,"(k,q)j*
q, n Q, Q~

—s~p+e-'"p s—c—a ( q'~)
( 2%2 skm ~ sk+gn i0 (~F ~k+gn)

Z„' = (4~e'/V) ) )
q, n &km ~k+qn + &ql ' ak+qn

x)De "(k, q)(2

The following quantities were introduced:

(24)

0k~ = e(sF —sk~),

= sgn(e'F —Sk ),
(25)

(26)

De "(k,q) = ) MG "(k, q)Pe G(—q),

splits up in a natural way into an exchange and a corre-
lation part,

+~k (22)

where

——(4ze2/V) ) 8,„)(MG" (k, q) (

q, n

f(q) = f(q),
the integration over the critical volume Vp can be easily
performed:

1

VBz
d'g f(q) = —) f(q')"

(~p)

+
V ~ d'g f(q) (34)

It is this integration which is treated in this work with
much more care than in previous work. 45 The GWA
results presented here are therefore of better numerical
quality.

Substituting MP"o(k, q) in the volume Vo around
q 0 by the approximation (32) in the evaluation of
the self-energy in (21) and of the dielectric matrix in

(12)—(15) and replacing all other (continous) functions
by their value at q = 0 in Vp we are left with integrals of
the form

'eu~e = z~e wive/2 (28)

Starting from a given LDA band structure the GWA en-
ergies are calculated from (8) as

GWA LDA + (gGWA pLDA) (»)
The numerical evaluation of these formulas involves in-
tegrations over the Brillouin zone,

1 - 1

V ) (2m)s
q

(30)

They are performed in a specia/ point summation
scheme. The basic idea of this integration scheme
is the division of the Brillouin zone volume VBz into N
volumes V; of equal size leading to the approximation

MG "o(k, q = 0) = (1—6 „)) '
C, "(k)+

q q

Therefore prescription (31)has to be modified: Replacing
the function by an analytically known approximation,

with q; p V;. This method will of course only give good
results for finite X if the function f(q) is well behaved.
However, the functions MG "o(k, q) and De "(k, q) and
also their absolute squares diverge for q —+ 0 according
to

3
a=- dq 1 ) qA„, q,

VBz/& v. ( „, , )
(35)

6-1 d(
bz —, d q pe

Bz/ vo
) &+rsg8

f )S=l
(36)

These can be transformed into surface integrals by the
Gauss integral theorem. By a suitable choice of the posi-
tion of Vp, q = 0 lies in the center of Vp and the surface
integrals do not cause any numerical di%culty.

Starting from the idea of the Brillouin zone the nat-
ural choice for the shape of the volume elements should
be smaller copies of the Brillouin zone. For numerical
purposes we prefer to start from an equivalent primitive
cell of the reciprocal lattice with the shape of a paral-
lelepiped subdividing it into smaller parallelepipeds of
the same shape. The crystal symmetry can be regained
by averaging over all nonequivalent parallelepipeds gen-
erated by all rotational symmetries of the system.

With this choice of Vp the required integrat ions over
the Brillouin zone of the form (34) are performed with
much greater numerical accuracy than the procedure of
Phillips and Kleinman of spherical averaging used by
Hybertsen and Louie and Godby, Schluter, and Sham.
The numerical quality of this procedure had already been
criticized by Gygi and Baldereschi~g who found devia-
tions compared to their own integration scheme as big as
1 eV.

As a side product this method allows for the calcu-
lation of the Hartree-Fock band structure. Since the
Hartree-Fock wave functions in solids are similar to the
LDA wave functions,



1060 R. BOTT

qHFA( ) @LDA(

the energies c&„can be calculated using only the ex-
change contribution (23) to the GWA self-energy ('22).

This leads to the approximation of the Hartree-Fock
energies:

HFA LDA yLDA + yxkn ~km kn kn
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FIG. 1. Calculated electronic band structure (neglecting spin-orbit splitting) along lines of high symmetry for diamond,
silicon, germanium, gallium arsenide, and indium phosphide. The dashed line shows the LBA band structure calculated by
Schmid and Christensen (Ref. 31). The solid line shows the GWA band structure resulting from the addition of these LDA
energies and the GWA corrections calculated in this work.
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TABLE I. Calculated electronic energies (neglecting spin-orbit splitting) at points of high syrn-

metry for diamond. The LDA energies were calculated by Schmid and Christensen (Ref. 31). The
GWA band structure results from the addition of these LDA energies and the GWA corrections
calculated in this work. The experimental values are taken from Ref. 38 (a), Ref. 31 (b), and Ref.
39 (c).

diamond 8
5—7
2—4

1

LDA

13.50
5.66
0.00

—21.39

GWA

15.53
8.84
0.00

—22.77

expt

15 a
7.4 a
0.00

b

8
6,7
5

3,4
2
1

16.01
8.35
9.03

—2.77
—13.47
—15.56

20.27
11.85
11.66
—2.78

—14.19
—16.72

—3
—13
—16

b
b
b

7,8
5,6
3,4
12

Er E0.7k' ~

16.70
4.78

—6.34
—12.69

4.17

21.02
7.86

—6.51
—13.43

7.16

6.0 b
—5 b

—13 b

5.48 c

IV. RESULTS

The method described in the previous section was ap-
plied to diamond, silicon, germanium, gallium arsenide,
and indium phosphide. The EPM band structure based
on the parametrization of Cohen and co-workers~7 ~s was
used. 89 reciprocal-lattice vectors turned out to be suf-
ficient for a good convergency. The energies have been
obtained using the extrapolation of k meshs equivalent

to 64, 216, and 343 points in the Brillouin zone to the
limit of an infinitely fine mesh. The extrapolated energies
diA'ered only by less than 0.05 eV from the correspond-
ing value of the 343-point mesh. The only exception in
this good convergency was the exchange part of the self-

energy of the lowest conduction band in Ge with I'z sym-
metry. A k mesh equivalent to 1000 in the Brillouin zone
had to be used to reach the same accuracy. This state
had already been the issue of longer discussion:4 It is of

TABLE II. Calculated electronic energies (neglecting spin-orbit splitting) at points of high
symmetry for silicon. The LDA energies were calculated by Schmid and Christensen (Ref. 31). The
GWA band structure results from the addition of these LDA energies and the GWA corrections
calculated in this work. All experimental values are taken from Ref. 39.

8
5—7
2—4

1

8
6,7
5

3,4
2
1

7,8
5,6
3,4
1,2

Er —EO.SSkr~

LDA

3.02
2.68
0.00

—12.03

8.42
3.26
1.38

—1.17
—7.10
—9.72

10.27
0.62

—2.89
—7.91

0.50

GWA

3.55
3.68
0.00

—12.38

8.90
4.38
2.06

—1.15
—7.39

—10.04

11.67
1.33

—2.99
—8.15

1.21

expt

4.15(5)
3.35
0.00

—12.5(6)

3.91
2.04(6)

-1.2(2)
-6.6(2)
-9.3(4)

1.13
—2.9

1.17
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TABLE III. Calculated electronic energies (neglecting spin-orbit splitting) at points of high
symmetry for germanium. The LDA energies were calculated by Schmid and Christensen (Ref. 31).
The GWA band structure results from the addition of these LDA energies and the GWA corrections
calculated in this work. All experimental values are taken from Ref. 39.

LDA 6WA expt

Ge 2.74
—0.24

0.00
—12.86

3.60
0.06
0.00

—13.16

3.25
1.0
0.00

—12.56

8

6,7
5

3,4
2
1

7.88
3.76
0.02

—1.37
—7.75

—10.79

8.30
4.73
0.59

—1.36
—8.06

—11.12

4.30
0.86

—1.43
—7.51

—10.29

X 7,8
5,6
3,4
12

9.80
0.68

—3.10
—9.00

10.96
1.31

—3.26
—9.31

1.26
—3.19
—8.55

0.02 0.59 0.86

almost pure s character and has all of its weight localized
on the ion cores. This makes it a problematic case for
any pseudopotential calculation.

A big reduction in computation time was reached by
using the crystal symmetries developing an extension of
the usual special point scheme. The computation of all
dielectric matrices with 89 reciprocal-lattice vector in-
dices necessary in the case of the k mesh equivalent to

343 points requires only about 40 min on a Cray XMP
computer. The evaluation of the self-energies takes an-
other 15 min. This allowed for the use of the k mesh
equivalent to 1000 points in the Brillouin zone for the
exchange energy in Ge.

Figure 1 shows the LDA band structure of Schmid and
Christensens~ calculated with the scalar-relativistic lin-
ear muffin-tin-orbital (LMTO) method, s2 as previously

TABLE IV. Calculated electronic energies (neglecting spin-orbit splitting) at points of high
symmetry for gallium arsenide. The LDA energies were calculated by Schmid and Christensen
(Ref. 31). The GWA band structure results from the addition of these LDA energies and the GWA
corrections calculated in this work. The experimental values are taken from Ref. 39 (c) and Ref.
4I (d).

LDA GWA expt

GaAs 3.91
0.26
0.00

-12.71

4.72
0.93
0.00

—12.94

4.716 c
1.632 c
0.00 c

—13.1 c

8

6,7
5

3,4
2
1

8.36
4.65
0.84

—1.11
—6.76

—11.10

8.95
5.63
1.40

—1.13
—7.41

—11.14

5.6 d
1.85 c

—1 ~ 20 c
—6.70 c

—11.24 c

7,8
6
5

3,4
2
1

10.45
1.39
1.58

—2.70
—6.92

—10.39

11.79
2.24
1.99

—2.89
—7.64

—10.28

2.50 c
2.18 c

—2.80 c
—6.70 c

—10.75 c

&gap 0.26 0.93 1.632 c
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applied also to semiconductors. s The GWA energies
result from adding the calculated energy corrections. Ta-
bles I—V list the energies calculated at points of high sym-
metry of the zinc-blende structure. The top valence band

at F is chosen as zero energy for all band structures.
For the valence bands the LDA energies show good

agreement with the experimental values. The GWA cor-
rections give more or less the same shift for all valence

20
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FIG. 2. Calculated Hartree-Fock band structure along lines of high symmetry for diamond, silicon, germanium, gallium

arsenide, and indium phosphide. The dashed line shows the results of a Hartree-Fock calculation of Svane and Andersen (Ref.

38) using the tight-binding LMTO scheme. The solid line shows the Hartree-Fock band structure resulting from the addition

of the LDA energies calculated by Schmid and Christensen (Ref. 31) and the exchange corrections calculated in this work

according to (38).
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TABLE V. Calculated electronic energies (neglecting spin-orbit splitting) at points of high
symmetry for indium phosphide. The LDA energies were calculated by Schmid and Christensen
(Ref. 31). The GWA band structure results from the addition of these LDA energies and the GWA
corrections calculated in this work. The experimental values are taken from Ref. 39 (c), Ref. 34
(e), and Ref. 42 (f).

LDA GWA exp'

InP 6—8
5

2—4
1

4.21
0.50
0.00

—11.50

5.17
1.23
0.00

—11.75

5.00 f
1.460 c
0.00

—11.6 e

8
6,7
5

3,4
2
1

7.47
4.75
1.30

—0.94
—5.90
—9.94

8.17
5.85
1.97

—0.94
—6.56
—9.97

5.68 e
2.32 e

—0.98 e
—5.93 e
—9.89 e

8
7
6
5

3,4
2
1

9.79
9.45
2.10
1.64

—2.34
—5.94
—9.29

11.28
10.94
2.63
2.60

—2.52
—6.60
—9.16

2.92 e
2.42 e

—2.40 e
—5.93 e
—9.24 e

Cg@p 0.50 1.23 1.46 c

bands which results in a small shift of the GWA energies.
The exception is the second valence band in heteropolar
GaAs and InP which is pushed to lower energies in con-
trast to the experimental values which agree excellently
with the corresponding LDA values.

For the conduction bands GWA leads generally to
an improvement with respect to LDA. Nevertheless the
agreement with experiment is far from perfect. The
most obvious failure is the lowest conduction state in Ge
with I"& symmetry which had already been mentioned
because of its convergency problems. While LDA pre-
dicts a negative gap of —0.24 eV the GWA corrections
are just enough to shift this band 0.06 eV above the va-
lence bands, leaving it 1 eV below its experimental value.
In contrast to this the experimental indirect band gap is
reproduced quite well.

Figure 2 shows the Hartree-Fock band structure de-
rived from the GKA calculations as continous lines in
comparison with the results of a Hartree-Fock calcula-
tion of Svane and Andersen shown as dashed lines. The
agreement is reasonably good.

V. COMPARISON WITH PREVIOUS WORK

The data presented here can claim to stand on more
solid ground than former GWA investigations. The
EPM wave functions are certainly more pleasant concern-
ing their convergency behavior than the pseudofunctions
from a,b initio pseudopotential calculations. The results,
however, show rather poor agreement with experiment
compared to these former GWA results. ' This unantic-
ipated fact will be discussed below.

The calculations with the well-behaved EPM wave
functions have shown that a k mesh equivalent to at least
216 points in the Brillouin zone is required to obtain well-
converged results. The calculations of Godby, Schluter,
and Shams employ a Ir mesh which is equivalent to 27
points in the Brillouin zone, extrapolating these data to
a k mesh equivalent to 64 points. Therefore they may
not have converged yet.

Hybertsen and Louie checked the convergence of their
results with respect to this point using k meshes equiva-
lent to 8, 64, and 216 points in the Brillouin zone. This
proved to be enough in our calculations as well except
for the lowest conduction state in Ge with I'2 symme-
try. Nevertheless by means of the improved integration
scheme the results published here should be more accu-
rate.

The method of von der Linden and Horsch had been
the basis for the GWA calculations of this work. The
diA'erence from this work is their use of a model dielec-
tric function and of another Brillouin-zone integration
scheme. The model dielectric function did not reproduce
the actual random-phase approximation dielectric func-
tion which has to be used in the GWA, In addition the
integration scheme also does not seem to be su%ciently
accurate.

VI. SUMMARY

In this paper a method is presented for the calculation
of the energy corrections of GWA with respect to LDA.
Using well-converged LDA band structures the GWA
band structures of diamond, silicon, germanium, gallium
arsenide, and indium phosphide have been calculated.
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The overall agreement with experiment is quite good but
by no means perfect. The use of an EPM band structure
as input is not absolutely satisfactory and could be one
reason for the discrepancies. Nevertheless even the use of
pseudofunctions from an a,b initio pseudopotential calcu-
lation cannot prevent considerable errors as was shown
for Ge. The experience with GWA calculations from this
work shows that the additional technical approximations
are still not developed suKciently to produce absolutely
reliable GWA results. Questions about the possibility of
the GWA to explain certain physical phenomena can
therefore not be answered yet.
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