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We describe an approach to the solution of the Boltzmann kinetic equation for the evolution of non-
equilibrium electron ensembles in semiconductors under the influence of both phonon scattering and
electron-electron interaction. This approach works well when the interaction with optical phonons is
the dominant scattering mechanism. In this case, the ensemble evolution can be separated into two
stages, the first of which corresponds to the establishment of an intermediate distribution, corresponding
to a quasiequilibrium with the optical-phonon subsystem. To describe the subsequent evolution, we as-
sume that this quasiequilibrium is maintained while the ensemble progresses toward the true equilibri-
um. This assumption implies a certain form of the time-dependent distribution function and renders the
full kinetic equation tractable. The solution thus obtained has been checked against Monte Carlo simu-
lations for both polar and nonpolar semiconductors.

I. INTRODUCTION

Description of the time evolution of nonequilibrium
electron ensembles is one of the most important problems
in applied kinetic theory. None quilibrium ensembles
arise in a variety of situations: thermionic and tunneling
transport in heteroj unction barriers, photoexcitation,
electron heating by light or electric field, etc. At present,
there is no adequate approach to such problems in
general —even in the absence of external fields —apart
from the reasonably accurate, but computationally slow,
Monte Carlo (MC) methods. The purpose of the present
work is to propose a computationally efficient semianalyt-
ic description of the dynamics of nonstationary electronic
ensembles in the absence of an external field and test the
validity of this description by MC calculations.

Our approach is physically based on an adiabatic ex-
pansion with respect to the small parameter r, /r;„,
where 1/r, is a characteristic energy relaxation rate due
to the optical-phonon scattering and 1 /rreprese tns oth-
er inelastic-scattering rates. This parameter is indeed
small in semiconductors, provided the electron energy is
not too high (so that both the intervalley scattering and
the impact ionization processes can be neglected) and
provided the electron kinetics is not dominated by
electron-electron (e-e) scattering. This latter assumption
limits the validity of our approach to relatively low
( ( 10' cm 3) electron concentrations. An important
part of the present work is testing the practical limits on
the adiabatic approach posed by the e-e scattering.

The typical problem we consider is as follows: Let
f; (E ) be the initial electron-energy distribution at time
t=0. If f; is not the equilibrium Boltzmann function,
then it evolves in time because of the electron interac-

E Imod(irico, )]
%Capp

(2)

By definition, c is a periodic function of E with a period
fico, ; in the first period, s =E/%co, The tota. l number of
electrons on a given ladder will be denoted by N,„,(s);
this number is a functional on the initial distribution
f;(E):

N,„,[E;f;(E)]=g D(E")f;(E"),
v=o

(3)

tions with optical phonons, acoustic phonons, and due to
the (e-e) scattering. Under the assumption that
r,~/r;„((1, electrons rapidly establish a quasiequilibrium
with the optical-phonon field and then —on a longer
scale —the true equilibrium is established by other
inelastic-scattering processes. Even though the e -e
scattering does not change the average electron energy, it
counts as an inelastic interaction for our purposes be-
cause, in general, it changes the shape of the nonstation-
ary distribution f(E, t ).

For the quasiequilibrium state, the distribution func-
tion can be determined from the statistical consideration
alone, without actually solving the kinetic equation.
This can be done because the optical phonons are to a
good approximation monochromatic and therefore do
not mix electronic states separated by a noninteger num-
ber of optical-phonon energies %co, . Following Ref. 1,
let us divide all electrons into the energy 1adders

IE' }=(E+v)fico„, 0&E(1, v=0, 1,2, . . . . (1)

Here c. is a dimensionless electron energy, defined modulo
i6COop.
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where D(E) is the electron density of states. The gist of
the rnatter is that X,„, is exactly conserved if the interac-
tion with monochromatic optic phonons is the only
inelastic-scattering process. The regime where the con-
servation of N,„, is a good approximation will be referred
to as mesoscopic. In this regime, the distribution function
evolves toward a state corresponding to the thermal equi-
librium with the optical-phonon subsystem at the lattice
temperature T. In that state, characterized by a "meso-
scopic equilibrium" distribution f (E), the number of
electrons on a ladder c is given by the Gibbs statistics:

n
Zz(e, T) =

&~o„

d/2
~~op d /2
kT I (1+d/2)

where P =Ace—,~/kT,

(e P) —y ( + )y+1/2 —Piv+F)

v=0

—:e ~'@(e ~, —y ——', s),2~

3y=

Ep /kT
N,„,(s, T)=e Z(e, T), (4)

To the extent that inelastic processes other than optical-
phonon scattering can be neglected, i.e., for times

all the Fermi levels E~" can be obtained from the condi-
tion

N,„,(e, T)=N,„,[s;f;(E)] . (7)

Equation (7) determines EF' as a function of T and a
functional on f;(E). From this condition, we find that
the equilibrium rnesoscopic distribution function is given
by the following expression:

where EF" is the chemical potential (Fermi level) of elec-
trons on the ladder e (note that each ladder has its own
E~"), and Z is the partition function,

Qo —E /kT
Z(e, T)= g D(E")e d/2

f (E)= nd 2~
4 mkT, . P (12)

which is normalized to electron concentration n in units
of length

f f(E)D(E)dE=n . (13)
0

A narrow initial distribution is modeled by Eq. (12) with
T, « T and a broad distribution by T; &&T. The resul-
tant f can be expressed in terms of the ratio of partition
functions:

' d/2

(
d 2

4 mkT,
exp

Zq(e, T; )

kT Zz(s, T)
(14)

and Wz, s, U ) is Weber's function.
For the sake of simplicity, we shall describe the initial

nonequilibriurn distribution by the Maxwellian ensemble,
characterized by a temperature parameter T;. With the
density of states (9d), this corresponds to a distribution
function of the form

~(~)
f (E)= exp = exp

E N,„,(c,;f;)
kT Z(e, T)

For d=2, this distribution can be expressed in terms of
elementary functions:

E 1 1f (E ) =exp — exp eRco,~kT

Di(E) =
m&2E '

D2(E)=
m52

'

(2m) ~ i/E
2' fi

2E (d —2)/2
Dq(E) =

I (1+0/2)

d/2

(9b)

(9c)

(9d)

and the partition function (5) can be written in the form

Quite generally, f is a periodic function (any function of
is obviously periodic in E ), modulated by the

Boltzmann factor. A11 the above considerations are valid
for electronic systems of any dimensionality and an arbi-
trary energy dispersion relation. For a given analytic
form of f; (E ) and assuming a particular model for D(E),
we can write f down explicitly.

In the parabolic approximation, the density of states of
a d-dimensional electronic system is expressed in terms of
the effective mass m:

X
P1 7TA 1

mkT;

—fico /k T
OP

—fico /kT.
OP I

For the three-dimensional case, d =3, and for both nar-
row and broad initial distributions the mesoscopic distri-
bution is shown in Fig. 1. Throughout this work, only
the case d =3 will be considered.

In the rnesoscopic regime, the electronic system
possesses a number of unusual thermodynamic and trans-
port properties. ' For example, the average energy,
specific heat, mobility, etc., all behave quite difFerently
than in the true equilibrium. It should be also noted that
the mesoscopic regime can be discussed not only in the
time domain, but also in spatially nonuniform systems.
In this case, the conservation of N,„, is expressed by an
appropriate continuity equation that involves a vector
field called the reduced differential current. These con-
cepts have been proven fruitful in explaining the
Hickmott-Eaves oscillations in current-voltage charac-
teristics of heterostrucure tunneling diodes, as well as
the energy oscillations in thermionic transport over tri-
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angular barriers, discovered recently in MC experi-
ments.

The range expressed by the inequality (6) specifies the
mesoscopic regime rather loosely —"for a sufficiently
large" disparity between ~, and ~;„. An important goal
of the present investigation is to concretize the range of
validity of the mesoscopic distribution for specific
inelastic-scattering mechanisms.

This paper is organized as follows. In Sec. II, we write
the kinetic equation in a form convenient for analytic ma-
nipulations and describe our model for the collision in-
tegral, including terms corresponding to the optical- and
acoustic-phonon scatterings and the e-e interaction. Sec-
tion III describes the initial evolution f,~f, obtained
by solving the kinetic equation with a collision integral
that contains the optical-phonon term only. Section IV
introduces the adiabatic approximation; it is then used to

describe analytically the evolution of f toward the true
equilibrium under the action of all three inelastic-
scattering processes. This evolution can be viewed as the
destruction of the mesoscopic order embodied in f
Comparison with the results of MC simulations is
presented in Sec. V. These simulations have been carried
out assuming the parameters of GaAs in the parabolic
approximation. The case of nonpolar optical phonons,
characteristic of Si or Ge, is also considered, but the e-e
scattering is not included in the MC simulation for this
case. Our conclusions will be summarized in Sec. VI.

II. FORMULATION OF THE TIME-DEPENDENT
BOLTZMANN EQUATION

"r)f(E, r) df(E, r)
at at

af(E, r )

BT

OP

ee

df(E, t)
Bt ac

(16)

with the scattering terms given by the following expres-
sions.

Optical phonons:

In a spatially uniform system we consider, the electron
distribution is spherically symmetric. We shall assume
that the electron-energy spectrum is parabolic and isotro-
pic. The kinetic equation, accounting for the optical-
phonon, acoustic-phonon, and electron-electron interac-
tion, is of the form

0.0
0 1 2 3

Electron-Energy (Units of the Optical-Phonon Energy)

"r)f(E, t )

Bt

B/BE

(E )
t/2 e)3

X I [f(E —1)—e~f (E ) ]g(E ) I, (17)
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FIG. 1. Electron-energy distributions (E)'~ f (solid lines)
corresponding to the mesoscopic functions f (E) that evolve
from the nonequilibrium Maxwellian ensembles characterized
by an initial temperature T; [Eq. (12)]. The illustrated case cor-
responds to the lattice temperature T= 300 K. The equilibrium
distributions are indicated by dash-dotted lines and the initial
distributions by dashed lines. (a) T; =75 K; (b) T; =1000 K.

g(E) = [E(E—1)]' e(E—1) (nonpolar), (18b)

7
OP

e'+2m fftco.,
4A

1
(polar),

Ep
(19a)

7
OP

E' m'"(X
OP OP

2 mps A"

(DK) m

2 frptfl (tft'co, )
( nollpolar ) (19b)

where e(x) is the step function, E,„=(DK)sloi, is the
deformation potential, s is the sound velocity, p is the ma-
terial density, e is the electron charge, and e and ep are,
respectively, the optical and the static dielectric permit-
tivities.

where E=E/A' o,cz is a—dimensionless electron energy in
units of the optical-phonon energy %co, . The operator
es~s %(E):iII(E+ 1) eff—ects displacements by unity.
The function y(E) and the characteristic time r, are
defined difFerently for polar and nonpolar opti. c phonons:

g(E)= ln[(E —I)'~ +(E)'~ ]e(E—1) (polar), (18a)
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Acoustic phonons:

af(E t) 1 1 a
at „r„(E)/ p aE

X E Pf(E)+
aE

where

(20)

ac

.23/2E2 m 5/2+(ricoacm OP

~pa'4
(21)

where E„ is the deformation potential for acoustic dis-
placements. Parameters ~„ is the electron-energy relaxa-
tion time on acoustic phonons at energies equal to the
optical-phonon energy.

Electron-electron interaction:

a (E t) 1 a ' ln(1+aE ) f(E)f (x)' f(x)dx
E

at „(E)'"r„aE 0

+ — f x / f(x)dx+(E) f f(x)dx
aE E

(22)

where

+ee

~e n
1/2( g )

3/26'0' COop

4eoL (i)ico, ) L=
e4

1/2
E0iSCOop

4mpe n.
(23)

(24)

The e-e scattering is nonlinear in the electron concentra-
tion n, and hence the concrete form of (afIat )„depends
on the normalization of the distribution function. Since
we are interested in the situation when the dominant in-
elastic interaction is scattering by optical phonons, it is
convenient to place the n factor in the scattering rate (23)
and normalize the distribution function in terms of the
dimensionless energy E=E /A~, p.

.

=M(c, ) f(c, t ), .
at

(27)

where we have introduced a multidimensional vector
f(E, t)—= Ifo,f„f2,. . . I and a matrix M(s) with the
components

Assuming that this is the case, consider the time evolu-
tion solely due to optical phonons. If Eq. (17) represents
the only term in the right-hand side of the kinetic equa-
tion (16), then the latter can be accurately solved by the
following procedure. '

First, we note that Eq. (17) does not couple the elec-
tron populations belonging to the different ladders (1).
Therefore we can split the kinetic equation into a set of
independent equations:

f f(E)E' dE=1 . (25) f (E, t)= f(v+E, t)—, v=0, 1,2, . . . (28)

In order to convert this function into that with the usual
normalization (13) for d =3, it must be multiplied by a
factor A3=3mfi n(2mA' . co ) /. With this normaliza-
tion, the equilibrium function is of the form

M „(E)= 4 1

r.,3/e+v et' —1

X Iy(E+ v)5

2%3/2

v'7r
(26)

—[y(s+ v+ 1)+e~y(s+ v) ]5

+e~y(E+v+1)5,+, „I . (29)

III. INITIAL EVOLUTION
TOWARD THE MESOSCOPIC QUASIEQUILIBRIUM

For the distribution f; of the form (12) with d = 3, the
initial evolution is dominated by optical phonons, even if
the carrier is not very low. The reason is that the col-
lision integral (22) vanishes identically for any Maxwelli-
an distribution. Because of that, if we start from this dis-
tribution, the e-e interaction will be at first inoperative.
However, as soon as the initial shape (12) is sufficiently
distorted by optical phonons, this is no longer true.
Therefore formation of the mesoscopic distribution
occurs only if the rate of e-e scattering could be neglected
compared to that due to optical phonons. This approxi-
mation is justified at a sufficiently low electron concentra-
tion.

One of the eigenvalues of M equals zero (this is required
for the existence of a stationary solution) and all the oth-
er eigenvalues are real and negative. Although formally
the matrix is infinite dimensional, in practice it can be
truncated without a loss of accuracy. The dimensionality
of the truncated matrix is determined by the temperature
and the width of the initial distribution relative to %co p.
Truncating the matrix at p, v=6 was adequate for all our
examples below. Equation (27) can be efficiently solved
by numerically diagonalizing the truncated matrix Q.
The solution,

f(s t) — eM((E)f (s)

where

f;(E)=—If (s),f (s+1),f (E+2), . . . , I
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is illustrated in Fig. 2 for polar phonons with Pleo
p

36
meV, corresponding to the LO phonon in GaA, T=300

e orm ' withK, and two initial distributions of th f (12)
e narrow distribution is specified b T, =75 K

and the broad distribution by T; =1000 K. We see
e mesoscopic distribution is largely established b h

time of ordrder ~, , which for GaAs equals 0.52 ps.
a ise yte

IV. DESTRUCTION OF THE MESOSCOPIC ORDER
BY INELASTIC SCATTERING:

ADIABATIC APPROXIMATION
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P(s, o)= exp kT Z(s, T)
(32)

The right-hand side of Eq. (17) vanishes for any function
o t e form (31) i.e. '

ve u
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, such functions do not evolve u dve un er
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o ows from the fact that the term [f(E—1)—
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e a er o energies 1), we reduce the kinetic equation
16) into an equation for P(E, t ):
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FIG. 2. Tim
sembles ch

'me evolution of nonequilibrium M 11'axwe ian en-
es, c aracterized by an initial temperature T;, due to the

e illustrated caseoptical-phonon scattering only [Eq. (17)]. The illu
corresponds to the lattice temperature T=300 K. For t +2~
the time-de enpendent distributions are indistinguishable from the
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x,(.,p) a.
i
Kt(s, e )P(E )ds'+ I K, (e, e')P(s')dE'ay(. )

BC 0

»t ay(. )
e '[c, +2E(Np —1)+(Np 1)(2Np —1)]— (33)

where Xo is defined by Eq. (11),and

N~=(1 —e -t')-t,
v —1

K, (E,E')= g Q F( to+,v's+)iM
v=1 p. =O

+e(e —e') g Ft (e+ v, 8'+ p. )
v=O

—P g F3(s+v, s'),
v=O

(34)

(35)

v —1

K, (E,e')= g g F,(E+v, s'+tM)
v=1 p=O

+e(E—e') g F2(e+v, E'+p)

+ g F3(E+v, E'),
v=O

(x y )
—

[y
t/2

~2p(y
3/2 x 3/2) ]

X ln(1+rrx )e ~' +&'

(36)

(37)
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F (x y )
— (y312 x3/2) ln( 1 +(zx 2)e P(x+i ) (38)

r (x y)= —'X x ln(1+ax )e (39)

1It can be shown that 1(. t(c, , E')dE'=0 and, therefore,
0

Eq. (33) is satisfied by P(E) =const.
If the e-e interaction is not included, then the evolution

of an electron-energy distribution function in the adiabat-
ic approximation is described by a simple differential
equation corresponding to the second line in Eq. (33). Its
solution is illustrated in Fig. 3 for two initial distribu-
tions, described by the mesoscopic functions displayed in
Fig. 1. In this calculation, we have used the parameters
of GaAs, taking ~„=8.5 ns, see Table I. We see that ap-
proach to the true equilibrium, corresponding to T=300
K, occurs over a time of order 0.1&„. It should be
stressed that the parameter ~„alone does not set the
scale for the temporal evolution, because of the strong en-
ergy dependence in the right-hand side of (33). As the
median electron energy shifts in the course of the evolu-
tion, the bottleneck that slows the equilibration occurs
when the electron population is weighted heavier toward
lower energies.

With the e-e interaction included, Eq. (33) represents a
rather complicated nonlinear integro-differential equa-
tion. It was solved using a general purpose software
posT. The solutions were represented in terms of a set of
8-spline basis functions, as described in the Appendix.
For typical runs a total of 25 —50 energy points were used
resulting in quite modest run times (a few minutes on a
Cray Research, Inc. XMP/28 supercomputer for the en-
tire transient solution).

Figures 4(a) and 4(b) illustrate the temporal evolution
calculated for the carrier concentration n = 10' cm in
GaAs. The time constant ~„ in this case is about 76 ps,
but the approach to equilibrium occurs substantially fas-
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FIG. 3. Evolution of the mesoscopic distributions
(E )' f (E ) under the influence of acoustic phonons in the adi-
abatic approximation. Lattice temperature T=300 K. (a)

T; =75 K; {b) T; =1000K.

TABLE I. Material parameters used.

Density
Sound velocity
Static dielectric constant
High-frequency dielectric

constant
Optical-phonon energy
Electron effective mass
Acoustic deformation potential
Nonpolar optic-phonon

coupling constant
Characteristic energy

relaxation time on optical
phonons [Eqs. (19a) and (19b)]

Characteristic energy
relaxation times on acoustic
phonons [Eq. (21)]

Characteristic (e-e) relaxation
time at n =10' cm [Eq. (23)]

Notation

P
S

6p

Cuop

E„

Sop

+ac

+ee

GaAs

5.36
5.24

12.9

10.92
36
0.067
7.0

5.2X 10

8.5 X10-'

7.6X 10

Si

2.33
9.04

11.7

52
0.31
7.0

1.55X10'

6.9X 10-"

6.6X10-"

Units

g/cm
10 cm/s

meV
mo
eV

eV/cm
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ter. We note again that no single parameter can be used
to scale the equilibration rate. In the case of e-e scatter-
ing this circumstance is due to the nonlinear nature of the
equation. In particular, the closer the nonequilibrium
distribution to a Maxwellian shape is, the slower is its
equilibration under e-e interaction.

Examination of the curves in Fig. 4(b), corresponding
to the transition from a broad initial distribution, shows a
spike at low energies for the short times after t Tpp i.e.,
immediately after the adiabatic approximation is turned
on. This spike is an artifact of the adiabatic approxima-
tion, resulting from the fact that it exaggerates the rate of
transitions into the low-energy part of the electron distri-
bution function. In reality, these transitions are
suppressed by the low density of states ( cc&E in the
three-dimensional case). In the adiabatic approximation,
the spike is formed due to the high rate of diffusion in the
energy space near the sharp edge of the distribution at
E=hco, which results in an appreciable population in

0

0.8
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Cl

CD

a) 0.6

0.4
Q)

LU

0.2-

T;=75K
T= 300 K

0 2 3 4
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m, T=75 K
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0.0
0.0 0.5 1.0 1.5
Electron-Energy (Units of the Optical-Phonon Energy)

FIG. 4. Evolution of the mesoscopic distributions
(E)'~2f (E) under the influence of both acoustic phonons and
e-e scattering in the adiabatic approximation. Lattice tempera-
ture T=300 K. Carrier concentration n =10' cm . (a) Initial
mesoscopic distribution with T; =75 K and T=300 K; (b) Ini-
tial mesoscopic distribution with T; =300 K and T=75 K.

the region immediately above Acu, that is "instantly"
transferred down by the optical-phonon emission. It
remains an open question whether or not such an e6'ect
can take place in a realistic scattering model.

V. NUMERICAL EXAMPLES: COMPARISON
WITH MONTE CARLO CALCULATIONS

We have performed a number of numerical simulations
with the Monte Carlo codes developed at the University
of Illinois and the University of Bologna. ' The Illinois
computer code was used to simulate the temporal evolu-
tion of nonequilibrium electron distribution functions in
polar semiconductors, using the parameters of GaAs and
including the e-e scattering" as well as both optic and
acoustic phonons. ' The Bologna computer code was
used to simulate nonpolar semiconductors, using the pa-
rameters of Si and including phonon scattering only. Pa-
rameters assumed in our numerical examples are listed in
Table I.

To facilitate the comparison with our analytic results,
we assumed parabolic dispersion relations in the MC
models used. A comparison with more realistic models
showed that this approximation produced no significant
loss i.n accuracy for our examples.

A. Interaction with acoustic phonons only

We begin our comparison by taking an example of Si,
including the scattering by phonons only (both optical
and acoustic). This example is interesting for two
reasons. First, it demonstrates the validity of our ap-
proach for nonpolar optical phonons and, second, it illus-
trates the substantially more rapid degradation of the
mesoscopic order by acoustic-phonon scattering (r„ in Si
is more than two orders of magnitude shorter than in
GaAs). The distribution functions calculated by MC at
several representative times are shown in Fig. 5 by solid
lines. Note that, in contrast to Figs. 1 —4, we are now
plotting the function f(E) itself, without the density-of-
states factor &E. On a logarithmic scale, therefore,
Maxwellian ensembles are represented by straight lines.

The initial distribution is taken as a narrow Maxwelli-
an ensemble, characterized by T; =75 K. As is evident
from Fig. 5, the evolution of this ensemble has two dis-
tinct regimes. In the first regime, corresponding to times
t & ~, , the mesoscopic order is established by the
optical-phonon scattering. In this time range, the MC re-
sults agree quite accurately with the analytic solution (30)
of Eq. (17). For t ~ r, the evolution proceeds in excel-
lent agreement with the adiabatic approximation. To be
consistent in the comparison of the MC and the analytic
curves at similar times, we have taken the solutions of the
adiabatic equation (33) at times shifted by r, , i.e., for
t ~r, , we plot f(E, t r, ) with f(E, t) —given by Eq.
(31).

We have also performed MC calculations off(E, t ) for
polar semiconductors, using GaAs parameters ( Table I).
In the absence of e-e interaction and/or at low carrier
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concentrations (n =10' cm ) the agreement with our
analytic results (Figs. 2 and 3) is excellent, quite similar
to the case of Si displayed in Fig. 5.

B. Inclusion of the electron-electron scattering
and acoustic yhonons

Figure 6 shows the MC and the analytic results for
GaAs at n =10' cm . Both the phonon and the e-e
scattering mechanisms are included. Evolution from a
narrow initial distribution (T, =75 K) to the equilibrium
at T=300 K is illustrated in Fig. 6(a) and that from a
"broad" distribution ( T, =300 K to T=75 K) in Fig.
6(b).

Already at such low carrier concentration, the evolu-
tion of the electron distribution function for t & ~, is
dominated by the e-e interaction rather than by acoustic
scattering. Indeed, as can be seen from Table I, the
characteristic e-e scattering time ~„at n =10' cm is
of the order 0.8 ps, which is much smaller than v;, .
Agreement with the analytic solution is still quite satis-
factory. For the broad initial distribution [Fig. 6(b)], the
adiabatic approximation produces an artificial spike at
low energies for short times immediately after t=~, .
Although, for certain initial distributions, such a spike
may be a real eFect, it is certainly exaggerated by the adi-
abatic approximation, as discussed in connection with
Fig. 4(b). No evidence of this effect has been seen in our
MC calculations for the examples considered.

Figure 7 illustrates analogous results for
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n =10' cm . We see that the adiabatic approximation
still works and the results for t ) 7

p
are in a reasonable

agreement with the MC calculation. However, the evolu-
tion prior to ro is not adequately represented by Eq. (30).
The same trend continues at still higher carrier concen-
trations (n =10' cm, not shown). This is as expected,
because the validity of Eq. (17) rests on the assumption of
the dominant role of optical phonons at short times, an
assumption violated by a strong e-e interaction. Our re-
sults show that the adiabatic approximation works well
even at high carrier concentrations, provided the "ini-
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FIG. 5. Monte Carlo simulation of the time development of
the distribution function f(E, t) (solid lines) subject to scatter-
ing by both optic and acoustic phonons at T=300 K with the
parameters of Si. The initial distribution f; (E) corresponds to a
Maxwellian ensemble (12) with T; =75 K (dashed line). The
equilibrium distribution is indicated by the dash-dotted line.
Dotted lines show the results of analytic calculations: for

p the solution (30) of Eq. ( 17); and for t & ~,p, the solution
of Eq. (33) with ~„=~. For visual convenience, curves corre-
sponding to longer times are shifted with respect to one another
by a decade.
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FIG. 6. Monte Carlo simulation of the time development of
the distribution function f(E, t), including the e-e interaction
and the scattering by both optic and acoustic phonons. Parame-
ters assumed correspond to GaAs. Carrier concentration
n = 10' cm . The equilibrium and the initial distributions are
indicated by the dash-dotted and dashed lines, respectively.
Dotted lines show the results of analytic calculations: for( 'T

p the solution (30) of Eq. ( 17); and for t )~,p, the solution
of Eq. (33). For visual convenience, curves corresponding to
longer times are shifted in (a) with respect to one another by a
decade. In (b), where (E)'~'f(E) is plotted, the same conveni-
ence is achieved by shifting the origin. (a) T; =75 K, T= 300 K;
(b) T; =300 K, T=75 K.
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the inAuence of acoustic phonons and the e-e scattering.
This assumption implies a certain form of the time-
dependent distribution function and renders tractable a
solution of the full kinetic equation.

The solution thus obtained has been checked against
Monte Carlo simulations of both polar and nonpolar
semiconductors. We found that adiabatic approximation
itself works exceedingly well not only at low carrier con-
centrations but also in the intermediate-carrier-
concentration range (up to n —10' cm ). However, the
first stage, corresponding to the establishment of the
mesoscopic distribution, becomes progressively less accu-
rate as the e-e scattering rate becomes comparable to or
exceeds the optical-phonon rate, and already at the elec-
tron concentrations of n —10' cm a significant
discrepancy is found. This discrepancy does not indicate
the failure of the adiabatic approximation but shows the
need for its generalization which would include the e-e in-
teraction on equal footing with optical phonons in the in-
itial stage of the evolution. Such a generalization is feasi-
ble and will be discussed in a subsequent publication.
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APPENDIX: NUMERICAL SOLUTION
OF THE INTEGRAL PDE

0 I

0 2
Electron-Energy ( Units of the Optical-Phonon Energy)

FIG. 7. Same as Fig. 6 but for carrier concentration
n =10' cm

VI. CONCLUSION

tial" distribution at t=7pp is specified correctly. More-
over, we see that the adiabatic evolution is capable of
correcting the mistake introduced by ignoring the e-e
scattering at t (T p.

The software used to solve Eq. (33) is POST. That
software can solve quite general systems of partial
differential equations (PDE s), ordinary differential equa-
tions (ODE s), and integro-differential equations of the
type given by Eq. (33). This appendix describes the gen-
eral form of equations that can be handled by POST and
the formulation of (33) is within that framework.

Let u be a vector of PDE variables of length n„and v
be a vector of ODE variables of length n„. That is, u de-
pends on space x and time t, while v depends on time t
alone. POST internally represents the solution u in terms
of a set of B-spline' basis functions B.(x), with each
component of u given by

We have described an approach to the solution of the
Boltzmann kinetic equation for the evolution of non-
equilibrium electron ensembles in semiconductors under
the inhuence of both the phonon scattering and the
electron-electron interaction. This approach works ex-
tremely well when the interaction with optical phonons is
the dominant scattering mechanism. In this case, the en-
semble evolution can be separated in two stages, the first
of which corresponds to the establishment of an inter-
mediate "mesoscopic" distribution, corresponding to a
quasiequilibrium with the optical-phonon subsystem.
Subsequent evolution is accurately described by what we
call the adiabatic approximation, which consists in the
assumption that this quasiequilibrium is maintained while
the ensemble evolves toward the true equilibrium under

u;(t, x)= g U ;(t)B (x) . . .

J
(Al)

Since the B are known, all information about u(x, t) is
contained in the array U(t). In general, any statement
about the solution of the PDE is equivalent to a state-
ment about its B-spline coefficients in (Al). POST actually
computes U(t) and uses (Al) to evaluate the solution
u(t, x ).

The mechanism used by POST to handle PDE-ODE
coupling is to say that the ODE variables v(t) are cou-
pled to the PDE variables u(t, x) through the values of
the B-spline coefficients U(t) of u(t, x), see (Al), and
their partial derivatives with respect to t, U, . The PDE
is assumed to have the form
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a(t, x,u, u„,u„u„, v, v, )=f(t,x, u, u„,u„u„, v, v, ),
7

(A2)

where a and f are vector-valued functions of their argu-
ments, for I.~x ~R. The boundary conditions are as-
sumed to have the form

bI (t,u(t, L ),u„(t,L ),u, (t,L ), u„,(t,L ),v, v, )=0 ,

bz(t, u(t, R ), u (t,R ),u, (t, R ),u„,(t, R ),v, v, ) =0, (A3)

where bL and bz are vector-valued functions, of length
n„, of their arguments. The ODE's determining the
ODE variables v are assumed to have the form

d(t, U(t ),U„v, v, )=0, (A4)

where d is a vector-valued function of its arguments. The
length of d must be the number of ODE variables, n„,
that is, the length of the vector v.

Consider the example of a linear Fredholm integro-
differential equation of the form

1

u, =u„„+ c(x,y)u(y, t)dy for x H(0, 1), (AS)
0

where c(x,y) is some given kernel. We now recast (AS)
in the form of (A2) —(A4) by introducing ODE variables
v, ( t ), . . . , vz( t ), where K is the number of basis functions
to be used in the spatial discretization of the problem.
Let

d=v —U=o .

Then v =U( t ) and we can functionally couple u back into
the PDE (AS) via v. To see this, note that from (1) we
have

J c(x,y)u(y, t)dy= g U; f c(x,y)B, (y)dy .
0

1If we let c, (x)—: c(x,y)B, (y)dy. , this lets us rewrite
(AS) as

N

u, =u „+g v;(t)c;(x),

which has the desired form (A2) —(A4).
Our integral operators are linear for both Fredholm

and Volterra equations. We used a standard k-point
Gaussian quadrature rule to evaluate the integrals, where
k is the B-spline order used.

The cost of evaluating the integral operators at each in-
stant of time is O(n„). However, the run time of posT is
dominated by the time to solve the resultant linear sys-
tems of equations, which is O(n, ). Significant reductions
in run time can be obtained, on machines such as the
Cray, by vectorizing both the integration rules and the
matrix solution methods. As a result the observed run
time behaved more like O(n, ) and the cost was quite
modest. We note that quasi-Newton methods can be
effective in cases where the kernel c(x,y) is strongly
peaked about x =y, resulting in a further reduction in the
complexity of the matrix solution methods.
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