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Pressure dependences of band gaps and optical-phonon frequency in cubic Sic
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The high-pressure behavior of the direct and indirect band gaps in zinc-blende-structure SiC is exam-

ined with use of self-consistent ab initio pseudopotential calculations. The fundamental band gap from

I » to X& is found to decrease linearly with pressure up to 200 kbar. This result disagrees with a recent
experimental finding of strong sublinear behavior at pressures of 10 to 15 kbar. The linear pressure

coefficients of the fundamental band gap and the transverse-optical-phonon frequency at the I point in

the Brillouin zone are in good agreement with measured values.

In recent years, ab initio density-functional calculations
based on the local-density approximation (LDA) have
been successful in describing the structural properties of
solids. ' However, the LDA band gaps of semiconductors
and insulators have been consistently underestimated by
about 30—50%%uo compared with experiments. Despite
the discrepancies between the calculated and measured
band gaps, the pressure variations of the band gaps in
semiconductors have been correctly described. Since
most of the band gaps vary linearly with pressure for very
low pressures, the calculations of the pressure coefficients
for the gaps were usually performed by reducing the
volume isotropically on the order of 1 —2 % near the equi-
librium volume. This volume reduction corresponds to a
pressure of about 10 kbar. The sublinear behavior of the
band gaps becomes appreciable only at higher pressures.

Silicon carbide occurs in numerous hexagonal and or-
thorhombic structures in addition to the cubic form. In
recent first-principles theoretical calculations, the ex-
plored ground-state properties of SiC in the zinc-blende
(P or 3C-type) and wurtzite (2H) structures were shown
to be in good agreement with experiment. The calcula-
tions suggested that the cubic .phase of SiC transforms
into the more ionic rocksalt structure as pressure is ap-
plied above 600 kbar. For SiC in the cubic structure, re-
cent experiments showed that the fundamental gap varies
linearly with pressure up to 10 kbar, but strong sublinear
behavior is exhibited for pressures of 10 to 15 kbar. ' Al-

though this measured linear pressure coefficient of the
band gap agrees well with one previously reported
theoretical result, the pressure variation of the gaps at
very high pressures has not been previously calculated.

In this paper we examine the sublinear behavior of the
band gaps in cubic SiC for pressures up to 600 kbar. We
find the linear pressure dependence of the indirect and
direct gaps up to 200 kbar. For the fundamental band

gap from I I5 to X&, the calculated linear pressure
coefficient is in good agreement with experiment. How-
ever, the sublinear coefficient is found to be much smaller
than the measured value. Other band gaps (I »~I', and

I ",5~L;) are shown to increase with pressure and have
pressure coefficients larger by an order of magnitude than
that for the fundamental gap. For the direct I I5-I

& gap,
sublinear behavior is found to be more significant above
200 kbar and its second-order pressure coefficient is much
larger compared to that of the fundamental gap.

In the present calculations we use the ab initio total-
energy —pseudopotential method' within the framework
of the local-density approximation. " The exchange and
correlation functional is approximated by the %'igner in-
terpolation formula. ' The nonlocal pseudopotentials are
generated from the scheme proposed by Hamann,
Schliiter, and Chiang. ' The crystal total energies are cal-
culated self-consistently in momentum space. ' The
pseudo-wave-functions are expanded in a plane-wave
basis set with a kinetic-energy cutofF (E~ ) of up to 60
Ry. This size of the Hamiltonian matrix was shown to be
successful in providing accurate ground-state properties
of cubic SiC. The lattice constant (a o ), the bulk
modulus (Bo), and the pressure derivative of the bulk
modulus (Bo ) were calculated to be 4.361 A, 2.12 Mbar,
and 3.7, respectively, while the measured values for ao
and Bo are 4.360 A and 2.24 Mbar, respectively. 15 16

However, we are not aware of the experimental value for
Bo. The summation of the charge density over the Bril-
louin zone is done using uniform grids of k points. A
grid of ten k points in an irreducible wedge of the Bril-
louin zone is chosen for the zinc-blende structure.

In Fig. 1, the calculated equation of state for the zinc-
blende structure of SiC is plotted. This curve is obtained
from the Murnaghan equation of state, ' to which the
volume-dependent energies were fitted, and drawn for
pressures up to 600 kbar. This pressure represents the
transition pressure for the zinc-blende to rocksalt phase
transformation and it is achieved by a volume compres-
sion down to about 0.825Vo. At this point, the lattice
constant is isotropically reduced by about 6% from its
equilibrium value. It is noted that nonlinearity in the
equation of state occurs above 100 kbar. Because of this
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FIG. 1. The equation of state for cubic SiC is drawn for pres-
sures up to 600 kbar. 2.24
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nonlinear behavior, the simple use of the bulk modulus to
convert volume changes into pressures, which is usually
used to calculate the pressure coefficients and is con-
sidered to be accurate near the equilibrium volume, pro-
duces large uncertainties in the region of very high pres-
sures. To avoid these uncertainties, in the present calcu-
lations we use the pressures converted from the volume
changes through the equation of state.

We find the fundamental band gap of cubic SiC to be
indirect from I » to X&. The calculated value of 1.21 eV
for this band gap is underestimated by 50%, compared
with the measured value of 2.42 eV. ' This underesti-
mate is attributed to the use of the LDA. The pressure
variations of the fundamental gap and other I &5-I', and
I »-1. ; gaps are shown in Figs. 2 and 3, respectively, for
pressures up to 600 kbar. With increasing pressure, all
the band gaps are found to vary linearly up to 200 kbar;
above 200 kbar, the sublinear behavior becomes apprecia-
ble. Compared with the recent experimental result that
the strong sublinear behavior occurs at about 10 kbar, '

our calculated pressure for the nonlinear pressure devia-
tion of the fundamental gap is much higher. Since the
experiments were done for pressures up to 15 kbar, exper-
imental data at higher pressures are needed for more pre-
cise comparisons.

In Table I, the calculated linear and sublinear pressure
coefficients are listed for each band and compared with
experiment. For the fundamental optical gap, the calcu-
lated linear pressure coefficient of —0.33 meV/kbar is
consistent with the previous calculation in which the bulk
modulus was used to estimate pressures corresponding to
volume changes. This coefficient is also in good agree-
ment with the measured value of —0.34 meV/kbar. '

However, the sublinear coefficient is an order of magni-
tude smaller than experiment. For the I

&
and L,

&
con-

duction bands, both the linear and sublinear coefficients
are found to be an order of magnitude larger than for the
fundamental gap.

Compared with III-V heteropolar semiconductors,
much of the ionic character of SiC is believed to result
from the difference in the core sizes of C and Si. Al-

FIG. 2. The pressure dependence of the fundamental band
gap (I »~X& ) in SiC is plotted as functions of relative lattice
compression (upper scale) and pressure (lower scale). The solid
line represents a least-squares fit to the calculated points. On
the y axis, energies are shifted to produce the correct band gap
of 2.42 eV at zero pressure.
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FIG. 3. The pressure dependences of the I » —+ I
&

and
I »~L& band gaps are plotted as functions of relative lattice
compression (upper scale) and pressure (lower scale). The solid
lines represent least-squares fits to the calculated points.

though the charge density of SiC resembles those of ionic
crystals, its lattice constant, bulk modulus, cohesive en-

ergy, and pressure coefficients of the band gaps are fairly
well described by choosing the average of the values for
Si and C. For Si and C, their fundamental gaps are found
to vary almost linearly with the pressure coefficients of
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dE„k/dP d E„z/dP

TABLE I. Band energies (E„i, in eV), linear (dE„i,/dP in

meV/kbar), and sublinear (d E„k/dP in meV/kbar ) pressure
coefficients for cubic SiC at symmetry points (with respect to
the top of the valence bands). Values in parentheses are experi-
mental data.
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FICx. 4. The pressure dependences of the band gaps for Si in
the diamond structure are plotted as functions of relative lattice
compression (upper scale) and pressure (lower scale). The solid
lines represent least-squares fits to the calculated points. The
values in parentheses are the pressure coefficients of the band
gaps in units of meV/kbar. The negative band gaps shown for
pressures above 400 kbar at the X l and 0.84X

&
(i.e.,

k=0.84k„, ) points are resulted from the underestimation in
1

the LDA calculations. In fact, the diamond structure is only
stable up to about 100 kbar because of the structural phase tran-
sition into the P-Sn phase.

—1.5 and 0.58 meV/kbar, respectively, up to 200 kbar, as
shown in Figs. 4 and 5. We also find the pressure
coefFicients at the X& points to be close to those for the
minimum conduction bands. Thus, it is unlikely that the
strong sublinear behavior in SiC appears below 200 kbar.
In fact, the magnitude of the calculated value of —0.33
meV/kbar for the linear pressure coefFicient of the funda-
mental gap in SiC is a little smaller than the magnitude of
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FIG. 5. The pressure dependences of the band gaps for C in
the diamond structure are plotted as functions of relative lattice
compression (upper scale) and pressure (lower scale). The solid
lines represent least-squares fits to the calculated points. The
values in parentheses are the pressure coefficients of the band

gaps in units of meV/kbar.

the average ( —0.46 meV/kbar) of the coeKcients for Si
and C.

An interesting property of SiC is that the magnitude of
the pressure coe%cient for the XI conduction band is
much smaller than for group-IV elemental (Si and Ge),
III-V, and II-VI compound semiconductors, which have
values around —1.5 meV/kbar. This small pressure
coefricient for SiC results from the fact that the X& con-
duction band in C has a positive coe%cient of 0.53
meV/kbar. Since the d state in C is absent in the low-
lying valence states, the d-state energy is much higher
than that for Si. Although the charge densities for the
X& conduction bands in semiconductors are mostly a-
like, ' the d-state contribution to the charge density at
the X', point is less for SiC and much less for C as com-
pared to Si. Thus, the X& band in SiC decreases very
slowly with pressure while it increases in C.

In Fig. 6, the pressure dependence of the transverse op-
tical (TO) vibration mode at the I point in the Brillouin
zone is shown. For each volume considered, the total en-
ergies are expanded in the atomic displacement u, and
then the phonon vibrational frequency is calculated from
a harmonic term. Since the coefFicient of the u term is
found to be negative, the bond depression costs more en-
ergy than for the stretching along the [111] direction.
Compared with the experimentally fitted phonon frequen-
cy up to second order in pressure,

~~o= (796.2+0.3)+(3.88+0.88) X 10 'I'

—(2.2+0.4) X 10 P

Our fitted expression for the phonon frequency is
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TABLE II. Calculated TO(l ) phonon frequency (v) and
mode-Gruneisen parameter (y) for cubic SiC at an equilibrium
volume of 20.7 A per molecule.
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FIG. 6. The pressure dependence of the TQ(I ) phonon fre-

quency is plotted as a function of pressure. The dashed and

solid lines represent the experimental data from Ref. 20 and the

present calculations, respectively.

COTQ 766.4+4. 1 3 X 10 'P —2. 34 X 10 P'

where co and P are given in units of cm ' and kbar, re-
spectively. Thus, the calculated values for coTo (see Table
II) and its linear and second-order pressure coefficients
are in good agreement with experiments. We find coTQ to
increase linearly with pressure up to 100 kbar with no
abrupt changes up to 250 kbar considered here. From
the linear pressure coefficient, we estimate the mode-
Gruneisen parameter y= —Blnco/BlnV for the TO(I )

mode to be 1.12. This calculated value is consistent with
other theoretical results, but it is a little smaller than one
previously reported experimental value of 1.56. Since

Present calc.
Other calc.
Expt.

23.0
22.8'
239

1.12
1.01'
1.56b

1.03'

'Reference 7.
Reference 19.
This value is obtained by using our results for Bo and Bo (see

the text for details).

these experimental data were obtained from crude esti-
mates for Bo and Bo, which were taken from an average
value of those for C and Si, a direct comparison cannot
be made. However, if we use our results for Bo, Bo, and
ao, we find a value of 1.03 for y, which is in better agree-
ment with our calculational result.

In conclusion we have found an almost linear pressure
behavior for the fundamental band gaps in cubic SiC, Si,
and C up to 200 kbar. Although the linear pressure
coefficient in SiC is in good agreement with experiment,
the second-order pressure coefficient is much smaller
than the measured value. Thus, we suggest that further
experiments at very high pressures are needed to resolve
such a discrepancy. For the TO(I ) phonon mode, the
calculated vibrational frequency and its pressure depen-
dence are in good agreement with experiment.
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