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Theory of pressure-induced magnetic and metal-insulator transitions
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A theory of pressure-induced simultaneous metal-insulator and magnetic phase transitions is present-
ed. It is based on a model consisting of a periodic lattice with (1) an itinerant-electron band, (2) a narrow
dispersionless band (localized states), (3) a hybridization term, (4) a very strong short-ranged repulsion
between electrons of opposite spin in the localized states, and (5) a moderately strong short-ranged repul-
sion between electrons in the itinerant and localized bands. The problem is treated in the Hartree-Fock
approximation, allowing spontaneous ferromagnetic broken symmetry. Pressure, which mainly changes
the energy separation between the two bands, induces transitions from insulating, (ferro)magnetic states,
to metallic states with no localized moments. The transition may be continuous or discontinuous, de-

pending on the values of the interaction parameters. A richly structured phase diagram is obtained. For
some values of the parameters the model reproduces in a reasonable fashion and for T~O the complex
transition recently found in NiI2 at pressures of about 19 GPa.

I. INTRODUCTION

The metal-insulator transition is a phenomenon of
great interest in solid-state physics. ' It appears in a
large variety of substances, including some elements,
doped semiconductors, and transition-metal, rare-earth,
and actinide compounds, and as a function of a variety of
external parameters: pressure, temperature, and chemi-
cal composition. The conductivity transition can be
discontinuous (first order) or continuous, and is many
times associated with crystal structure modifications
and/or drastic changes in the magnetic properties of the
substance.

The diamond anvil cell, with its great capabilities, has
opened the exploration of new systems under pressure.
In particular, a combination of techniques (diamond anvil
cell, Mossbauer spectroscopy, conductivity, and x-ray
structural measurements) has produced the discovery of a
simultaneous metal-insulator and magnetic phase transi-
tion in NiI2, a layered transition-metal insulating com-
pound at ordinary pressures. This compound consists of
alternating hexagonal single-Ni and double-I atomic lay-
ers stacked along the c axis; it can be thought of, in the
first approximation, as being made of face-centered-cubic
I ions, intercalated every other layer by hexagonal
monolayers of Ni +. The magnetic structure arises prin-
cipally from the Ni + ions: each layer is ferromagnetical
ly ordered, with successive layers being antiferromagneti
cally ordered with respect to each other. ' At ordinary
pressures the Neel temperature is approximately 80 K.

Under pressure the antiferromagnetic coupling be-
comes stronger, with the Neel temperature increasing by
approximately a factor of 4 at pressures of about 19 GPa.
At 19 GPa there is a phase transition with several well-
defined characteristics: (l) the substance is no longer an-
tiferromagnetic at any temperature, (2) it becomes metal-
lic, and (3) there is no observable change either in the

crystal structure, the atomic volume, or the lattice pa-
rameters.

Electronic band-structure calculations ' of NiI2 and
the isostructural NiBr2 and NiC12 yield metals for all
three substances, with the Fermi level falling in the mid-
dle of the Ni 3d bands. The fact that all three are insula-
tors indicates the failure of band theory, and the fact that
correlation effects in the Ni 3d bands do produce a Mott
insulator. ' The application of pressure, similar to the
substitution of a light halogen for a heavier one, reduces
the energy difference between the halogen np and the Ni
3d states. The crystal Hamiltonian produces a hybridiza-
tion between the various atomiclike orbitals, and favors
the existence of itinerant electron states, i.e., metals. The
effect of hybridization is paramount in states with the
same or very close orbital energies. Therefore the appli-
cation of pressure, by decreasing the energy difference be-
tween the Ni and the halogen orbital energies, might pro-
duce an insulator-to-metal transition, as it does in the
specific case of NiI2.

It is the purpose of this contribution to present a calcu-
lation in which these effects are explicitly modeled. The
calculation is based on the Hartree-Fock approximation
of a two-band Hamiltonian, which includes hybridization
and short-range interactions: a strong one for electrons in
the "localized" band, and a weaker one between electrons
in the localized and the extended bands. The model has
been called in the past the Falicov-Kimball model, ' and
can be considered a straightforward extension of the
periodic Anderson model, "' with an additional short-
range interaction between electrons in the two different
states. Various specific cases of the model have been
studied but, as far as the authors are concerned, no self-
consistent calculation has been performed, even for T~0
and in the Hartree-Fock approximation, for a system in
which the magnetic moment (magnetization), the hybridi-
zation, and the orbital populations are included simul-
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taneously as a function of the energy difference between
the various levels (i.e., the applied pressure).

Section II briefly describes the model. Section III con-
tains the approximations and the method of solution.
Section IV presents the results, the discussion, and con-
clusions.

II. THK MODEL

A model that describes the concurrent magnetic and
metal-insulator phase transition in NiIz must contain the
following basic ingredients.

(i) An electronic structure that contains extended, only
weakly correlated band states. In case of NiI2, the I 5p
bands are of this kind. For simplicity, the present model
takes only a single band, with dispersion ck, into con-
sideration. The operators ck (ck ) annihilate (create)
particles in the extended band states with wave vector k,
spin o., and energy c.k.

(ii) The most energetic electrons of the Ni + ions form
a highly correlated, localized (3d) configuration, i.e.,
each Ni + ion sustains two holes in the 3d shell, as op-
posed to a collective Ni 3d conduction band in which the
number of electrons at each site fluctuates. For two holes
the lowest-energy term corresponds to total spin S=1.
The strong Coulomb repulsion between localized holes on
the same site eliminates fluctuations between different
configurations, and produces the Mott insulator, i.e., a
nonconducting, localized picture for Ni + 3d states. In
the model considered here, only one spin-degenerate lo-
calized orbital per unit cell is taken into account. This is
a crude approximation, because it is only capable of
describing spin magnetic moments, with no contribution
arising from the orbital part and the degeneracy of the d
band. The operators dk (dk ) annihilate (create) parti-
cles in the localized states with wave vector k, spin o.,
and energy E. This orbital has no dispersion.

(iii) Excess occupancy of the localized orbital is ener-
getically unfavorable because of the strong intrasite
Coulomb interaction. The model includes this property
by a short-range repulsion term, of magnitude U, that de-
scribes the strong screened Coulomb interaction for two
holes in the same site.

(iv) The periodic potential of the lattice is responsible
for a hybridization term, of strength V, between the ex-
tended c and the localized d orbitals of the crystal.

(v) The experimental situation ' clearly indicates that
the magnetization changes discontinuously at the transi-
tion pressure. A first-order, discontinuous transition can
only be obtained if a repulsion between particles in local-
ized and extended states (of strength G ) is included in the
model.

In summary the Hamiltonian operator is

where Xdenotes the number of unit cells in the crystal.
The function ck and the four parameters E, V, U, and

G depend directly on the volume of the unit cell and,
through an equation of state, on the applied pessure. A
direct study of the pressure dependence is not possible in
the framework of this approach. It is therefore assumed
that the main effect of an external pressure is a shift of
the parameter E, i.e., a decrease in the difference between
the average energy value of the extended and localized
states, which leads to a significant band overlap and a
growing importance of the hybridization. This assump-
tion is supported by existing band-structure calcula-
tions, ' and by the experimentally found increase of Neel
temperature with pressure.

The model introduced above and its numerous relatives
have been studied for the past 30 years in the context of
the intermediate-valence systems, ' the Kondo problem, '

and heavy-fermion systems. '

III. THK HARTRKK-FOCK APPROXIMATION

where the new mean-field, one-particle parameters c.k,
U, and V are defined by

7k =—8k+ 6(ht+b, )),
U —=E+ UA +GA,

(3a)

(3b)

V =—V—GI (3c)

They depend on the expectation values

(4a)

(4c)

(4d)

and

(4e)

A Hartree-Fock approximation HHF to the many-body
Hamiltonian (l) is given by

HF
= g Ekck~cko. + g U~dk~dkcr

k, o. ko.

+g V (d„~ck~+c„~dk~)
ko.

NUb, tb, t
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+ g dk+q tdk' —
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6+ ~ P P dk+qock' —q&'ck'~'dk~'
o, cr' k, k', q

H = g skck~ck~+ g Edk~dk~+ V g (dk~ck~+ck~dk~) All Hartree-Fock states are assumed to conserve transla-
tional symmetry, an approximation that is valid for
paramagnetic and ferromagnetic states, but not for anti-
ferromagnets, ferrimagnets, and charge- and spin-density
waves. Although NiIz is an antiferromagnet, each Ni
plane is ferromagnetic, with alternating planes arranged
antiferromagnetically with respect to each other. In the
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present contribution the detailed antiferromagnetic
correlation between Ni planes is neglected (it is a smaller
effect, arising from Anderson superexchange ), and the
magnetization m discussed below refers exclusively to the
single-Ni-plane magnetization.

The physical interpretation of the expectation values
(4a) —(4e) is obvious: The quantity 5 in (4c) measures the
total density of electrons in localized orbitals. Because of
the repulsion between band and localized states [G term
in (1)], the shift (3a) in band energy from sk to sk is pro-
portional to this density multiplied by the coupling con-
stant G. Similarly, A measures the total density of band
electrons. The effective field resulting from the G term
shifts the energy of the localized orbitals, as given in (3b)
b a term GA. These energies are also shifted by the

~ ~ ~

lrepulsion between electrons in the same localized orbsta
with different spin by the Ub, term in (3b). The exchange
in the G term leads to an extra spin-dependent contribu-
tion to the hybridization V, as seen in (3c).

Diagonalization of HH„ is straightforward. The quasi-
particle excitation spectrum is given by

E+ k
=

—,'(ok+ U )+[—,'(sk —U ) + V ]'~

and the excitation spectrum E+ k develops the familiar
hybridization gap for nonvanishing V .

The quantities of physical interest here are the total
magnetization m,

m = ~(At+Et) —(Ag+b, g)~,

and the concentration (4a) of particles in the extended
states A as a function of the various parameters, E in par-
t' 1 The calculation (a nonlinear problem) requiresicu ar.

of fiveself-consistency. It is equivalent to finding roots o ve
transcendental equations' that depend on the five vari-
ables E~ (Fermi energy), b., g =b,

&

—b, &, I &, and I &.

The solution for the first two variables, EF and 6, as a
function of the latter three is always unique, whereas g,
I d I may have multiple solutions. Results are&, an &m
presented in the following section.

In order to understand the structure and physical con-
tent of the resulting Hartree-Fock ground state, the
quasiparticle density of states

p (co) —=—+[5(E+ q co)+5(E k
——co)]

1

k

is very useful. Some examples are also given in the fo-f
lowing section.

IV. RESULTS AND DISCUSSION

Results for particular values of the parameters are
shown in Figs. 1 —3. In these figures the total number of
electrons in the system is one per formula unit; the densi-
ty of itinerant states (per spin, per formula unit) was as-
sumed to take the (semicircular) form

po(e):— [s( W —s)]'
m8'

where W, the bandwidth [directly related to the band en-
ergies ek of (1)], is taken to be the energy unit of the
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FIG. 1. The magnetization m (upper graph) and the
extended-band occupation number A (lower graph) for U= 5 W
and V =0.1 W, as functions of E: (a) G =0. 1 W; (b) G =0.5 W.
Case (a) exhibits two second-order transitions. Case (b) shows
only a discontinuous transition.

up spin down spin

DENSITY OF STATES

FIG. 2. Schematic representation of the density of quasipar-
ticle states for the case U=SW, V=0. 1W, G=0.5W and
E=0.31W. The horizontal thin solid line indicates the energy
of the last occupied state. The dashed lines represent the densi-
ties of spin states in the absence of interactions and hybridiza-
tion (the dashed straight lines are the localized states). Note
that the system is fully magnetized (no down-spin states occu-
pied) and is an insulator, with an energy gap between the last
occupied (up-spin) states and the first empty (down-spin) states.
There are additional localized down-spin states at higher ener-
gies, not included in the graph.

pro em.oblem. The value of 8' should be interpreted, rather
fthan the actual bandwidth of the problem, as the value o

the energy interval that contains one electron per spin
17per formula unit in the density of states.

The other parameters were taken to be U=58' and
V=0. 18, a somewhat arbitrary but reasonable choice.
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FIG. 3. Schematic representation of the density of quasipar-
ticle states for the case U=5W V=0. 1W G=0.5W, and
E=0.32W. The horizontal thin solid line indicates the energy
of the last occupied state. The dashed lines represent the densi-
ties of spin states in the absence of interactions and hybridiza-
tion (the dashed straight lines are the localized states). Note
that the system is not magnetic, with identical bands and identi-
cal occupation of both spins. It is also metallic, since the Fermi
level falls in the middle of the lower band. There is considerable
hybridization, and no clear distinction can be made between lo-
calized and extended states.
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FIG. 4. The magnetization m (upper graph) and the
extended-band occupation number A (lower graph) for U = 5 W
and V=0. 1W as functions of E: (a) 6=0.3W (b) G=0.48'.
Case (a) exhibits two second-order transitions. Case (b) shows
three singularities: two second-order transitions and, at an in-
termediate value of E, a discontinuous change.

Figure 1 shows the values of m and A for the cases of
G=0. 1W and G=0.5W as functions of the increasing
values of E, i.e., increasing overlap between itinerant and
localized states, i.e., increasing pressure. The G=0. 1W
case exhibits a smooth increase in A and a continuous de-
crease in m. In particular, m is equal to 1 for values of E
smaller than E =0.093 79W and equal to 0 for values of
E greater than E =0.468 14W. These two values of E can
be considered those corresponding to pressures at which
there are, at T=O, second-order phase transitions. ' The
G =0.5 W case exhibits a T=0 discontinuous (first-order)
transition from m =1 to 0 for E=0.31549W; there is

also a corresponding discontinuity in A. Figures 2 and 3
show the densities of quasiparticle states for two particu-
lar situations close to the transition: G =0.5 W and
E =0.31W and G =0.5 W and E =0.32 W. It can be seen
that the former corresponds to a fully magnetized insula-
tor, whereas: the latter is an unmagnetized metal. Hy-
bridization plays a crucial role in all cases.

Figure 4 shows two other cases, intermediate between
those depicted in Fig. 1. They correspond to G=0.3W
and G =0.4W. Whereas the former still exhibits the two
second-order transitions characteristic of small G values,
the latter presents a different situation. There are in this

TABLE I. The self-consistent hybridization parameters for the examples of Figs. 1 and 4. In all
cases U =5 Wand V=O. 1 W. All energies are in units of W.

0.1

E/W

0.090 00
0.320 00
0.468 14

1.000 00
0.497 21
0.000 00

0.125 83
0.131 35
0.11204

Vg/W

0.10000
0.101 11
0.11204

0.3 0.237 04
0.320 00
0.370 75

1.000 00
0.438 56
0.000 00

0.202 15
0.19904
0.13659

0.10000
0.104 71
0.136 59

04 0.293 50
0.31393
0.313 93
0.326 10

1.000 00
0.954 43
0.168 43
0.00000

0.251 40
0.257 94
0.18906
0.148 85

0.10000
0.10024
0.121 00
0.148 85

0.5 0.315 48
0.315 50

1.00000
0.000 00

0.297 16
0.158 43

0.10000
0.158 43
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case, as E (or equivalently the pressure) increases, thvee
T=O phase transitions: a second-order one, where m
departs from the m = 1 value; a discontinuous one, where
m jumps between two intermediate values; and another
second-order transition, where m finally attains the m =0
value. The variety in the transitions is caused by a deli-
cate interplay of the following basic processes.

(i) The d-band Coulomb repulsion U is responsible for
the splitting of the two spin d bands and the related oc-
currence of local magnetic moments. '

(ii) The itinerant c bands and the localized d bands re-
pel each other with a strength that is a function of the
size of the parameter G. Depending on the position E of
the d levels relative to the c band, the d bands push the
itinerant states either to higher or to lower energies. If 6
is not too large, the lower d spin band and one c band
(with opposite spin) may overlap, leading to a magnetiza-
tion m (1. It is clear from this argument that it is not
possible to obtain a discontinuous transition without an
interaction 6 between localized and itinerant states.

(iii) It should be mentioned that the terminology "c or
d band" is no longer applicable in a rigorous sense, be-
cause of the hybridization. However, if V is small, it is
justified to think about "d-dominated and c-dominated c-
d hybrids. " There is always a hybridization gap between
c- and d-dominated hybrids within one spin direction,
therefore only c-and d-band overlap between opposite
spin orientations may occur.

(iv) If E is sufBciently (positive) large, the system mini-
mizes its energy by occupying only the itinerant states.
Because of the 6 interaction, the localized states are
pushed above the Fermi level and are no longer occupied
(Fig. 3). Since the localized states are no longer occupied,
and the electron repulsion only involves the d states, no
local magnetic moment is formed. It depends on the
magnitude of G whether the transition is continuous or
discontinuous with E. The "critical" value G, of G at
which transition changes character is (as it is reasonable
to expect) much smaller than U, but larger than V.

The inhuence of the interaction G, the self-consistency,
and the relative overlap of the bands is most notable in
the efFective hybridization parameters of V of (3c). This
is shown in Table I for the cases illustrated in Figs. 1 and
4

It is instructive to plot the contours of constant m in
the G Eplane (see Fi-g. 5). This plot divides the GE-
plane into three regions: m =1, the first high-symmetry
region; m =0, the second high-symmetry region; and in-
termediate values of m, the low-symmetry region. There
are in this plane three lines of singularities, and three
singular points. A second-order line separates regions of
m =0 and nonzero m values, in which m varies continu-
ously. Another second-order line divides regions of
m = 1 and m ( 1 values, in which m also varies continu-
ously. There is a third line along which m has jump
discontinuities; these can be between m =1 and 0, be-
tween intermediate values of m and m =0, or between
two intermediate values of m. The separation of these
three regimes is given by singular points where the
second-order lines meet the line of discontinuities. Final-
ly the line of discontinuities, where it separates two re-

0.5

0.4—

0.2—

0.1—

0.0
0.0 0.1 0.2 0.3 0.4 0.5

E/W
0.6

FIG. 5. The regions in the G-E plane where, for U=58'and
V=0. 1 8; m takes specific values: m = 1, the first high-
symmetry region; m =0, the second high-symmetry region; and
intermediate values of m, the low-symmetry region. Thin lines
indicate second-order transitions, where m departs from one of
the high-symmetry values and varies continuously. The thick
line indicates discontinuous changes in the values of m. The
open circles show the intersection of the line of discontinuities
with the second-order-transition lines, and separate regions
where m jumps from 1 to 0, from an intermdiate value to zero,
and between two intermediate values. The black dot indicates
the "classical" critical point, where the line of discontinuities
stops, i.e., the discontinuities vanish.
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gions of low and identical symmetry, terminates at a clas-
sical critical point.

Even though only a few cases have been explored in de-
tail, it is evident that the model described by Eq. (l) ex-
hibits a great richness of structure and possibilities. The
examples studied here, in any case, encompass that which
motivated this study: The simultaneous magnetic and
insulator-metal transition in NiI2. The graph of Fig. 4,
case (b), seems to reproduce fairly well the behavior of
the hyperfine field, i.e., the Ni-plane magnetization, as
determined by Mossbauer spectroscopy, and reported in
Ref. 5. The densities of quasiparticle states shown in
Figs. 2 and 3, when account is taken for the difference in
band structure between the present model and the Ni
halogenides, describe qualitatively the electronic changes
expected in these transitions.
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