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The optimized-efFective-potential (OEP) method and a method developed recently by Krieger, Li, and
Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employ-

ing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-
correlation energy functional. The resulting band gaps from both calculations are found to be in fair
agreement with the experimental values. The discrepancies are typically within a few percent with re-

sults that are nearly the same as those of previously published orbital-dependent multipotential SIC cal-

culations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD—
and it is believed to be the case even for the exact Kohn-Sham potential —both the OEP and KLI predict
valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields

essentially the same results as the OEP.

I. INTRODUCTION

In the exact Kohn-Sham (KS)' density-functional
theory (DFT), the exchange-correlation potential,
V„, (r), which is the functional derivative of the
exchange-correlation energy functional E„,[n],
V„, (r)=5E„,[n]/5n, is strictly self-interaction free,
i.e., the self-exchange-correlation interaction is exactly
canceled by its counterpart, the self-Coulomb term in the
Hartree potential. However, such cancellation is incom-
plete in the local-density approximation (LDA). As a
consequence, many of the properties of atoms, molecules,
and solids are not well described. In particular, the un-
derestimate of the band gap for insulating solids has been
attributed partially to this failure; i.e., the spurious self-
interaction is a positive quantity which raises the energy
of electron states unequally, with the more localized
highest valence state having a larger change than that of
the bottom of the conduction state, resulting in a smaller
energy band gap.

Attempts to correct this error using the self-
interaction-corrected local-spin-density approximation
(SICLSD, or simply SIC) have been made in the past few
years with considerable success. In all cases, most of
the discrepancies due to LDA disappear, with the new re-
sult agreeing with experimental values fairly well. How-
ever, all the calculations reported have involved the use
of the SIC multipotential method, which, although still
lying within the framework of the Hohenberg-Kohn
density-functional theory, does not belong to the KS
prescription. In particular, due to its multipotential na-
ture, an intrinsic shortcoming exists in SICLSD such that
it yields orbitals that are not orthogonal unless off-
diagonal Lagrange multipliers are introduced which then
significantly increases the numerical work.

The question thus raised is the following: If the exact
KS exchange-correlation potential V„, (r) exists, will it
be able to account accurately for the band gap of insulat-
ing solids; and can one actually find a practical V„,(r)
that is applicable to solids?
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The first part of the question has been addressed exten-
sively recently. " With the discovery of the physical
significance of the highest occupied eigenvalue of the KS
theory, ' it is now known " that the exact KS
exchange-correlation potential should show an integer
discontinuity. That is, when the number of electrons of a
system with a discontinuity in the eigenvalue spectrum
changes from N to N+5 (with N being an integer and 5 a
positive infinitesimal), the V„, (r ) will jump from

V„,(r) by a constant. For insulating solids, this implies
essentially that electrons in the valence and conduction
bands will be acted upon by two KS potentials (corre-
sponding to the ground states of X-electron and X+5-
electron systems, respectively), with a nonzero constant
difference. It follows, therefore, that for any approximate
KS potential (even a very accurate one in terms of its
description of the ground-state properties), as long as it
fails to show the integer discontinuity, it will fail to pre-
dict correctly the band-gap value. (Progress "has been
made in the past in calculating this constant and account-
ing accurately for the band gap; most of this, however,
has used the much more involved self-energy formalism. )

LDA is a continuous function of density, and so it cannot
have the property of integer discontinuity. Thus LDA
does not yield the correct values for the band gaps of the
insulating solids.

From these analyses, it thus appears that the answer to
the second part of the question is as follows: one has to
find an approximate V„, (r) which is self-interaction-free
and satisfies the integer discontinuity criterion. (It
should be noted that the SIC formalism essentially
embeds both of these properties. As it is constructed, the
SIC is certainly self-interaction-free, and in addition, the
electron states in the conduction and valence bands have
actually been calculated by using different exchange-
correlation potentials. )

In this work, we will show how one could apply the op-
timized effective potential' ' (OEP) method and the
method derived recently by Krieger, Li, and Iafrate'
(KLI) to the band-structure calculations of insulating
solids. The V„,(r) of these two methods has the virtue
that it satisfies both of the criteria discussed above. We
will then present our results and compare with those of
LDA and other calculations as well as to experimental re-
sults.

II. FORMALISM

As discussed earlier, the unknown exact V„, (r) is
self-interaction-free and possesses the property of integer
discontinuity. The LDA and those approximations with
gradient expansion corrections, however, satisfy neither
of these two conditions. Currently, there is no known
V„, which is a functional of density only and which
respects the integer discontinuity criterion. In fact,
whether one can ever find such V„, has been ques-
tioned. "

However, if one constructs an exchange-correlation en-
ergy functional that is orbital dependent, E„,=E„,[P, ]
like that of Hartree-Pock (HF) or SIC, then although in
general one can still not find its functional derivative with
respect to the density (which is V„, ) analytically, since

1

y y, n (r')n (r)
H

where [p;, i =1,2, . . . , N] are eigenfunctions of a single
local effective potential V

h oEPy —
(

I q2+ VoEP )y (2)

with V being determined by requiring that E [P;] is
minimized for all I P; I obtained from Eq. (2). This results
in

5E 5E
5V, f 5,". r' 5V(r)

5$;(r')= g f h;P;(r')dr'+c. c.=0,
5V r

where h,. is given by

h, P, (r)= 5$;(r)
(4)

and is the single-particle Hamiltonian for orbital i and

5$, /5 Vcan be calculated by using the Green's function:

5$,.(r') = —G;(r', r)P;(r),5V r

(h —c,;)G,.(r, r')=5(r —r') —P,. (r)P,". (r') .

With the application of Eq. (2) and rearrangements,
one finally obtains an integral equation for the effective
exchange-correlation potential V„,(r):

jH(r, r') V„(r')dr'=Q(r),

V„,(r) = V — ——+ dr'oEp Z B(r )

r fr —r'f

H(r, r') = g P,*(r)G;(r,r')P, (r'),

Q (r) = —g f dr'P, '(r)G, (r, r')u'„, (r')P, (r'),

5E..[0;1
u„', (r) =

which corresponds to the effective exchange-correlation
orbital-dependent potential in the HF or SIC formalism.

It has been pointed out' that when this formalism is
applied to the HF energy functional, the effective ex-
change potential is exactly the KS exchange potential in
the exchange-only theory.

p; =p;[n] is not known, one can always solve for this V„,
numerically by using the OEP' ' method, i.e., given

E=E[P.]
=T[P;]+E~[n]+E„,[P;]+fdru, „,(r)n(r),
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Talman and Shadwick' have performed the OEP-HF
(referred to as the optimized potential model or OPM by
them) calculations and found that in all cases the OEP-
HF yields total energies that are very close to the corre-
sponding HF values. Applying this method to the
SICLSD energy functional, Norman and Koelling' ob-
tained a local orbital-independent exchange-correlation
potential, which by the same argument should be regard-
ed as the KS potential for this SICLSD energy function-
al; and found that it gives nearly the same results as the
multipotential SICLSD calculations for both the total en-
ergy and the eigenvalue of the highest occupied state.

It follows from their constructions that both OEP-HF
and OEP-SIC are self-interaction-free. In addition, they
also display the property of integer discontinuity. Nor-
man and Koelling have demonstrated in their application
of OEP-SIC the discontinuous jump of the Li spin-
down potential. ' A similar jump, which is essentially a
constant, also appears for the OEP-HF. '

The major problem with the OEP method is its com-
plexity in the numerical programming. Great care needs
to be taken to ensure an accurate calculation of the
single-particle energy eigenvalues. ' '

Recently, after analyzing the OEP integral equation,
KLI derived an approximate solution for the QEP equa-
tion, ' i.e., they found an analytic expression for the
V„,(r) for the exchange-correlation energy functional
E„,=E„,[P;], which for a spin-unpolarized system may
be written

n, (r)v„', (r) n;(r)
V„,(r)= g + g (V„', —v„', ),

n r n r (9)

where n;(r) is the orbital density, n;(r)= ~/;(r)~, and
n (r) =g;n;(r). V„', and v„', are the expectation values of
V„,(r) and v'„, (r) with respect to orbital i V'„, ma. y be
determined by solving a matrix of the order of the num-
ber of nondegenerate orbitals. The first term is essential-
ly the exact Slater potential ' when E [P; ] =EH~[/; ], and
is a weighted averaged SIC potential as suggested by Per-
dew and Zunger if SIC energy functional is assumed.

Atomic calculations' ' ' show that in all situations,
the KLI potential mimics the OEP results extremely well,
and even correctly preserves the property of integer
discontinuity both qualitatively and quantitatively. In
addition, it yields total energies that are only a third of
the difference of the OEP and HF results (the typical
OEP results are only a few ppm above that of HF), and
are closer to the HF or OEP-HF than those given by the
method developed recently by Harbola and Sahni.
Moreover, the KLI method is also very easy to program
and the eigenvalues thus obtained are very stable and reli-
able (being only a few parts per thousand from the OEP-
HF results).

Applications of both OEP and KLI to atoms have been
very successful. In these applications, they are also easier
to implement, since one needs only deal with localized
states. It will be much more involved if one attempts to
apply the OEP or the KLI method to solids. For one
thing, the SIC approach is reasonable only when applied
to localized orbitals like Wannier states.

n, r'
(10)

where V„, [n &, n ~ ] is the LSD exchange-correlation po-
tential.

Solving for V„,(r) from Eq. (6) or Eq. (9), one can then
use either result instead of the commonly used LDA for
the exchange-correlation potential in the LAPW band-
structure calculation.

In this work, we have approximated the exchange-
correlation potential by the OEP or KLI solution only in-
side the muffin-tin sphere, the usual LDA approximation
is employed in the interstitial region where electron
charge density is both low and extended.

It should be noted that the V„,(r) of OEP or KLI thus
constructed is an approximate KS potential which is ex-
pected to result in accurate calculations of only ground-
state properties; i.e., only electron properties in the
valence band might be appropriately described. The en-
ergy band gap between the valence and conduction bands
may be obtained by imagining that a single electron is
added to the system so that the conduction-band
minimum is occupied. We treat this conduction state as
extended, so that its efFect on the electron density of the
system is negligible. The new V„,(r) has a discontinuous
jump from the V„,(r) which governs the behavior of the
electrons in the valence bands.

In our calculations, we used LDA (as has been done in
other SIC-type calculations), to compute the energy
states in the conduction band. This is a one-shot calcula-
tion which employs the converged OEP or KLI self-
consistently determined electron densities. We have also
made direct calculations of the conduction states; in this
case all energy levels are calculated using the OEP or
KLI V„,(r) that was used to calculate the valence-band
states.

III. RESULTS

Employing the OEP and KLI methods, we have per-
formed the band-structure calculations for the noble-gas
solids Ne, Ar, Kr, and Xe and an alkali halide, NaC1.
The calculations were performed by using a LAPW code.
All relativistic efFects have been included except the

However, for solids like noble gases and some of the al-
kali halides like NaC1 which have very localized charge
density around each atom or ion site, one can still apply
OEP or KLI approximately by employing the linear aug-
mented plane-wave (LAPW) method using the atomiclike
wave functions assuming integer atomic occupation num-
bers within each muffin-tin sphere. The error thus intro-
duced will be small, since the charge density for these sys-
tems leaks outside the muffin-tin sphere by only a few
hundredths of electrons.

For simplicity, in our calculations, we have applied the
OEP and KLI to the SIC functional suggested by Perdew
and Zunger. The v„', (r) in Eq. (8) then assumes the
form

i (r) —VLsD[ ln 1n]
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spin-orbit coupling. The lattice parameters used are
8.43S, 10.05, 10.66, and 11.59 a.u. for Ne, Ar, Kr, and
Xe, respectively, and 10.658 a.u. for NaC1. For noble-gas
solids, we use the touching sphere model in determining
the muSn-tin radius. For NaC1, we use the same param-
eters as used by Norman and Perdew.

In the following, we present the results for the band
gaps as well as intraband transitions in the valence band
from X4 to I » and from I.z to I ». For noble-gas solids,
the latter determines the valence-band (VB) width,
whereas for NaC1, the experimental result is available
only for the X4 to I » transition. %'e will mainly concen-
trate on the discussion of the calculated results for band
gaps. At the end of the section, we will also briefly dis-
cuss the results for the conduction levels.

A. Band gap

1. Exchange plus correlation

Table I lists the results for the band gaps and the two
valence intraband transitions. In all cases, except for the

HFC calculation, the von Barth and Hedin correlation
expression has been used. Besides OEP and KLI, we
have also quoted the Hartree-Fock plus correlation
(HFC), ' SIC, ' and experimental results ' wherever
available. For comparison, the results of our LDA calcu-
lations are also presented, which are essentially
equivalent to those previously published. ' '

From the table, we can see that the OEP and KLI band
gaps agree with the experimental results fairly well for all
the noble-gas and NaCl solids. Most of the underesti-
mates by LDA have been corrected. In addition, we also
notice that these calculations give results which are close
to the corresponding multipotential SIC calculations. A
similar feature has been found in atomic calculations for
the highest occupied eigenvalues, although here we are
dealing with the difference of two quantities. Further-
more, as expected, the KLI approximates the exact OEP
results very well. For Ne, Ar, and NaCl, the two differ
by less than 0.1 eV. For Kr and Xe, the difference in-
creases to about half an electron volt. Moreover, we ob-
serve that the KLI gaps are always less than the experi-

TABLE I. Band-gap and valence-band width. All calculations except HFC have employed the von
Barth —Hedin correlation. Energies are in electron volts. Experimental band gaps for noble-gas solids
are from Ref. 27, and bandwidths from Ref. 28. HFC results for rare gas are from Ref. 25, and NaCl
from Ref. 26. The numbers in parentheses are the gaps calculated using OEP or KLI method neglect-

ing the integer discontinuity effect.

Expt. LDA OEP

Noble gas

KLI SIC HFC

I i-I is gap
I"»-X4 width
I »-L, width

21.4

1-1.3

11.5
0.63
0.70

Ne
20.9 (15.2)

0.48
0.52

20.8 (15.2)
0.48
0.53

20.2'

0 59'

22.2
0.3
0.4

I -I is gap
I »-X4 width
I »-L' width

14.2

1.7

8.2
1.17
1.30

Ar
13.1 (9.7)

1.07
1.17

13.1 (9.7)
1.07
1.16 1.21

15.2
1.0
1.2

I i-I is gap
I »-X4 width
I »-L~ width

11.6

2.3

6.8
1.41
1.56

Kr
11.1 (8.0)

1.31
1.42

10.8 (7.9)
1.32
1.43

13.6
1.2
1.4

~1 I 1s gap
I »-X4 width
I »-L& width 3.0

5.8
1.49
1.76

Xe
9.5 (6.9)

1.50
1.62

9.0 (6.7)
1.53
1.65

Alkali halide

I i-I is gap
I »-X4 width
I »-L2 width

9.0'
2.4+0.2

5.5
1.74
2.01

NaCl
9.5 (6.3)

1.43
1.75

9.5 (6.4)
1.42
1.73

9.2'
1.80'
1 93'

10.0
3.0
2.4

'Reference 5 (a simplified SIC has been used rather than that of Ref. 2).
Reference 4.

'Reference 29.
Reference 30.
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mental values for the noble-gas solids, whereas it is just
the contrary for the NaC1. This might be attributed, at
least partially, to the approximation made in the con-
struction of the KLI potential if we recall that the V„, of
OEP or KLI inside each muftin-tin sphere is calculated
from all the occupied states of the individual atom or ion.
In both the noble-gas and NaC1 solids, the lowest conduc-
tion band is formed from the atomic s state and the
valence band is formed from the atomic p states. Howev-
er, whereas in the noble-gas solids, the s and p states that
formed the two bands are from the same atom, they are
from different ions in NaCl.

Inside the parentheses next to the OEP and KLI
band-gap values, we also list for each method the band
gaps calculated entirely by using the same potential (OEP
or KLI) which was used to calculate the valence and core
states. That is, one neglects the property of the KS po-
tential, which should have a discontinuous jump for cal-
culating the energy eigenvalue for an electron in the bot-
tom of the conduction band. As expected, the band gap
thus calculated is not wide enough to account for the ex-
periment. For example, for neon, whereas the correct
treatments of the OEP and KLI give 20.9 and 20.8 eV,
respectively, in close agreement with the experimental re-
sult of 21.4 eV, the incorrect direct calculations yield

only 15.2 eV in both cases. If we regard the OEP and
KLI as an accurate KS potential, we then see that the
discontinuity constant is about 6 eV for neon. On the
other hand, it is also worth noting that these direct gaps
are, nevertheless, larger than those given by LDA and
correct about a third of the LDA underestimate. This
can be attributed to the fact that the V„,(r) of OEP or
KLI is self-interaction-free.

2. Exchange-only case

In LDA calculations, the exclusion of the correlation
effect narrows the band gap by a few tenths of an electron
volt. On the contrary, as can be seen from Tables I and
II, with the application of SIC, the band gaps increase by
about half an electron volt when the effect of correlation
is neglected. The increase of the band gap in LDA calcu-
lation is understandable when one realizes that the LDA
correlation potential lowered the energy levels of the
more localized valence band more than those in the con-
duction band. In OEP and KLI, however, the contribu-
tion from the self-interaction-corrected term for the
correlation for these solids is a positive quantity which is
also weighted more for the valence states, so neglecting
correlation in these potentials has the opposite effect on

TABLE II. Band gap and valence-band width for noble-gas and alkali halide solids in an exchange-
only calculation. Same notation as Table I.

Expt. LDA OEP

Noble gas

KLI SIC

I I-I'» gap
I »-X4. width
I »-L' width

21.4

1—1.3

10.8
0.67
0.75

Ne
21.3 (15.1)

0.49
0.53

21. 1 (15.0)
0.49
0.54

25.1

0.3
0.4

I &-I » gap
I »-X4 width
I, -L' width

14.2

1.7

7.7
1.24
1.38

Ar
13.6 (9.6)

1.09
1.19

13.7 (9.7)
1.08
1.18

13 9'

1.23'

18.5
F 1
1.3

I )-I"» gap
I »-X4 width
I, -L' width

11.6

2.3

6.4
1.49
1.64

Kr
11.7 (8.0)

1.33
1.44

11.4 (7.9)
1.34
1.45

16.5
1.4
1.6

I I-I » gap
I »-X4 width
1»-L' width

9.3

3.0

5.5
1.69
1.86

Xe
10.0 (6.9)

1.51
1.64

9.6 (6.7)
1.54
1.67

Alkali halide

I I-I » gap
I »-X4 width
I, -L' width

'Reference 4.
Reference 29.

'Reference 30.

90
2.4+0.2'

5.3
1.81
2.10

NaCl
10.1 (6.5)

1.41
1.72

10.1 (6.5)
1.40
1.71

15.9
3.4
2.7
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the band gap calculation.
It is interesting to note that the direct calculation of

the band gaps using OEP and KLI method are almost un-
changed with or without correlation, i.e., the application
of the SIC correlation merely shifts the energy levels
(both valence and conduction states) by nearly a constant.
The difference is only of the order of 0.01 eV. It thus ap-
pears that the OEP or KLI correlation potential makes
nearly an equal contribution to the conduction- and
valence-band. states.

Finally, we note here that unlike the OEP and KLI,
the reported HF and HFC band gaps differ by as much as
3—6 eV. This is because in HFC calculation, a different
form of correlation has been used (i.e., the electron pola-
ron model). It is expected that calculations using the HF
method with the von Barth —Hedin correlation will have
a much smaller difference than those of the HF and HFC,
as found in our OEP and KLI results.

B. Bandwidth

Compared with experiment, LDA gives valence bands
which are too narrow for both the noble-gas solids and
NaC1. Application of the self-interaction correction does
not improve the results and in fact, the bandwidths be-
come slightly narrower. Calculation by Kunz using
HFC method predicts 3.0 eV for VB from (X4 to I ») for
NaC1, in agreement with the experimental value of 3.0 eV
given by Pong and Smith. However, it is not clear
where such transition occurs in the experiment. In fact,
Himpsel and Steinmann reported an experimental result
of 2.4 eV for transition from X& to I &5. Examining the
results for NaC1 in Table I, it is seen that the HFC
method produces a relative position for states of X4 and

Lz that are different from the density functional results.
The HFC, however, predicts the same relative position of
X4 and L2 for all the noble-gas solids as the density-
functional methods. Qur OEP and KLI methods yield
the narrowest VB among the density-functional methods,
but not by a significant amount. The relative position of
the states studied is the same as the other DFT calcula-
tions. The reason that the OEP and KLI predict a nar-
row VB is simply that the KS formalism will only de-
scribe the highest occupied state correctly. A11 states
lower than the top of the valence band will be raised and
all unoccupied states will be lowered if the same potential
is used. It is also interesting to observe, from the results
in Tables I and II, that the valence intraband transition
widths are nearly independent of the effect of correlation
for the OEP or KLI calculations. The difference is typi-
cally of the order of 0.01 eV. This, once again, demon-
strates that the correlation effect plays a very minor role
in the description of the large band-gap solids. Notice,
for LDA, the inAuence of correlation is nearly an order of
magnitude larger than that of OEP or KLI.

C. Conduction levels

It is well known that LDA yields conduction levels
that are too compressed. Since in our calculations, we
have in fact used LDA (but using OEP or KLI density) in

calculating these levels, it is thus expected that we will
obtain results that follow the same pattern for the con-
duction levels as LDA. This is exactly the case. For ex-
ample, for NaC1, LDA gives 5.3, 1.9, 2.1, and 5.8 eV (rel-
ative to the conduction level bottom of I, ) at I zs, X„
X3 and X4 points, respectively, compared with 5.1, 1 .9,
2.1, and 5.9 eV of OEP and 5.2, 1.9, 2.1, and 5.9 of KLI
(the reported experimental results by Himpsel and Stein-
mann give 8.2+0.2, 2.4+0.5, 3.0+0.5, and 8.0+0.5 eV,
respectively). For neon (at the same four points), LDA
yields 17.9, 6.8, 11.3, and 12.4 eV, OEP gives 17.8, 6.8,
11.1, and 12.4 eV, and KLI predicts 17.8, 6.8, 11.1, and
12.6 eV.

However, the "direct" calculation of these states, i.e.,
calculation using the same V, of OEP or KLI that was
used to calculate the valence and core levels, predicts
conduction-band levels that are significantly different
from those of LDA. In this case, for example, we obtain,
at the same four points: I z5, X&, X3, and X4, 5.4, 0.64,
3.0, and 6.5 eV for NaC1 crystal in both OEP and KLI
calculations. The 0.64 eV at X& is significantly different
from the 1.9 eV of LDA. For Ne, we have 16.8, 7.3, 11.1,
and 14.9 eV for both OEP and KLI, which are also very
different from those of LDA.

IV. CONCLUSION

In this work we have shown how the OEP method can
be applied approximately to the SIC exchange-
correlation energy functional for insulating solids. In ad-
dition, we have also shown how accurate the KLI
method mimics the OEP in all the calculations. Just as in
the atomic case, the two methods yield essentially
equivalent results. As a consequence, we have actually
demonstrated how one can calculate the band gaps accu-
rately by using accurate KS exchange-correlation poten-
tial like OEP or KLI without relying upon the more in-
volved self-energy formalism. From this study, it is also
found that both OEP and KLI methods produce results
(at least for the band gap and the width of the valence
band) that are quite close to those of the multipotential
SIC results.

Most remarkable about these two exchange-correlation
potentials is that they are both self-interaction-free and
possess the property of integer discontinuity. From ear-
lier analysis and our results, it has now become clear that
respecting these two properties is essential for any ap-
proximate KS potential to account accurately for the
band gaps of insulating solids.

Since, as is well known, ' the KS theory will only
give an exact result for the highest occupied energy ei-
genvalue, therefore, except for the calculation of the band
gap, states in other parts of the calculated band structure
using the KS (even the exact KS) method will in general
not have the desired accuracy as one might expect. In
other words, it is the intrinsic nature of the KS theory
that it will yield in general a too narrow valence band and
too compressed conduction bands, and such behavior will
be particularly magnified when dealing with insulating
solids with a large band gap, since in this case, the KS po-
tential will underestimate the self-interactions of the
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valence states other than the highest energy state and
raises their energy. Our calculations using both OEP and
KLI V„, confirm the above statements in all respects: the
band gaps are in good agreement with experiment, the
valence-band widths and relative conduction-band levels
are all significantly different from the experimental
values.

This, however, does not mean that the KS method
should not be utilized in band-structure calculations.
The usefulness of it is evidenced by its success in the
description of metals. Even for insulating solids, due to
its simplicity of being a single potential, which automati-
cally guarantees the orthogonality of the calculated orbit-
als, it might still be desirable to calculate the band struc-
ture using the KS method, and then simply add on a
single-shot correction to all states, similar to those per-
formed by Perdew and Norman in correcting the LDA
eigenvalues.

Finally, we point out that although in this work we
have been able to perform both the OEP and KLI calcu-
lations, approximations have been made such that in fact
only those solids which have large electron charge densi-
ties around each ion or atom (i.e., interstitial charge den-

sity is small) could be described accurately. In addition,
the treatment of the conduction band by LDA might not
be as accurate, especially for semiconductors which have
small gaps. A better approximation would be to derive
directly from the OEP equation or the KLI construction
the appropriate value of the integer discontinuity as has
been done for atoms. ' ' Due to its numerical complexi-
ty, the OEP method might not be easy to apply to other
solids like semiconductors, because it will not be possible
to solve the OEP integral equation for a potential using
an atomiclike approximation. For these cases, due to its
relative simplicity and the fact that the potential is given
as an explicit functional of the occupied orbitals, the KLI
method might be easier to apply.
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