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Phonon-limited resistivity of high-T, oxides: A strong-coupling calculation
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The equations of the lowest-order conserving Green s-function approximation for the phonon-limited
resistivity are solved numerically. The input functions a F(to) and a&,F(c0) are calculated from a
screened ionic model for YBa2Cu307 and lead to integrated coupling constants k-3 and A, t,—1. The
calculated temperature dependence of the resistivity and the width of the Drude peak as well as the
absolute values of the prefactors are in excellent agreement with experiment. This result shows, in

particular, that the observed resistivity in high-T, . oxides does not imply a weak electron-phonon cou-
pling.

The normal-state resistivity p of most high-temperature
superconductors is linear in temperature to a high accura-
cy. ' At present there is no generally accepted explana-
tion for this linear behavior nor a consensus about the na-
ture of the scatterers. A linear temperature dependence
has so far been obtained theoretically only in the form of
leading terms in high- or low-temperature expansions so
that the linear law holds only above or below a certain
characteristic temperature. Why this characteristic tem-
perature is so low and of the order of T, represents a puz-
zle for most theories working with high-temperature ex-
pansions.

In the case of phonon-limited resistivity the characteris-
tic energy for the crossover to a linear temperature depen-
dence is the Debye energy or the energy of a representa-
tive optical phonon. At first sight this energy also seems
to be too large to be able to explain the observed linear
dependence down to T,. However, it has been shown in
the case of the Bloch-Gruneisen approximation to the
Boltzmann equation that the crossover energy may be
substantially lower than the Debye energy. On the oth-
er hand, the same calculations lead to the conclusion that
the observed slope of the resistivity is compatible only
with a weak electron-phonon coupling. For instance, a

t

value of about 0.2 for the dimensionless coupling constant
k has been deduced for YBa2Cu307, assuming that the
whole temperature-dependent part of the resistivity is due
to electron-phonon scattering. An even smaller upper
bound for k of 0.08 has been obtained for Bi2+-
Sr2 —,Cu06+&. ' Such small values for k can yield only
very small values for T, . Therefore it was widely conclud-
ed that the electron-phonon coupling is irrelevant for
high- T, superconductivity.

The above arguments, based on weak-coupling ideas,
may, however, be invalid if high-T, oxides are character-
ized by a strong electron-phonon coupling. To be able to
decide whether a strong electron-phonon coupling is com-
patible with the observed p or not needs an approximation
which also covers the strong-coupling case. One possibili-
ty for such a treatment is the lowest-order conserving ap-
proximation which we will study in this paper. Higher-
order contributions are smaller by the Migdal ratio
torh/EF (cosh is a typical phonon energy, EF the Fermi en-
ergy) and thus may be omitted.

The dc conductivity can be calculated in the lowest-
order conserving approximation from the following equa-
tions: '

ne2 t' dnF(s) A(e)ds
2m & —- de l (e) '

Pmax

I (e) =tr„du a F(u)[2ntt(u)+nF(e+u)+nF(u —e)], (2)

A(e) =1+tr ~ du[a F(u) —at,F(u)] [ntt(u)+nF(e+u)] +[ntt(u)+nF(u —e)]
max A(e+ u) A(e —u)

Jp I e+u I s —u
(3)

n and m are the density and the mass of the charge carriers, respectively. cu „. „denotes the maximal phonon frequency.
nz and nI; are the Bose and Fermi distribution functions, respectively. The two functions a F and a F&„are defined by7

a'F(u) =N(0) g((~gppg~'8[u —co(, )]&p&p, (4)

2

a,',F(u) =N(0)g(((gnpg~', 6[u —co(~~ ~)l&n&n, (5)
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with
24ze n (7)

(I+~)m '

I+X " „drtF(G) W(G)
T dG 8

2 4-- dG r(G) '

a'F(u)
1u

u

p is the resistivity and equal to I/o. Equations (7) and
(8) define the squared plasmon frequency and the trans-
port relaxation time of dressed particles containing renor-
malization effects resulting from the electron-phonon in-
teraction. The usefulness of Eq. (6) lies in the fact that
the inverse transport lifetime of dressed particles 1/r * can
be measured approximately as the width of the Drude
peak if T&&co, where m is an average phonon frequency
defined in Eq. (11) [for T» io, 1 should be dropped in Eq.
(8) because of the shakeoff of phonon renormalizations
due to temperature]. Thus, both the dynamic part 1/r*
and the static part Q~~ can be determined independently
from experiment and compared with theory. Equation (9)
represents the usual definition of the dirnensionless cou-
pling constant X.

Before presenting numerical results we perform a high-
temperature expansion of Eqs. (1)-(3) and assume that
pu (but not pG) is small compared to one. The expansion
for I (G) is straightforward and yields

r(G) =~) T+ (10)
12

(9)

+
cosh z(PG/2)

with the definition

ro =— duua F(u).—2 2 '"
2

X 4o

Expanding Eq. (3) in powers of p one obtains after some
algebra

where N(0) is the density of hole states for one spin direc-
tion at the Fermi energy. N(0) has incorporated all re-
normalization effects due to the electron-electron interac-
tion, but is unrenormalized with respect to the hole-
phonon interaction. ro(~~) is the frequency of the phonon
with branch index A, and momentum p. &

. )z denotes an
average over the Fermi surface with respect to the rno-
mentum p. g» i stands for the fully renormalized
electron-phonon interaction. (p —p')i is the projection of
the vector p

—p' onto the plane which accounts for the
fact that the Fermi velocity is nonzero only parallel to the
plane in our model. A and I denote the vertex function
and the negative imaginary part of the self-energy, respec-
tively.

For the following it is convenient to recast Eq. (1) into
the standard form

(6)
np)' ~*
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Expanding, finally, Eq. (8) we find

1
2

2KT
tr

I — ro +. (13)
I+A, 12

Xi„and roi, are defined by Eqs. (9) and (11), respectively,
with a F replaced by at„F. The first two terms shown ex-
plicitly on the right-hand side of Eq. (13) agree with the
corresponding ones in the high-temperature expansion of
the Bloch-Griineisen formula of (I+) )/r*, see Eq. (20)
of Ref. 9. From Eqs. (4), (5), and (9) it follows that
X„=A, if both g»q and ro(~~) are independent of momen-
tum. The prefactor A,„/(I +A, ) in Eq. (13) then ap-
proaches 1 in the strong-coupling limit. However, for a
momentum-dependent coupling function this prefactor
tends to ki, /A, in the strong-coupling limit which may be
small if vertex corrections are important.

We have calculated a F and a„F for YBa2Cui07 using
the screened ionic model of Ref. 10. Local-field effects for
wave vectors perpendicular to the planes now also are in-
cluded exactly. In view of recent photoemission data' ' we
used in our calculations the larger value 2k~ =1 A ' in-
stead of 2k' =0.7 A ' as in Ref. 10. The long-range
forces are more efficiently screened with increasing k~
leading to a reduction of the a F values for a fixed
Coulomb enhancement factor Z, . The diagrams in Fig. 1

show the calculated functions a F(ro) and ai„F(ro) using
2k' =1 A ', Z„=3.5, ' a sampling with 512 k points in
the little Brillouin zone, and a channel width of 2 meV.
Compared to the density of phonon states (see upper dia-
gram of Fig. 1 of Ref. 10) a F and a,„F give a larger
weight to high-frequency phonons which produce large

x +-
cosll (PG/2)

2

A(G) = 1
— (ro,'„—ro')

12

(12)
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FIG. 1. Calculated a7F(ro) (upper part) and ai2F(ro) (lower

part) for YBa2Cu307.
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Coulomb potentials and, therefore, large changes in the
local chemical potentials. The dimensionless coupling
strengths, corresponding to the functions in Fig. 1, are
A. =3.07 and X,&, =1.08 (the quoted value for k in Ref. 10 is
too small by a factor of 2 because of a mistake). The re-
sulting small ratio for k&,/A, may be surprising because it is
near one in many metals. ' In our case, the smallness of
this ratio seems to be caused mainly by the substantial
momentum dependence of the electron-phonon coupling
functions of the screened ionic model. The absolute values
for a F(ro) and at,F(ce) are subject to some uncertainty.
The details of the band structure and geometry of the Fer-
mi surface are not taken into account realistically in our
tight-binding calculation with only nearest-neighbor in-
teractions. Furthermore, the Fermi-liquid corrections re-
normalize the density-of-states factor in a F and a&„F in
the simple way N(0) N(0)Z„only if one assumes that
the cancellation of the Coulomb vertex and Z, takes place
for all relevant momenta and frequencies and not just in
the hydrodynamic limit.

Figure 2 shows the real and imaginary parts of the
self-energy Z(kF, s) of electrons for T = 100 K (solid
curves) and T =300 K (dashed curves) resulting from the
electron-phonon interaction. At very low temperatures
and small frequencies the negative imaginary part of X,
I (e), is proportional to T for a=0 and to a for T =0 in
accordance with Fermi-liquid theory. I (s=O) increases
quadratically in temperature up to about 150 K and then
switches to a linear law. For a fixed temperature I (s) in-
creases first quadratically in s within a small interval
0 & a& 20 meV, then turns over to a quasilinear law and
saturates above the largest phonon frequency co „. „. In the
normal state I (a) is larger or comparable to the energy a
up to e—150 meV. The width of dressed particles I * is
given by I /Z„h. At small energies Z„h is about 4 and then
decreases monotonically to 1 on a phonon scale. As a re-
sult I * is somewhat smaller than c at 100 K, but not at
300 K. This indicates that a quasiparticle description for
the holes may no longer be adequate at higher tempera-
tures.

300

Figure 3 shows solutions of the vertex function A(a) ob-
tained by iterating the integral equation (3). The solid,
dotted, and dashed lines correspond to T=100, 200, and
300 K, respectively. According to our high-temperature
expansion A approaches the energy-independent value
A/A, „at high temperatures which is about 3 in our case.
The scattering with phonons then can be considered as a
quasistatic process. The dashed curve in Fig. 3 corre-
sponds approximately to this case. For T =200 K, and
especially T =100 K, A(e) depends strongly on energy: it
increases below co „. „, reaches a maximum at about co „. „,
and then decays towards a finite asymptotic value A at
high energies.

Figure 4 shows the calculated temperature dependence
of the renormalized transport relaxation rate I/r*. The
curve is linear between T,—90 and 400 K to a very high
accuracy. This quasilinear behavior, however, cannot be
identified with the true asymptotic law of the high-
temperature expansion: If extrapolated down to T =0,
one finds a finite negative instead of a vanishing intercept.
The resistivity curve exhibits a very smooth and gradual
decrease in the slope at temperatures larger than 400 K
until the true asymptotic linear law is reached at T
& co „. „—1000 K. Performing the above calculations just
for one oscillator with a frequency coo, we find a crossover
temperature to a linear behavior already near rop/3, rather
independently of the coupling strength or the ratio Xt,/A, .
Such a property also seems to underlie the linear law in
Fig. 4.

The slope of the resistivity curve between 100 and 400
K is practically identical with the asymptotic slope at high
temperatures and thus is given by 2rrTX&,/(I+X). Using
our values A. =3.07 and A,&„=1.08 we obtain r ' =1.66
T, which is in excellent agreement with the observed
value' 1.9 T. Important for this good agreement is the
small ratio Xt,/k in the screened ionic model. For k&„=k
the experimental value of the slope would imply k —0.2,
so essentially we would be back at the arguments of Ref. 5
in favor of a weak electron-phonon coupling. The satura-
tion argument of Ref. I does not apply in our case: The
transport lifetime r* for quasiparticles is much larger
than the lifetime of particles. Using the observed mass
5m,., ' we obtain a Fermi velocity of about 1.2x10

--- 7
-ImZ (T=300 K)
-ImZ (T=100 K)

(D

E

100

Q)
CO e Z T=300 K)

)

-100
0 100

Energy (meV)
200

FIG. 2. Real and imaginary parts of the self-energy of elec-
trons at k =kr, for T=IOO K (solid lines) and T =300 K
(dashed lines).
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FIG. 3. Energy dependence of the vertex function A for three
diAerent temperatures.
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FIG. 4. Calculated renormalized transport relaxation rate
(/r* as a function of temperature.

cm/sec and a free mean path of about 20 A at 300 K
which is much larger than interatomic distances.

Experimental data also allow us to check the static
quantity Q~i. Since our calculation does not include a
chain contribution we should compare it with p„ the resis-
tivity along the a direction in untwinned YBa2Cu307. As-

suming that the lowest value for p in Refs. 2 and 3 corre-
sponds to the best sample we have p, =aT with a=0.6
p Q cm K ' (Ref. 3, sample 8). Dividing now p, by
Schlesinger's 1/r * we find (Qzi), „~t—1.4 eV. On the oth-
er hand, band-structure calculations yield the bare value
Qp( 2.9 eV so that (Qi)&h„„—2.9/v 1 +A, eV —1.4 eV,
again in excellent agreement with the experimental value.

Finally, we would like to point out a severe constraint
for any nonphonon-scattering mechanism for p. Assume
that the linear temperature dependence in p is due to a
nonphonon mechanism. Since p is approximately additive
in diA'erent scattering mechanisms, only a very small addi-
tional phonon contribution to p could be tolerated in view
of the nearly perfect linear law. If one then assumes that
A f,/)(, is of the order of 3 or larger, Eq. ( 1 3) implies im-
plausible small values for X,. The conclusion is that either
the electron-phonon interaction is inactive because of the
presence of some unknown process or the assumption of a
nonphonon-scattering process has to be dropped.

The author thanks 3. Keller, G. F. Maksimov, and A. B.
Kaiser for useful hints and P. B. Allen for very helpful dis-
cussions on several topics of this paper.
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